1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 /* 5 * cloning flags: 6 */ 7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15 #define CLONE_THREAD 0x00010000 /* Same thread group? */ 16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */ 27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */ 28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */ 29 #define CLONE_NEWNET 0x40000000 /* New network namespace */ 30 #define CLONE_IO 0x80000000 /* Clone io context */ 31 32 /* 33 * Scheduling policies 34 */ 35 #define SCHED_NORMAL 0 36 #define SCHED_FIFO 1 37 #define SCHED_RR 2 38 #define SCHED_BATCH 3 39 /* SCHED_ISO: reserved but not implemented yet */ 40 #define SCHED_IDLE 5 41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */ 42 #define SCHED_RESET_ON_FORK 0x40000000 43 44 #ifdef __KERNEL__ 45 46 struct sched_param { 47 int sched_priority; 48 }; 49 50 #include <asm/param.h> /* for HZ */ 51 52 #include <linux/capability.h> 53 #include <linux/threads.h> 54 #include <linux/kernel.h> 55 #include <linux/types.h> 56 #include <linux/timex.h> 57 #include <linux/jiffies.h> 58 #include <linux/rbtree.h> 59 #include <linux/thread_info.h> 60 #include <linux/cpumask.h> 61 #include <linux/errno.h> 62 #include <linux/nodemask.h> 63 #include <linux/mm_types.h> 64 65 #include <asm/system.h> 66 #include <asm/page.h> 67 #include <asm/ptrace.h> 68 #include <asm/cputime.h> 69 70 #include <linux/smp.h> 71 #include <linux/sem.h> 72 #include <linux/signal.h> 73 #include <linux/path.h> 74 #include <linux/compiler.h> 75 #include <linux/completion.h> 76 #include <linux/pid.h> 77 #include <linux/percpu.h> 78 #include <linux/topology.h> 79 #include <linux/proportions.h> 80 #include <linux/seccomp.h> 81 #include <linux/rcupdate.h> 82 #include <linux/rculist.h> 83 #include <linux/rtmutex.h> 84 85 #include <linux/time.h> 86 #include <linux/param.h> 87 #include <linux/resource.h> 88 #include <linux/timer.h> 89 #include <linux/hrtimer.h> 90 #include <linux/task_io_accounting.h> 91 #include <linux/kobject.h> 92 #include <linux/latencytop.h> 93 #include <linux/cred.h> 94 95 #include <asm/processor.h> 96 97 struct exec_domain; 98 struct futex_pi_state; 99 struct robust_list_head; 100 struct bio; 101 struct fs_struct; 102 struct bts_context; 103 struct perf_event_context; 104 105 /* 106 * List of flags we want to share for kernel threads, 107 * if only because they are not used by them anyway. 108 */ 109 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 110 111 /* 112 * These are the constant used to fake the fixed-point load-average 113 * counting. Some notes: 114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 115 * a load-average precision of 10 bits integer + 11 bits fractional 116 * - if you want to count load-averages more often, you need more 117 * precision, or rounding will get you. With 2-second counting freq, 118 * the EXP_n values would be 1981, 2034 and 2043 if still using only 119 * 11 bit fractions. 120 */ 121 extern unsigned long avenrun[]; /* Load averages */ 122 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 123 124 #define FSHIFT 11 /* nr of bits of precision */ 125 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 126 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 127 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 128 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 129 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 130 131 #define CALC_LOAD(load,exp,n) \ 132 load *= exp; \ 133 load += n*(FIXED_1-exp); \ 134 load >>= FSHIFT; 135 136 extern unsigned long total_forks; 137 extern int nr_threads; 138 DECLARE_PER_CPU(unsigned long, process_counts); 139 extern int nr_processes(void); 140 extern unsigned long nr_running(void); 141 extern unsigned long nr_uninterruptible(void); 142 extern unsigned long nr_iowait(void); 143 extern unsigned long nr_iowait_cpu(void); 144 extern unsigned long this_cpu_load(void); 145 146 147 extern void calc_global_load(void); 148 149 extern unsigned long get_parent_ip(unsigned long addr); 150 151 struct seq_file; 152 struct cfs_rq; 153 struct task_group; 154 #ifdef CONFIG_SCHED_DEBUG 155 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 156 extern void proc_sched_set_task(struct task_struct *p); 157 extern void 158 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 159 #else 160 static inline void 161 proc_sched_show_task(struct task_struct *p, struct seq_file *m) 162 { 163 } 164 static inline void proc_sched_set_task(struct task_struct *p) 165 { 166 } 167 static inline void 168 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 169 { 170 } 171 #endif 172 173 /* 174 * Task state bitmask. NOTE! These bits are also 175 * encoded in fs/proc/array.c: get_task_state(). 176 * 177 * We have two separate sets of flags: task->state 178 * is about runnability, while task->exit_state are 179 * about the task exiting. Confusing, but this way 180 * modifying one set can't modify the other one by 181 * mistake. 182 */ 183 #define TASK_RUNNING 0 184 #define TASK_INTERRUPTIBLE 1 185 #define TASK_UNINTERRUPTIBLE 2 186 #define __TASK_STOPPED 4 187 #define __TASK_TRACED 8 188 /* in tsk->exit_state */ 189 #define EXIT_ZOMBIE 16 190 #define EXIT_DEAD 32 191 /* in tsk->state again */ 192 #define TASK_DEAD 64 193 #define TASK_WAKEKILL 128 194 #define TASK_WAKING 256 195 #define TASK_STATE_MAX 512 196 197 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW" 198 199 extern char ___assert_task_state[1 - 2*!!( 200 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 201 202 /* Convenience macros for the sake of set_task_state */ 203 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 204 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 205 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 206 207 /* Convenience macros for the sake of wake_up */ 208 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 209 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 210 211 /* get_task_state() */ 212 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 213 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 214 __TASK_TRACED) 215 216 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 217 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 218 #define task_is_stopped_or_traced(task) \ 219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 220 #define task_contributes_to_load(task) \ 221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 222 (task->flags & PF_FREEZING) == 0) 223 224 #define __set_task_state(tsk, state_value) \ 225 do { (tsk)->state = (state_value); } while (0) 226 #define set_task_state(tsk, state_value) \ 227 set_mb((tsk)->state, (state_value)) 228 229 /* 230 * set_current_state() includes a barrier so that the write of current->state 231 * is correctly serialised wrt the caller's subsequent test of whether to 232 * actually sleep: 233 * 234 * set_current_state(TASK_UNINTERRUPTIBLE); 235 * if (do_i_need_to_sleep()) 236 * schedule(); 237 * 238 * If the caller does not need such serialisation then use __set_current_state() 239 */ 240 #define __set_current_state(state_value) \ 241 do { current->state = (state_value); } while (0) 242 #define set_current_state(state_value) \ 243 set_mb(current->state, (state_value)) 244 245 /* Task command name length */ 246 #define TASK_COMM_LEN 16 247 248 #include <linux/spinlock.h> 249 250 /* 251 * This serializes "schedule()" and also protects 252 * the run-queue from deletions/modifications (but 253 * _adding_ to the beginning of the run-queue has 254 * a separate lock). 255 */ 256 extern rwlock_t tasklist_lock; 257 extern spinlock_t mmlist_lock; 258 259 struct task_struct; 260 261 extern void sched_init(void); 262 extern void sched_init_smp(void); 263 extern asmlinkage void schedule_tail(struct task_struct *prev); 264 extern void init_idle(struct task_struct *idle, int cpu); 265 extern void init_idle_bootup_task(struct task_struct *idle); 266 267 extern int runqueue_is_locked(int cpu); 268 extern void task_rq_unlock_wait(struct task_struct *p); 269 270 extern cpumask_var_t nohz_cpu_mask; 271 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 272 extern int select_nohz_load_balancer(int cpu); 273 extern int get_nohz_load_balancer(void); 274 #else 275 static inline int select_nohz_load_balancer(int cpu) 276 { 277 return 0; 278 } 279 #endif 280 281 /* 282 * Only dump TASK_* tasks. (0 for all tasks) 283 */ 284 extern void show_state_filter(unsigned long state_filter); 285 286 static inline void show_state(void) 287 { 288 show_state_filter(0); 289 } 290 291 extern void show_regs(struct pt_regs *); 292 293 /* 294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 295 * task), SP is the stack pointer of the first frame that should be shown in the back 296 * trace (or NULL if the entire call-chain of the task should be shown). 297 */ 298 extern void show_stack(struct task_struct *task, unsigned long *sp); 299 300 void io_schedule(void); 301 long io_schedule_timeout(long timeout); 302 303 extern void cpu_init (void); 304 extern void trap_init(void); 305 extern void update_process_times(int user); 306 extern void scheduler_tick(void); 307 308 extern void sched_show_task(struct task_struct *p); 309 310 #ifdef CONFIG_DETECT_SOFTLOCKUP 311 extern void softlockup_tick(void); 312 extern void touch_softlockup_watchdog(void); 313 extern void touch_softlockup_watchdog_sync(void); 314 extern void touch_all_softlockup_watchdogs(void); 315 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write, 316 void __user *buffer, 317 size_t *lenp, loff_t *ppos); 318 extern unsigned int softlockup_panic; 319 extern int softlockup_thresh; 320 #else 321 static inline void softlockup_tick(void) 322 { 323 } 324 static inline void touch_softlockup_watchdog(void) 325 { 326 } 327 static inline void touch_softlockup_watchdog_sync(void) 328 { 329 } 330 static inline void touch_all_softlockup_watchdogs(void) 331 { 332 } 333 #endif 334 335 #ifdef CONFIG_DETECT_HUNG_TASK 336 extern unsigned int sysctl_hung_task_panic; 337 extern unsigned long sysctl_hung_task_check_count; 338 extern unsigned long sysctl_hung_task_timeout_secs; 339 extern unsigned long sysctl_hung_task_warnings; 340 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, 341 void __user *buffer, 342 size_t *lenp, loff_t *ppos); 343 #endif 344 345 /* Attach to any functions which should be ignored in wchan output. */ 346 #define __sched __attribute__((__section__(".sched.text"))) 347 348 /* Linker adds these: start and end of __sched functions */ 349 extern char __sched_text_start[], __sched_text_end[]; 350 351 /* Is this address in the __sched functions? */ 352 extern int in_sched_functions(unsigned long addr); 353 354 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 355 extern signed long schedule_timeout(signed long timeout); 356 extern signed long schedule_timeout_interruptible(signed long timeout); 357 extern signed long schedule_timeout_killable(signed long timeout); 358 extern signed long schedule_timeout_uninterruptible(signed long timeout); 359 asmlinkage void schedule(void); 360 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner); 361 362 struct nsproxy; 363 struct user_namespace; 364 365 /* 366 * Default maximum number of active map areas, this limits the number of vmas 367 * per mm struct. Users can overwrite this number by sysctl but there is a 368 * problem. 369 * 370 * When a program's coredump is generated as ELF format, a section is created 371 * per a vma. In ELF, the number of sections is represented in unsigned short. 372 * This means the number of sections should be smaller than 65535 at coredump. 373 * Because the kernel adds some informative sections to a image of program at 374 * generating coredump, we need some margin. The number of extra sections is 375 * 1-3 now and depends on arch. We use "5" as safe margin, here. 376 */ 377 #define MAPCOUNT_ELF_CORE_MARGIN (5) 378 #define DEFAULT_MAX_MAP_COUNT (USHORT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 379 380 extern int sysctl_max_map_count; 381 382 #include <linux/aio.h> 383 384 #ifdef CONFIG_MMU 385 extern void arch_pick_mmap_layout(struct mm_struct *mm); 386 extern unsigned long 387 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 388 unsigned long, unsigned long); 389 extern unsigned long 390 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 391 unsigned long len, unsigned long pgoff, 392 unsigned long flags); 393 extern void arch_unmap_area(struct mm_struct *, unsigned long); 394 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 395 #else 396 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 397 #endif 398 399 #if USE_SPLIT_PTLOCKS 400 /* 401 * The mm counters are not protected by its page_table_lock, 402 * so must be incremented atomically. 403 */ 404 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value) 405 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member)) 406 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member) 407 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member) 408 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member) 409 410 #else /* !USE_SPLIT_PTLOCKS */ 411 /* 412 * The mm counters are protected by its page_table_lock, 413 * so can be incremented directly. 414 */ 415 #define set_mm_counter(mm, member, value) (mm)->_##member = (value) 416 #define get_mm_counter(mm, member) ((mm)->_##member) 417 #define add_mm_counter(mm, member, value) (mm)->_##member += (value) 418 #define inc_mm_counter(mm, member) (mm)->_##member++ 419 #define dec_mm_counter(mm, member) (mm)->_##member-- 420 421 #endif /* !USE_SPLIT_PTLOCKS */ 422 423 #define get_mm_rss(mm) \ 424 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss)) 425 #define update_hiwater_rss(mm) do { \ 426 unsigned long _rss = get_mm_rss(mm); \ 427 if ((mm)->hiwater_rss < _rss) \ 428 (mm)->hiwater_rss = _rss; \ 429 } while (0) 430 #define update_hiwater_vm(mm) do { \ 431 if ((mm)->hiwater_vm < (mm)->total_vm) \ 432 (mm)->hiwater_vm = (mm)->total_vm; \ 433 } while (0) 434 435 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 436 { 437 return max(mm->hiwater_rss, get_mm_rss(mm)); 438 } 439 440 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 441 struct mm_struct *mm) 442 { 443 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 444 445 if (*maxrss < hiwater_rss) 446 *maxrss = hiwater_rss; 447 } 448 449 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 450 { 451 return max(mm->hiwater_vm, mm->total_vm); 452 } 453 454 extern void set_dumpable(struct mm_struct *mm, int value); 455 extern int get_dumpable(struct mm_struct *mm); 456 457 /* mm flags */ 458 /* dumpable bits */ 459 #define MMF_DUMPABLE 0 /* core dump is permitted */ 460 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 461 462 #define MMF_DUMPABLE_BITS 2 463 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 464 465 /* coredump filter bits */ 466 #define MMF_DUMP_ANON_PRIVATE 2 467 #define MMF_DUMP_ANON_SHARED 3 468 #define MMF_DUMP_MAPPED_PRIVATE 4 469 #define MMF_DUMP_MAPPED_SHARED 5 470 #define MMF_DUMP_ELF_HEADERS 6 471 #define MMF_DUMP_HUGETLB_PRIVATE 7 472 #define MMF_DUMP_HUGETLB_SHARED 8 473 474 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 475 #define MMF_DUMP_FILTER_BITS 7 476 #define MMF_DUMP_FILTER_MASK \ 477 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 478 #define MMF_DUMP_FILTER_DEFAULT \ 479 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 480 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 481 482 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 483 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 484 #else 485 # define MMF_DUMP_MASK_DEFAULT_ELF 0 486 #endif 487 /* leave room for more dump flags */ 488 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 489 490 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 491 492 struct sighand_struct { 493 atomic_t count; 494 struct k_sigaction action[_NSIG]; 495 spinlock_t siglock; 496 wait_queue_head_t signalfd_wqh; 497 }; 498 499 struct pacct_struct { 500 int ac_flag; 501 long ac_exitcode; 502 unsigned long ac_mem; 503 cputime_t ac_utime, ac_stime; 504 unsigned long ac_minflt, ac_majflt; 505 }; 506 507 struct cpu_itimer { 508 cputime_t expires; 509 cputime_t incr; 510 u32 error; 511 u32 incr_error; 512 }; 513 514 /** 515 * struct task_cputime - collected CPU time counts 516 * @utime: time spent in user mode, in &cputime_t units 517 * @stime: time spent in kernel mode, in &cputime_t units 518 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 519 * 520 * This structure groups together three kinds of CPU time that are 521 * tracked for threads and thread groups. Most things considering 522 * CPU time want to group these counts together and treat all three 523 * of them in parallel. 524 */ 525 struct task_cputime { 526 cputime_t utime; 527 cputime_t stime; 528 unsigned long long sum_exec_runtime; 529 }; 530 /* Alternate field names when used to cache expirations. */ 531 #define prof_exp stime 532 #define virt_exp utime 533 #define sched_exp sum_exec_runtime 534 535 #define INIT_CPUTIME \ 536 (struct task_cputime) { \ 537 .utime = cputime_zero, \ 538 .stime = cputime_zero, \ 539 .sum_exec_runtime = 0, \ 540 } 541 542 /* 543 * Disable preemption until the scheduler is running. 544 * Reset by start_kernel()->sched_init()->init_idle(). 545 * 546 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 547 * before the scheduler is active -- see should_resched(). 548 */ 549 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 550 551 /** 552 * struct thread_group_cputimer - thread group interval timer counts 553 * @cputime: thread group interval timers. 554 * @running: non-zero when there are timers running and 555 * @cputime receives updates. 556 * @lock: lock for fields in this struct. 557 * 558 * This structure contains the version of task_cputime, above, that is 559 * used for thread group CPU timer calculations. 560 */ 561 struct thread_group_cputimer { 562 struct task_cputime cputime; 563 int running; 564 spinlock_t lock; 565 }; 566 567 /* 568 * NOTE! "signal_struct" does not have it's own 569 * locking, because a shared signal_struct always 570 * implies a shared sighand_struct, so locking 571 * sighand_struct is always a proper superset of 572 * the locking of signal_struct. 573 */ 574 struct signal_struct { 575 atomic_t count; 576 atomic_t live; 577 578 wait_queue_head_t wait_chldexit; /* for wait4() */ 579 580 /* current thread group signal load-balancing target: */ 581 struct task_struct *curr_target; 582 583 /* shared signal handling: */ 584 struct sigpending shared_pending; 585 586 /* thread group exit support */ 587 int group_exit_code; 588 /* overloaded: 589 * - notify group_exit_task when ->count is equal to notify_count 590 * - everyone except group_exit_task is stopped during signal delivery 591 * of fatal signals, group_exit_task processes the signal. 592 */ 593 int notify_count; 594 struct task_struct *group_exit_task; 595 596 /* thread group stop support, overloads group_exit_code too */ 597 int group_stop_count; 598 unsigned int flags; /* see SIGNAL_* flags below */ 599 600 /* POSIX.1b Interval Timers */ 601 struct list_head posix_timers; 602 603 /* ITIMER_REAL timer for the process */ 604 struct hrtimer real_timer; 605 struct pid *leader_pid; 606 ktime_t it_real_incr; 607 608 /* 609 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 610 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 611 * values are defined to 0 and 1 respectively 612 */ 613 struct cpu_itimer it[2]; 614 615 /* 616 * Thread group totals for process CPU timers. 617 * See thread_group_cputimer(), et al, for details. 618 */ 619 struct thread_group_cputimer cputimer; 620 621 /* Earliest-expiration cache. */ 622 struct task_cputime cputime_expires; 623 624 struct list_head cpu_timers[3]; 625 626 struct pid *tty_old_pgrp; 627 628 /* boolean value for session group leader */ 629 int leader; 630 631 struct tty_struct *tty; /* NULL if no tty */ 632 633 /* 634 * Cumulative resource counters for dead threads in the group, 635 * and for reaped dead child processes forked by this group. 636 * Live threads maintain their own counters and add to these 637 * in __exit_signal, except for the group leader. 638 */ 639 cputime_t utime, stime, cutime, cstime; 640 cputime_t gtime; 641 cputime_t cgtime; 642 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 643 cputime_t prev_utime, prev_stime; 644 #endif 645 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 646 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 647 unsigned long inblock, oublock, cinblock, coublock; 648 unsigned long maxrss, cmaxrss; 649 struct task_io_accounting ioac; 650 651 /* 652 * Cumulative ns of schedule CPU time fo dead threads in the 653 * group, not including a zombie group leader, (This only differs 654 * from jiffies_to_ns(utime + stime) if sched_clock uses something 655 * other than jiffies.) 656 */ 657 unsigned long long sum_sched_runtime; 658 659 /* 660 * We don't bother to synchronize most readers of this at all, 661 * because there is no reader checking a limit that actually needs 662 * to get both rlim_cur and rlim_max atomically, and either one 663 * alone is a single word that can safely be read normally. 664 * getrlimit/setrlimit use task_lock(current->group_leader) to 665 * protect this instead of the siglock, because they really 666 * have no need to disable irqs. 667 */ 668 struct rlimit rlim[RLIM_NLIMITS]; 669 670 #ifdef CONFIG_BSD_PROCESS_ACCT 671 struct pacct_struct pacct; /* per-process accounting information */ 672 #endif 673 #ifdef CONFIG_TASKSTATS 674 struct taskstats *stats; 675 #endif 676 #ifdef CONFIG_AUDIT 677 unsigned audit_tty; 678 struct tty_audit_buf *tty_audit_buf; 679 #endif 680 681 int oom_adj; /* OOM kill score adjustment (bit shift) */ 682 }; 683 684 /* Context switch must be unlocked if interrupts are to be enabled */ 685 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 686 # define __ARCH_WANT_UNLOCKED_CTXSW 687 #endif 688 689 /* 690 * Bits in flags field of signal_struct. 691 */ 692 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 693 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 694 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 695 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 696 /* 697 * Pending notifications to parent. 698 */ 699 #define SIGNAL_CLD_STOPPED 0x00000010 700 #define SIGNAL_CLD_CONTINUED 0x00000020 701 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 702 703 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 704 705 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 706 static inline int signal_group_exit(const struct signal_struct *sig) 707 { 708 return (sig->flags & SIGNAL_GROUP_EXIT) || 709 (sig->group_exit_task != NULL); 710 } 711 712 /* 713 * Some day this will be a full-fledged user tracking system.. 714 */ 715 struct user_struct { 716 atomic_t __count; /* reference count */ 717 atomic_t processes; /* How many processes does this user have? */ 718 atomic_t files; /* How many open files does this user have? */ 719 atomic_t sigpending; /* How many pending signals does this user have? */ 720 #ifdef CONFIG_INOTIFY_USER 721 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 722 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 723 #endif 724 #ifdef CONFIG_EPOLL 725 atomic_t epoll_watches; /* The number of file descriptors currently watched */ 726 #endif 727 #ifdef CONFIG_POSIX_MQUEUE 728 /* protected by mq_lock */ 729 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 730 #endif 731 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 732 733 #ifdef CONFIG_KEYS 734 struct key *uid_keyring; /* UID specific keyring */ 735 struct key *session_keyring; /* UID's default session keyring */ 736 #endif 737 738 /* Hash table maintenance information */ 739 struct hlist_node uidhash_node; 740 uid_t uid; 741 struct user_namespace *user_ns; 742 743 #ifdef CONFIG_USER_SCHED 744 struct task_group *tg; 745 #ifdef CONFIG_SYSFS 746 struct kobject kobj; 747 struct delayed_work work; 748 #endif 749 #endif 750 751 #ifdef CONFIG_PERF_EVENTS 752 atomic_long_t locked_vm; 753 #endif 754 }; 755 756 extern int uids_sysfs_init(void); 757 758 extern struct user_struct *find_user(uid_t); 759 760 extern struct user_struct root_user; 761 #define INIT_USER (&root_user) 762 763 764 struct backing_dev_info; 765 struct reclaim_state; 766 767 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 768 struct sched_info { 769 /* cumulative counters */ 770 unsigned long pcount; /* # of times run on this cpu */ 771 unsigned long long run_delay; /* time spent waiting on a runqueue */ 772 773 /* timestamps */ 774 unsigned long long last_arrival,/* when we last ran on a cpu */ 775 last_queued; /* when we were last queued to run */ 776 #ifdef CONFIG_SCHEDSTATS 777 /* BKL stats */ 778 unsigned int bkl_count; 779 #endif 780 }; 781 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 782 783 #ifdef CONFIG_TASK_DELAY_ACCT 784 struct task_delay_info { 785 spinlock_t lock; 786 unsigned int flags; /* Private per-task flags */ 787 788 /* For each stat XXX, add following, aligned appropriately 789 * 790 * struct timespec XXX_start, XXX_end; 791 * u64 XXX_delay; 792 * u32 XXX_count; 793 * 794 * Atomicity of updates to XXX_delay, XXX_count protected by 795 * single lock above (split into XXX_lock if contention is an issue). 796 */ 797 798 /* 799 * XXX_count is incremented on every XXX operation, the delay 800 * associated with the operation is added to XXX_delay. 801 * XXX_delay contains the accumulated delay time in nanoseconds. 802 */ 803 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 804 u64 blkio_delay; /* wait for sync block io completion */ 805 u64 swapin_delay; /* wait for swapin block io completion */ 806 u32 blkio_count; /* total count of the number of sync block */ 807 /* io operations performed */ 808 u32 swapin_count; /* total count of the number of swapin block */ 809 /* io operations performed */ 810 811 struct timespec freepages_start, freepages_end; 812 u64 freepages_delay; /* wait for memory reclaim */ 813 u32 freepages_count; /* total count of memory reclaim */ 814 }; 815 #endif /* CONFIG_TASK_DELAY_ACCT */ 816 817 static inline int sched_info_on(void) 818 { 819 #ifdef CONFIG_SCHEDSTATS 820 return 1; 821 #elif defined(CONFIG_TASK_DELAY_ACCT) 822 extern int delayacct_on; 823 return delayacct_on; 824 #else 825 return 0; 826 #endif 827 } 828 829 enum cpu_idle_type { 830 CPU_IDLE, 831 CPU_NOT_IDLE, 832 CPU_NEWLY_IDLE, 833 CPU_MAX_IDLE_TYPES 834 }; 835 836 /* 837 * sched-domains (multiprocessor balancing) declarations: 838 */ 839 840 /* 841 * Increase resolution of nice-level calculations: 842 */ 843 #define SCHED_LOAD_SHIFT 10 844 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 845 846 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE 847 848 #ifdef CONFIG_SMP 849 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 850 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 851 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 852 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 853 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 854 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 855 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */ 856 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 857 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */ 858 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 859 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 860 861 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 862 863 enum powersavings_balance_level { 864 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */ 865 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package 866 * first for long running threads 867 */ 868 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle 869 * cpu package for power savings 870 */ 871 MAX_POWERSAVINGS_BALANCE_LEVELS 872 }; 873 874 extern int sched_mc_power_savings, sched_smt_power_savings; 875 876 static inline int sd_balance_for_mc_power(void) 877 { 878 if (sched_smt_power_savings) 879 return SD_POWERSAVINGS_BALANCE; 880 881 return SD_PREFER_SIBLING; 882 } 883 884 static inline int sd_balance_for_package_power(void) 885 { 886 if (sched_mc_power_savings | sched_smt_power_savings) 887 return SD_POWERSAVINGS_BALANCE; 888 889 return SD_PREFER_SIBLING; 890 } 891 892 /* 893 * Optimise SD flags for power savings: 894 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings. 895 * Keep default SD flags if sched_{smt,mc}_power_saving=0 896 */ 897 898 static inline int sd_power_saving_flags(void) 899 { 900 if (sched_mc_power_savings | sched_smt_power_savings) 901 return SD_BALANCE_NEWIDLE; 902 903 return 0; 904 } 905 906 struct sched_group { 907 struct sched_group *next; /* Must be a circular list */ 908 909 /* 910 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 911 * single CPU. 912 */ 913 unsigned int cpu_power; 914 915 /* 916 * The CPUs this group covers. 917 * 918 * NOTE: this field is variable length. (Allocated dynamically 919 * by attaching extra space to the end of the structure, 920 * depending on how many CPUs the kernel has booted up with) 921 * 922 * It is also be embedded into static data structures at build 923 * time. (See 'struct static_sched_group' in kernel/sched.c) 924 */ 925 unsigned long cpumask[0]; 926 }; 927 928 static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 929 { 930 return to_cpumask(sg->cpumask); 931 } 932 933 enum sched_domain_level { 934 SD_LV_NONE = 0, 935 SD_LV_SIBLING, 936 SD_LV_MC, 937 SD_LV_CPU, 938 SD_LV_NODE, 939 SD_LV_ALLNODES, 940 SD_LV_MAX 941 }; 942 943 struct sched_domain_attr { 944 int relax_domain_level; 945 }; 946 947 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 948 .relax_domain_level = -1, \ 949 } 950 951 struct sched_domain { 952 /* These fields must be setup */ 953 struct sched_domain *parent; /* top domain must be null terminated */ 954 struct sched_domain *child; /* bottom domain must be null terminated */ 955 struct sched_group *groups; /* the balancing groups of the domain */ 956 unsigned long min_interval; /* Minimum balance interval ms */ 957 unsigned long max_interval; /* Maximum balance interval ms */ 958 unsigned int busy_factor; /* less balancing by factor if busy */ 959 unsigned int imbalance_pct; /* No balance until over watermark */ 960 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 961 unsigned int busy_idx; 962 unsigned int idle_idx; 963 unsigned int newidle_idx; 964 unsigned int wake_idx; 965 unsigned int forkexec_idx; 966 unsigned int smt_gain; 967 int flags; /* See SD_* */ 968 enum sched_domain_level level; 969 970 /* Runtime fields. */ 971 unsigned long last_balance; /* init to jiffies. units in jiffies */ 972 unsigned int balance_interval; /* initialise to 1. units in ms. */ 973 unsigned int nr_balance_failed; /* initialise to 0 */ 974 975 u64 last_update; 976 977 #ifdef CONFIG_SCHEDSTATS 978 /* load_balance() stats */ 979 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 980 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 981 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 982 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 983 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 984 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 985 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 986 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 987 988 /* Active load balancing */ 989 unsigned int alb_count; 990 unsigned int alb_failed; 991 unsigned int alb_pushed; 992 993 /* SD_BALANCE_EXEC stats */ 994 unsigned int sbe_count; 995 unsigned int sbe_balanced; 996 unsigned int sbe_pushed; 997 998 /* SD_BALANCE_FORK stats */ 999 unsigned int sbf_count; 1000 unsigned int sbf_balanced; 1001 unsigned int sbf_pushed; 1002 1003 /* try_to_wake_up() stats */ 1004 unsigned int ttwu_wake_remote; 1005 unsigned int ttwu_move_affine; 1006 unsigned int ttwu_move_balance; 1007 #endif 1008 #ifdef CONFIG_SCHED_DEBUG 1009 char *name; 1010 #endif 1011 1012 /* 1013 * Span of all CPUs in this domain. 1014 * 1015 * NOTE: this field is variable length. (Allocated dynamically 1016 * by attaching extra space to the end of the structure, 1017 * depending on how many CPUs the kernel has booted up with) 1018 * 1019 * It is also be embedded into static data structures at build 1020 * time. (See 'struct static_sched_domain' in kernel/sched.c) 1021 */ 1022 unsigned long span[0]; 1023 }; 1024 1025 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1026 { 1027 return to_cpumask(sd->span); 1028 } 1029 1030 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1031 struct sched_domain_attr *dattr_new); 1032 1033 /* Allocate an array of sched domains, for partition_sched_domains(). */ 1034 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1035 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1036 1037 /* Test a flag in parent sched domain */ 1038 static inline int test_sd_parent(struct sched_domain *sd, int flag) 1039 { 1040 if (sd->parent && (sd->parent->flags & flag)) 1041 return 1; 1042 1043 return 0; 1044 } 1045 1046 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu); 1047 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu); 1048 1049 #else /* CONFIG_SMP */ 1050 1051 struct sched_domain_attr; 1052 1053 static inline void 1054 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1055 struct sched_domain_attr *dattr_new) 1056 { 1057 } 1058 #endif /* !CONFIG_SMP */ 1059 1060 1061 struct io_context; /* See blkdev.h */ 1062 1063 1064 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1065 extern void prefetch_stack(struct task_struct *t); 1066 #else 1067 static inline void prefetch_stack(struct task_struct *t) { } 1068 #endif 1069 1070 struct audit_context; /* See audit.c */ 1071 struct mempolicy; 1072 struct pipe_inode_info; 1073 struct uts_namespace; 1074 1075 struct rq; 1076 struct sched_domain; 1077 1078 /* 1079 * wake flags 1080 */ 1081 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */ 1082 #define WF_FORK 0x02 /* child wakeup after fork */ 1083 1084 struct sched_class { 1085 const struct sched_class *next; 1086 1087 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup); 1088 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep); 1089 void (*yield_task) (struct rq *rq); 1090 1091 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1092 1093 struct task_struct * (*pick_next_task) (struct rq *rq); 1094 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1095 1096 #ifdef CONFIG_SMP 1097 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags); 1098 1099 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu, 1100 struct rq *busiest, unsigned long max_load_move, 1101 struct sched_domain *sd, enum cpu_idle_type idle, 1102 int *all_pinned, int *this_best_prio); 1103 1104 int (*move_one_task) (struct rq *this_rq, int this_cpu, 1105 struct rq *busiest, struct sched_domain *sd, 1106 enum cpu_idle_type idle); 1107 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 1108 void (*post_schedule) (struct rq *this_rq); 1109 void (*task_waking) (struct rq *this_rq, struct task_struct *task); 1110 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1111 1112 void (*set_cpus_allowed)(struct task_struct *p, 1113 const struct cpumask *newmask); 1114 1115 void (*rq_online)(struct rq *rq); 1116 void (*rq_offline)(struct rq *rq); 1117 #endif 1118 1119 void (*set_curr_task) (struct rq *rq); 1120 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1121 void (*task_fork) (struct task_struct *p); 1122 1123 void (*switched_from) (struct rq *this_rq, struct task_struct *task, 1124 int running); 1125 void (*switched_to) (struct rq *this_rq, struct task_struct *task, 1126 int running); 1127 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1128 int oldprio, int running); 1129 1130 unsigned int (*get_rr_interval) (struct rq *rq, 1131 struct task_struct *task); 1132 1133 #ifdef CONFIG_FAIR_GROUP_SCHED 1134 void (*moved_group) (struct task_struct *p, int on_rq); 1135 #endif 1136 }; 1137 1138 struct load_weight { 1139 unsigned long weight, inv_weight; 1140 }; 1141 1142 /* 1143 * CFS stats for a schedulable entity (task, task-group etc) 1144 * 1145 * Current field usage histogram: 1146 * 1147 * 4 se->block_start 1148 * 4 se->run_node 1149 * 4 se->sleep_start 1150 * 6 se->load.weight 1151 */ 1152 struct sched_entity { 1153 struct load_weight load; /* for load-balancing */ 1154 struct rb_node run_node; 1155 struct list_head group_node; 1156 unsigned int on_rq; 1157 1158 u64 exec_start; 1159 u64 sum_exec_runtime; 1160 u64 vruntime; 1161 u64 prev_sum_exec_runtime; 1162 1163 u64 last_wakeup; 1164 u64 avg_overlap; 1165 1166 u64 nr_migrations; 1167 1168 u64 start_runtime; 1169 u64 avg_wakeup; 1170 1171 #ifdef CONFIG_SCHEDSTATS 1172 u64 wait_start; 1173 u64 wait_max; 1174 u64 wait_count; 1175 u64 wait_sum; 1176 u64 iowait_count; 1177 u64 iowait_sum; 1178 1179 u64 sleep_start; 1180 u64 sleep_max; 1181 s64 sum_sleep_runtime; 1182 1183 u64 block_start; 1184 u64 block_max; 1185 u64 exec_max; 1186 u64 slice_max; 1187 1188 u64 nr_migrations_cold; 1189 u64 nr_failed_migrations_affine; 1190 u64 nr_failed_migrations_running; 1191 u64 nr_failed_migrations_hot; 1192 u64 nr_forced_migrations; 1193 1194 u64 nr_wakeups; 1195 u64 nr_wakeups_sync; 1196 u64 nr_wakeups_migrate; 1197 u64 nr_wakeups_local; 1198 u64 nr_wakeups_remote; 1199 u64 nr_wakeups_affine; 1200 u64 nr_wakeups_affine_attempts; 1201 u64 nr_wakeups_passive; 1202 u64 nr_wakeups_idle; 1203 #endif 1204 1205 #ifdef CONFIG_FAIR_GROUP_SCHED 1206 struct sched_entity *parent; 1207 /* rq on which this entity is (to be) queued: */ 1208 struct cfs_rq *cfs_rq; 1209 /* rq "owned" by this entity/group: */ 1210 struct cfs_rq *my_q; 1211 #endif 1212 }; 1213 1214 struct sched_rt_entity { 1215 struct list_head run_list; 1216 unsigned long timeout; 1217 unsigned int time_slice; 1218 int nr_cpus_allowed; 1219 1220 struct sched_rt_entity *back; 1221 #ifdef CONFIG_RT_GROUP_SCHED 1222 struct sched_rt_entity *parent; 1223 /* rq on which this entity is (to be) queued: */ 1224 struct rt_rq *rt_rq; 1225 /* rq "owned" by this entity/group: */ 1226 struct rt_rq *my_q; 1227 #endif 1228 }; 1229 1230 struct rcu_node; 1231 1232 struct task_struct { 1233 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1234 void *stack; 1235 atomic_t usage; 1236 unsigned int flags; /* per process flags, defined below */ 1237 unsigned int ptrace; 1238 1239 int lock_depth; /* BKL lock depth */ 1240 1241 #ifdef CONFIG_SMP 1242 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 1243 int oncpu; 1244 #endif 1245 #endif 1246 1247 int prio, static_prio, normal_prio; 1248 unsigned int rt_priority; 1249 const struct sched_class *sched_class; 1250 struct sched_entity se; 1251 struct sched_rt_entity rt; 1252 1253 #ifdef CONFIG_PREEMPT_NOTIFIERS 1254 /* list of struct preempt_notifier: */ 1255 struct hlist_head preempt_notifiers; 1256 #endif 1257 1258 /* 1259 * fpu_counter contains the number of consecutive context switches 1260 * that the FPU is used. If this is over a threshold, the lazy fpu 1261 * saving becomes unlazy to save the trap. This is an unsigned char 1262 * so that after 256 times the counter wraps and the behavior turns 1263 * lazy again; this to deal with bursty apps that only use FPU for 1264 * a short time 1265 */ 1266 unsigned char fpu_counter; 1267 #ifdef CONFIG_BLK_DEV_IO_TRACE 1268 unsigned int btrace_seq; 1269 #endif 1270 1271 unsigned int policy; 1272 cpumask_t cpus_allowed; 1273 1274 #ifdef CONFIG_TREE_PREEMPT_RCU 1275 int rcu_read_lock_nesting; 1276 char rcu_read_unlock_special; 1277 struct rcu_node *rcu_blocked_node; 1278 struct list_head rcu_node_entry; 1279 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1280 1281 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1282 struct sched_info sched_info; 1283 #endif 1284 1285 struct list_head tasks; 1286 struct plist_node pushable_tasks; 1287 1288 struct mm_struct *mm, *active_mm; 1289 1290 /* task state */ 1291 int exit_state; 1292 int exit_code, exit_signal; 1293 int pdeath_signal; /* The signal sent when the parent dies */ 1294 /* ??? */ 1295 unsigned int personality; 1296 unsigned did_exec:1; 1297 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1298 * execve */ 1299 unsigned in_iowait:1; 1300 1301 1302 /* Revert to default priority/policy when forking */ 1303 unsigned sched_reset_on_fork:1; 1304 1305 pid_t pid; 1306 pid_t tgid; 1307 1308 #ifdef CONFIG_CC_STACKPROTECTOR 1309 /* Canary value for the -fstack-protector gcc feature */ 1310 unsigned long stack_canary; 1311 #endif 1312 1313 /* 1314 * pointers to (original) parent process, youngest child, younger sibling, 1315 * older sibling, respectively. (p->father can be replaced with 1316 * p->real_parent->pid) 1317 */ 1318 struct task_struct *real_parent; /* real parent process */ 1319 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */ 1320 /* 1321 * children/sibling forms the list of my natural children 1322 */ 1323 struct list_head children; /* list of my children */ 1324 struct list_head sibling; /* linkage in my parent's children list */ 1325 struct task_struct *group_leader; /* threadgroup leader */ 1326 1327 /* 1328 * ptraced is the list of tasks this task is using ptrace on. 1329 * This includes both natural children and PTRACE_ATTACH targets. 1330 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1331 */ 1332 struct list_head ptraced; 1333 struct list_head ptrace_entry; 1334 1335 /* 1336 * This is the tracer handle for the ptrace BTS extension. 1337 * This field actually belongs to the ptracer task. 1338 */ 1339 struct bts_context *bts; 1340 1341 /* PID/PID hash table linkage. */ 1342 struct pid_link pids[PIDTYPE_MAX]; 1343 struct list_head thread_group; 1344 1345 struct completion *vfork_done; /* for vfork() */ 1346 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1347 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1348 1349 cputime_t utime, stime, utimescaled, stimescaled; 1350 cputime_t gtime; 1351 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 1352 cputime_t prev_utime, prev_stime; 1353 #endif 1354 unsigned long nvcsw, nivcsw; /* context switch counts */ 1355 struct timespec start_time; /* monotonic time */ 1356 struct timespec real_start_time; /* boot based time */ 1357 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1358 unsigned long min_flt, maj_flt; 1359 1360 struct task_cputime cputime_expires; 1361 struct list_head cpu_timers[3]; 1362 1363 /* process credentials */ 1364 const struct cred *real_cred; /* objective and real subjective task 1365 * credentials (COW) */ 1366 const struct cred *cred; /* effective (overridable) subjective task 1367 * credentials (COW) */ 1368 struct mutex cred_guard_mutex; /* guard against foreign influences on 1369 * credential calculations 1370 * (notably. ptrace) */ 1371 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */ 1372 1373 char comm[TASK_COMM_LEN]; /* executable name excluding path 1374 - access with [gs]et_task_comm (which lock 1375 it with task_lock()) 1376 - initialized normally by setup_new_exec */ 1377 /* file system info */ 1378 int link_count, total_link_count; 1379 #ifdef CONFIG_SYSVIPC 1380 /* ipc stuff */ 1381 struct sysv_sem sysvsem; 1382 #endif 1383 #ifdef CONFIG_DETECT_HUNG_TASK 1384 /* hung task detection */ 1385 unsigned long last_switch_count; 1386 #endif 1387 /* CPU-specific state of this task */ 1388 struct thread_struct thread; 1389 /* filesystem information */ 1390 struct fs_struct *fs; 1391 /* open file information */ 1392 struct files_struct *files; 1393 /* namespaces */ 1394 struct nsproxy *nsproxy; 1395 /* signal handlers */ 1396 struct signal_struct *signal; 1397 struct sighand_struct *sighand; 1398 1399 sigset_t blocked, real_blocked; 1400 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1401 struct sigpending pending; 1402 1403 unsigned long sas_ss_sp; 1404 size_t sas_ss_size; 1405 int (*notifier)(void *priv); 1406 void *notifier_data; 1407 sigset_t *notifier_mask; 1408 struct audit_context *audit_context; 1409 #ifdef CONFIG_AUDITSYSCALL 1410 uid_t loginuid; 1411 unsigned int sessionid; 1412 #endif 1413 seccomp_t seccomp; 1414 1415 /* Thread group tracking */ 1416 u32 parent_exec_id; 1417 u32 self_exec_id; 1418 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1419 * mempolicy */ 1420 spinlock_t alloc_lock; 1421 1422 #ifdef CONFIG_GENERIC_HARDIRQS 1423 /* IRQ handler threads */ 1424 struct irqaction *irqaction; 1425 #endif 1426 1427 /* Protection of the PI data structures: */ 1428 raw_spinlock_t pi_lock; 1429 1430 #ifdef CONFIG_RT_MUTEXES 1431 /* PI waiters blocked on a rt_mutex held by this task */ 1432 struct plist_head pi_waiters; 1433 /* Deadlock detection and priority inheritance handling */ 1434 struct rt_mutex_waiter *pi_blocked_on; 1435 #endif 1436 1437 #ifdef CONFIG_DEBUG_MUTEXES 1438 /* mutex deadlock detection */ 1439 struct mutex_waiter *blocked_on; 1440 #endif 1441 #ifdef CONFIG_TRACE_IRQFLAGS 1442 unsigned int irq_events; 1443 unsigned long hardirq_enable_ip; 1444 unsigned long hardirq_disable_ip; 1445 unsigned int hardirq_enable_event; 1446 unsigned int hardirq_disable_event; 1447 int hardirqs_enabled; 1448 int hardirq_context; 1449 unsigned long softirq_disable_ip; 1450 unsigned long softirq_enable_ip; 1451 unsigned int softirq_disable_event; 1452 unsigned int softirq_enable_event; 1453 int softirqs_enabled; 1454 int softirq_context; 1455 #endif 1456 #ifdef CONFIG_LOCKDEP 1457 # define MAX_LOCK_DEPTH 48UL 1458 u64 curr_chain_key; 1459 int lockdep_depth; 1460 unsigned int lockdep_recursion; 1461 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1462 gfp_t lockdep_reclaim_gfp; 1463 #endif 1464 1465 /* journalling filesystem info */ 1466 void *journal_info; 1467 1468 /* stacked block device info */ 1469 struct bio *bio_list, **bio_tail; 1470 1471 /* VM state */ 1472 struct reclaim_state *reclaim_state; 1473 1474 struct backing_dev_info *backing_dev_info; 1475 1476 struct io_context *io_context; 1477 1478 unsigned long ptrace_message; 1479 siginfo_t *last_siginfo; /* For ptrace use. */ 1480 struct task_io_accounting ioac; 1481 #if defined(CONFIG_TASK_XACCT) 1482 u64 acct_rss_mem1; /* accumulated rss usage */ 1483 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1484 cputime_t acct_timexpd; /* stime + utime since last update */ 1485 #endif 1486 #ifdef CONFIG_CPUSETS 1487 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1488 int cpuset_mem_spread_rotor; 1489 #endif 1490 #ifdef CONFIG_CGROUPS 1491 /* Control Group info protected by css_set_lock */ 1492 struct css_set *cgroups; 1493 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1494 struct list_head cg_list; 1495 #endif 1496 #ifdef CONFIG_FUTEX 1497 struct robust_list_head __user *robust_list; 1498 #ifdef CONFIG_COMPAT 1499 struct compat_robust_list_head __user *compat_robust_list; 1500 #endif 1501 struct list_head pi_state_list; 1502 struct futex_pi_state *pi_state_cache; 1503 #endif 1504 #ifdef CONFIG_PERF_EVENTS 1505 struct perf_event_context *perf_event_ctxp; 1506 struct mutex perf_event_mutex; 1507 struct list_head perf_event_list; 1508 #endif 1509 #ifdef CONFIG_NUMA 1510 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1511 short il_next; 1512 #endif 1513 atomic_t fs_excl; /* holding fs exclusive resources */ 1514 struct rcu_head rcu; 1515 1516 /* 1517 * cache last used pipe for splice 1518 */ 1519 struct pipe_inode_info *splice_pipe; 1520 #ifdef CONFIG_TASK_DELAY_ACCT 1521 struct task_delay_info *delays; 1522 #endif 1523 #ifdef CONFIG_FAULT_INJECTION 1524 int make_it_fail; 1525 #endif 1526 struct prop_local_single dirties; 1527 #ifdef CONFIG_LATENCYTOP 1528 int latency_record_count; 1529 struct latency_record latency_record[LT_SAVECOUNT]; 1530 #endif 1531 /* 1532 * time slack values; these are used to round up poll() and 1533 * select() etc timeout values. These are in nanoseconds. 1534 */ 1535 unsigned long timer_slack_ns; 1536 unsigned long default_timer_slack_ns; 1537 1538 struct list_head *scm_work_list; 1539 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1540 /* Index of current stored adress in ret_stack */ 1541 int curr_ret_stack; 1542 /* Stack of return addresses for return function tracing */ 1543 struct ftrace_ret_stack *ret_stack; 1544 /* time stamp for last schedule */ 1545 unsigned long long ftrace_timestamp; 1546 /* 1547 * Number of functions that haven't been traced 1548 * because of depth overrun. 1549 */ 1550 atomic_t trace_overrun; 1551 /* Pause for the tracing */ 1552 atomic_t tracing_graph_pause; 1553 #endif 1554 #ifdef CONFIG_TRACING 1555 /* state flags for use by tracers */ 1556 unsigned long trace; 1557 /* bitmask of trace recursion */ 1558 unsigned long trace_recursion; 1559 #endif /* CONFIG_TRACING */ 1560 unsigned long stack_start; 1561 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */ 1562 struct memcg_batch_info { 1563 int do_batch; /* incremented when batch uncharge started */ 1564 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1565 unsigned long bytes; /* uncharged usage */ 1566 unsigned long memsw_bytes; /* uncharged mem+swap usage */ 1567 } memcg_batch; 1568 #endif 1569 }; 1570 1571 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1572 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1573 1574 /* 1575 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1576 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1577 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1578 * values are inverted: lower p->prio value means higher priority. 1579 * 1580 * The MAX_USER_RT_PRIO value allows the actual maximum 1581 * RT priority to be separate from the value exported to 1582 * user-space. This allows kernel threads to set their 1583 * priority to a value higher than any user task. Note: 1584 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1585 */ 1586 1587 #define MAX_USER_RT_PRIO 100 1588 #define MAX_RT_PRIO MAX_USER_RT_PRIO 1589 1590 #define MAX_PRIO (MAX_RT_PRIO + 40) 1591 #define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1592 1593 static inline int rt_prio(int prio) 1594 { 1595 if (unlikely(prio < MAX_RT_PRIO)) 1596 return 1; 1597 return 0; 1598 } 1599 1600 static inline int rt_task(struct task_struct *p) 1601 { 1602 return rt_prio(p->prio); 1603 } 1604 1605 static inline struct pid *task_pid(struct task_struct *task) 1606 { 1607 return task->pids[PIDTYPE_PID].pid; 1608 } 1609 1610 static inline struct pid *task_tgid(struct task_struct *task) 1611 { 1612 return task->group_leader->pids[PIDTYPE_PID].pid; 1613 } 1614 1615 /* 1616 * Without tasklist or rcu lock it is not safe to dereference 1617 * the result of task_pgrp/task_session even if task == current, 1618 * we can race with another thread doing sys_setsid/sys_setpgid. 1619 */ 1620 static inline struct pid *task_pgrp(struct task_struct *task) 1621 { 1622 return task->group_leader->pids[PIDTYPE_PGID].pid; 1623 } 1624 1625 static inline struct pid *task_session(struct task_struct *task) 1626 { 1627 return task->group_leader->pids[PIDTYPE_SID].pid; 1628 } 1629 1630 struct pid_namespace; 1631 1632 /* 1633 * the helpers to get the task's different pids as they are seen 1634 * from various namespaces 1635 * 1636 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1637 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1638 * current. 1639 * task_xid_nr_ns() : id seen from the ns specified; 1640 * 1641 * set_task_vxid() : assigns a virtual id to a task; 1642 * 1643 * see also pid_nr() etc in include/linux/pid.h 1644 */ 1645 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1646 struct pid_namespace *ns); 1647 1648 static inline pid_t task_pid_nr(struct task_struct *tsk) 1649 { 1650 return tsk->pid; 1651 } 1652 1653 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1654 struct pid_namespace *ns) 1655 { 1656 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1657 } 1658 1659 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1660 { 1661 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1662 } 1663 1664 1665 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1666 { 1667 return tsk->tgid; 1668 } 1669 1670 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1671 1672 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1673 { 1674 return pid_vnr(task_tgid(tsk)); 1675 } 1676 1677 1678 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1679 struct pid_namespace *ns) 1680 { 1681 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1682 } 1683 1684 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1685 { 1686 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1687 } 1688 1689 1690 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1691 struct pid_namespace *ns) 1692 { 1693 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1694 } 1695 1696 static inline pid_t task_session_vnr(struct task_struct *tsk) 1697 { 1698 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1699 } 1700 1701 /* obsolete, do not use */ 1702 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1703 { 1704 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1705 } 1706 1707 /** 1708 * pid_alive - check that a task structure is not stale 1709 * @p: Task structure to be checked. 1710 * 1711 * Test if a process is not yet dead (at most zombie state) 1712 * If pid_alive fails, then pointers within the task structure 1713 * can be stale and must not be dereferenced. 1714 */ 1715 static inline int pid_alive(struct task_struct *p) 1716 { 1717 return p->pids[PIDTYPE_PID].pid != NULL; 1718 } 1719 1720 /** 1721 * is_global_init - check if a task structure is init 1722 * @tsk: Task structure to be checked. 1723 * 1724 * Check if a task structure is the first user space task the kernel created. 1725 */ 1726 static inline int is_global_init(struct task_struct *tsk) 1727 { 1728 return tsk->pid == 1; 1729 } 1730 1731 /* 1732 * is_container_init: 1733 * check whether in the task is init in its own pid namespace. 1734 */ 1735 extern int is_container_init(struct task_struct *tsk); 1736 1737 extern struct pid *cad_pid; 1738 1739 extern void free_task(struct task_struct *tsk); 1740 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1741 1742 extern void __put_task_struct(struct task_struct *t); 1743 1744 static inline void put_task_struct(struct task_struct *t) 1745 { 1746 if (atomic_dec_and_test(&t->usage)) 1747 __put_task_struct(t); 1748 } 1749 1750 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1751 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1752 1753 /* 1754 * Per process flags 1755 */ 1756 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ 1757 /* Not implemented yet, only for 486*/ 1758 #define PF_STARTING 0x00000002 /* being created */ 1759 #define PF_EXITING 0x00000004 /* getting shut down */ 1760 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1761 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1762 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1763 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1764 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1765 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1766 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1767 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1768 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 1769 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1770 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */ 1771 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1772 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1773 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1774 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1775 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */ 1776 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1777 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1778 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1779 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1780 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1781 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1782 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1783 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1784 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1785 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1786 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */ 1787 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */ 1788 1789 /* 1790 * Only the _current_ task can read/write to tsk->flags, but other 1791 * tasks can access tsk->flags in readonly mode for example 1792 * with tsk_used_math (like during threaded core dumping). 1793 * There is however an exception to this rule during ptrace 1794 * or during fork: the ptracer task is allowed to write to the 1795 * child->flags of its traced child (same goes for fork, the parent 1796 * can write to the child->flags), because we're guaranteed the 1797 * child is not running and in turn not changing child->flags 1798 * at the same time the parent does it. 1799 */ 1800 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1801 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1802 #define clear_used_math() clear_stopped_child_used_math(current) 1803 #define set_used_math() set_stopped_child_used_math(current) 1804 #define conditional_stopped_child_used_math(condition, child) \ 1805 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1806 #define conditional_used_math(condition) \ 1807 conditional_stopped_child_used_math(condition, current) 1808 #define copy_to_stopped_child_used_math(child) \ 1809 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1810 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1811 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1812 #define used_math() tsk_used_math(current) 1813 1814 #ifdef CONFIG_TREE_PREEMPT_RCU 1815 1816 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1817 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ 1818 1819 static inline void rcu_copy_process(struct task_struct *p) 1820 { 1821 p->rcu_read_lock_nesting = 0; 1822 p->rcu_read_unlock_special = 0; 1823 p->rcu_blocked_node = NULL; 1824 INIT_LIST_HEAD(&p->rcu_node_entry); 1825 } 1826 1827 #else 1828 1829 static inline void rcu_copy_process(struct task_struct *p) 1830 { 1831 } 1832 1833 #endif 1834 1835 #ifdef CONFIG_SMP 1836 extern int set_cpus_allowed_ptr(struct task_struct *p, 1837 const struct cpumask *new_mask); 1838 #else 1839 static inline int set_cpus_allowed_ptr(struct task_struct *p, 1840 const struct cpumask *new_mask) 1841 { 1842 if (!cpumask_test_cpu(0, new_mask)) 1843 return -EINVAL; 1844 return 0; 1845 } 1846 #endif 1847 1848 #ifndef CONFIG_CPUMASK_OFFSTACK 1849 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1850 { 1851 return set_cpus_allowed_ptr(p, &new_mask); 1852 } 1853 #endif 1854 1855 /* 1856 * Architectures can set this to 1 if they have specified 1857 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1858 * but then during bootup it turns out that sched_clock() 1859 * is reliable after all: 1860 */ 1861 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1862 extern int sched_clock_stable; 1863 #endif 1864 1865 /* ftrace calls sched_clock() directly */ 1866 extern unsigned long long notrace sched_clock(void); 1867 1868 extern void sched_clock_init(void); 1869 extern u64 sched_clock_cpu(int cpu); 1870 1871 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1872 static inline void sched_clock_tick(void) 1873 { 1874 } 1875 1876 static inline void sched_clock_idle_sleep_event(void) 1877 { 1878 } 1879 1880 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1881 { 1882 } 1883 #else 1884 extern void sched_clock_tick(void); 1885 extern void sched_clock_idle_sleep_event(void); 1886 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1887 #endif 1888 1889 /* 1890 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu 1891 * clock constructed from sched_clock(): 1892 */ 1893 extern unsigned long long cpu_clock(int cpu); 1894 1895 extern unsigned long long 1896 task_sched_runtime(struct task_struct *task); 1897 extern unsigned long long thread_group_sched_runtime(struct task_struct *task); 1898 1899 /* sched_exec is called by processes performing an exec */ 1900 #ifdef CONFIG_SMP 1901 extern void sched_exec(void); 1902 #else 1903 #define sched_exec() {} 1904 #endif 1905 1906 extern void sched_clock_idle_sleep_event(void); 1907 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1908 1909 #ifdef CONFIG_HOTPLUG_CPU 1910 extern void idle_task_exit(void); 1911 #else 1912 static inline void idle_task_exit(void) {} 1913 #endif 1914 1915 extern void sched_idle_next(void); 1916 1917 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 1918 extern void wake_up_idle_cpu(int cpu); 1919 #else 1920 static inline void wake_up_idle_cpu(int cpu) { } 1921 #endif 1922 1923 extern unsigned int sysctl_sched_latency; 1924 extern unsigned int sysctl_sched_min_granularity; 1925 extern unsigned int sysctl_sched_wakeup_granularity; 1926 extern unsigned int sysctl_sched_shares_ratelimit; 1927 extern unsigned int sysctl_sched_shares_thresh; 1928 extern unsigned int sysctl_sched_child_runs_first; 1929 1930 enum sched_tunable_scaling { 1931 SCHED_TUNABLESCALING_NONE, 1932 SCHED_TUNABLESCALING_LOG, 1933 SCHED_TUNABLESCALING_LINEAR, 1934 SCHED_TUNABLESCALING_END, 1935 }; 1936 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling; 1937 1938 #ifdef CONFIG_SCHED_DEBUG 1939 extern unsigned int sysctl_sched_migration_cost; 1940 extern unsigned int sysctl_sched_nr_migrate; 1941 extern unsigned int sysctl_sched_time_avg; 1942 extern unsigned int sysctl_timer_migration; 1943 1944 int sched_proc_update_handler(struct ctl_table *table, int write, 1945 void __user *buffer, size_t *length, 1946 loff_t *ppos); 1947 #endif 1948 #ifdef CONFIG_SCHED_DEBUG 1949 static inline unsigned int get_sysctl_timer_migration(void) 1950 { 1951 return sysctl_timer_migration; 1952 } 1953 #else 1954 static inline unsigned int get_sysctl_timer_migration(void) 1955 { 1956 return 1; 1957 } 1958 #endif 1959 extern unsigned int sysctl_sched_rt_period; 1960 extern int sysctl_sched_rt_runtime; 1961 1962 int sched_rt_handler(struct ctl_table *table, int write, 1963 void __user *buffer, size_t *lenp, 1964 loff_t *ppos); 1965 1966 extern unsigned int sysctl_sched_compat_yield; 1967 1968 #ifdef CONFIG_RT_MUTEXES 1969 extern int rt_mutex_getprio(struct task_struct *p); 1970 extern void rt_mutex_setprio(struct task_struct *p, int prio); 1971 extern void rt_mutex_adjust_pi(struct task_struct *p); 1972 #else 1973 static inline int rt_mutex_getprio(struct task_struct *p) 1974 { 1975 return p->normal_prio; 1976 } 1977 # define rt_mutex_adjust_pi(p) do { } while (0) 1978 #endif 1979 1980 extern void set_user_nice(struct task_struct *p, long nice); 1981 extern int task_prio(const struct task_struct *p); 1982 extern int task_nice(const struct task_struct *p); 1983 extern int can_nice(const struct task_struct *p, const int nice); 1984 extern int task_curr(const struct task_struct *p); 1985 extern int idle_cpu(int cpu); 1986 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 1987 extern int sched_setscheduler_nocheck(struct task_struct *, int, 1988 struct sched_param *); 1989 extern struct task_struct *idle_task(int cpu); 1990 extern struct task_struct *curr_task(int cpu); 1991 extern void set_curr_task(int cpu, struct task_struct *p); 1992 1993 void yield(void); 1994 1995 /* 1996 * The default (Linux) execution domain. 1997 */ 1998 extern struct exec_domain default_exec_domain; 1999 2000 union thread_union { 2001 struct thread_info thread_info; 2002 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2003 }; 2004 2005 #ifndef __HAVE_ARCH_KSTACK_END 2006 static inline int kstack_end(void *addr) 2007 { 2008 /* Reliable end of stack detection: 2009 * Some APM bios versions misalign the stack 2010 */ 2011 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2012 } 2013 #endif 2014 2015 extern union thread_union init_thread_union; 2016 extern struct task_struct init_task; 2017 2018 extern struct mm_struct init_mm; 2019 2020 extern struct pid_namespace init_pid_ns; 2021 2022 /* 2023 * find a task by one of its numerical ids 2024 * 2025 * find_task_by_pid_ns(): 2026 * finds a task by its pid in the specified namespace 2027 * find_task_by_vpid(): 2028 * finds a task by its virtual pid 2029 * 2030 * see also find_vpid() etc in include/linux/pid.h 2031 */ 2032 2033 extern struct task_struct *find_task_by_vpid(pid_t nr); 2034 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2035 struct pid_namespace *ns); 2036 2037 extern void __set_special_pids(struct pid *pid); 2038 2039 /* per-UID process charging. */ 2040 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t); 2041 static inline struct user_struct *get_uid(struct user_struct *u) 2042 { 2043 atomic_inc(&u->__count); 2044 return u; 2045 } 2046 extern void free_uid(struct user_struct *); 2047 extern void release_uids(struct user_namespace *ns); 2048 2049 #include <asm/current.h> 2050 2051 extern void do_timer(unsigned long ticks); 2052 2053 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2054 extern int wake_up_process(struct task_struct *tsk); 2055 extern void wake_up_new_task(struct task_struct *tsk, 2056 unsigned long clone_flags); 2057 #ifdef CONFIG_SMP 2058 extern void kick_process(struct task_struct *tsk); 2059 #else 2060 static inline void kick_process(struct task_struct *tsk) { } 2061 #endif 2062 extern void sched_fork(struct task_struct *p, int clone_flags); 2063 extern void sched_dead(struct task_struct *p); 2064 2065 extern void proc_caches_init(void); 2066 extern void flush_signals(struct task_struct *); 2067 extern void __flush_signals(struct task_struct *); 2068 extern void ignore_signals(struct task_struct *); 2069 extern void flush_signal_handlers(struct task_struct *, int force_default); 2070 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2071 2072 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2073 { 2074 unsigned long flags; 2075 int ret; 2076 2077 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2078 ret = dequeue_signal(tsk, mask, info); 2079 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2080 2081 return ret; 2082 } 2083 2084 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2085 sigset_t *mask); 2086 extern void unblock_all_signals(void); 2087 extern void release_task(struct task_struct * p); 2088 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2089 extern int force_sigsegv(int, struct task_struct *); 2090 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2091 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2092 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2093 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 2094 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2095 extern int kill_pid(struct pid *pid, int sig, int priv); 2096 extern int kill_proc_info(int, struct siginfo *, pid_t); 2097 extern int do_notify_parent(struct task_struct *, int); 2098 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2099 extern void force_sig(int, struct task_struct *); 2100 extern int send_sig(int, struct task_struct *, int); 2101 extern void zap_other_threads(struct task_struct *p); 2102 extern struct sigqueue *sigqueue_alloc(void); 2103 extern void sigqueue_free(struct sigqueue *); 2104 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2105 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2106 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 2107 2108 static inline int kill_cad_pid(int sig, int priv) 2109 { 2110 return kill_pid(cad_pid, sig, priv); 2111 } 2112 2113 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2114 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2115 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2116 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2117 2118 /* 2119 * True if we are on the alternate signal stack. 2120 */ 2121 static inline int on_sig_stack(unsigned long sp) 2122 { 2123 #ifdef CONFIG_STACK_GROWSUP 2124 return sp >= current->sas_ss_sp && 2125 sp - current->sas_ss_sp < current->sas_ss_size; 2126 #else 2127 return sp > current->sas_ss_sp && 2128 sp - current->sas_ss_sp <= current->sas_ss_size; 2129 #endif 2130 } 2131 2132 static inline int sas_ss_flags(unsigned long sp) 2133 { 2134 return (current->sas_ss_size == 0 ? SS_DISABLE 2135 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2136 } 2137 2138 /* 2139 * Routines for handling mm_structs 2140 */ 2141 extern struct mm_struct * mm_alloc(void); 2142 2143 /* mmdrop drops the mm and the page tables */ 2144 extern void __mmdrop(struct mm_struct *); 2145 static inline void mmdrop(struct mm_struct * mm) 2146 { 2147 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2148 __mmdrop(mm); 2149 } 2150 2151 /* mmput gets rid of the mappings and all user-space */ 2152 extern void mmput(struct mm_struct *); 2153 /* Grab a reference to a task's mm, if it is not already going away */ 2154 extern struct mm_struct *get_task_mm(struct task_struct *task); 2155 /* Remove the current tasks stale references to the old mm_struct */ 2156 extern void mm_release(struct task_struct *, struct mm_struct *); 2157 /* Allocate a new mm structure and copy contents from tsk->mm */ 2158 extern struct mm_struct *dup_mm(struct task_struct *tsk); 2159 2160 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2161 struct task_struct *, struct pt_regs *); 2162 extern void flush_thread(void); 2163 extern void exit_thread(void); 2164 2165 extern void exit_files(struct task_struct *); 2166 extern void __cleanup_signal(struct signal_struct *); 2167 extern void __cleanup_sighand(struct sighand_struct *); 2168 2169 extern void exit_itimers(struct signal_struct *); 2170 extern void flush_itimer_signals(void); 2171 2172 extern NORET_TYPE void do_group_exit(int); 2173 2174 extern void daemonize(const char *, ...); 2175 extern int allow_signal(int); 2176 extern int disallow_signal(int); 2177 2178 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); 2179 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 2180 struct task_struct *fork_idle(int); 2181 2182 extern void set_task_comm(struct task_struct *tsk, char *from); 2183 extern char *get_task_comm(char *to, struct task_struct *tsk); 2184 2185 #ifdef CONFIG_SMP 2186 extern void wait_task_context_switch(struct task_struct *p); 2187 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2188 #else 2189 static inline void wait_task_context_switch(struct task_struct *p) {} 2190 static inline unsigned long wait_task_inactive(struct task_struct *p, 2191 long match_state) 2192 { 2193 return 1; 2194 } 2195 #endif 2196 2197 #define next_task(p) \ 2198 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2199 2200 #define for_each_process(p) \ 2201 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2202 2203 extern bool current_is_single_threaded(void); 2204 2205 /* 2206 * Careful: do_each_thread/while_each_thread is a double loop so 2207 * 'break' will not work as expected - use goto instead. 2208 */ 2209 #define do_each_thread(g, t) \ 2210 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2211 2212 #define while_each_thread(g, t) \ 2213 while ((t = next_thread(t)) != g) 2214 2215 /* de_thread depends on thread_group_leader not being a pid based check */ 2216 #define thread_group_leader(p) (p == p->group_leader) 2217 2218 /* Do to the insanities of de_thread it is possible for a process 2219 * to have the pid of the thread group leader without actually being 2220 * the thread group leader. For iteration through the pids in proc 2221 * all we care about is that we have a task with the appropriate 2222 * pid, we don't actually care if we have the right task. 2223 */ 2224 static inline int has_group_leader_pid(struct task_struct *p) 2225 { 2226 return p->pid == p->tgid; 2227 } 2228 2229 static inline 2230 int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2231 { 2232 return p1->tgid == p2->tgid; 2233 } 2234 2235 static inline struct task_struct *next_thread(const struct task_struct *p) 2236 { 2237 return list_entry_rcu(p->thread_group.next, 2238 struct task_struct, thread_group); 2239 } 2240 2241 static inline int thread_group_empty(struct task_struct *p) 2242 { 2243 return list_empty(&p->thread_group); 2244 } 2245 2246 #define delay_group_leader(p) \ 2247 (thread_group_leader(p) && !thread_group_empty(p)) 2248 2249 static inline int task_detached(struct task_struct *p) 2250 { 2251 return p->exit_signal == -1; 2252 } 2253 2254 /* 2255 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2256 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2257 * pins the final release of task.io_context. Also protects ->cpuset and 2258 * ->cgroup.subsys[]. 2259 * 2260 * Nests both inside and outside of read_lock(&tasklist_lock). 2261 * It must not be nested with write_lock_irq(&tasklist_lock), 2262 * neither inside nor outside. 2263 */ 2264 static inline void task_lock(struct task_struct *p) 2265 { 2266 spin_lock(&p->alloc_lock); 2267 } 2268 2269 static inline void task_unlock(struct task_struct *p) 2270 { 2271 spin_unlock(&p->alloc_lock); 2272 } 2273 2274 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2275 unsigned long *flags); 2276 2277 static inline void unlock_task_sighand(struct task_struct *tsk, 2278 unsigned long *flags) 2279 { 2280 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2281 } 2282 2283 #ifndef __HAVE_THREAD_FUNCTIONS 2284 2285 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2286 #define task_stack_page(task) ((task)->stack) 2287 2288 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2289 { 2290 *task_thread_info(p) = *task_thread_info(org); 2291 task_thread_info(p)->task = p; 2292 } 2293 2294 static inline unsigned long *end_of_stack(struct task_struct *p) 2295 { 2296 return (unsigned long *)(task_thread_info(p) + 1); 2297 } 2298 2299 #endif 2300 2301 static inline int object_is_on_stack(void *obj) 2302 { 2303 void *stack = task_stack_page(current); 2304 2305 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2306 } 2307 2308 extern void thread_info_cache_init(void); 2309 2310 #ifdef CONFIG_DEBUG_STACK_USAGE 2311 static inline unsigned long stack_not_used(struct task_struct *p) 2312 { 2313 unsigned long *n = end_of_stack(p); 2314 2315 do { /* Skip over canary */ 2316 n++; 2317 } while (!*n); 2318 2319 return (unsigned long)n - (unsigned long)end_of_stack(p); 2320 } 2321 #endif 2322 2323 /* set thread flags in other task's structures 2324 * - see asm/thread_info.h for TIF_xxxx flags available 2325 */ 2326 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2327 { 2328 set_ti_thread_flag(task_thread_info(tsk), flag); 2329 } 2330 2331 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2332 { 2333 clear_ti_thread_flag(task_thread_info(tsk), flag); 2334 } 2335 2336 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2337 { 2338 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2339 } 2340 2341 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2342 { 2343 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2344 } 2345 2346 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2347 { 2348 return test_ti_thread_flag(task_thread_info(tsk), flag); 2349 } 2350 2351 static inline void set_tsk_need_resched(struct task_struct *tsk) 2352 { 2353 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2354 } 2355 2356 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2357 { 2358 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2359 } 2360 2361 static inline int test_tsk_need_resched(struct task_struct *tsk) 2362 { 2363 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2364 } 2365 2366 static inline int restart_syscall(void) 2367 { 2368 set_tsk_thread_flag(current, TIF_SIGPENDING); 2369 return -ERESTARTNOINTR; 2370 } 2371 2372 static inline int signal_pending(struct task_struct *p) 2373 { 2374 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2375 } 2376 2377 static inline int __fatal_signal_pending(struct task_struct *p) 2378 { 2379 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2380 } 2381 2382 static inline int fatal_signal_pending(struct task_struct *p) 2383 { 2384 return signal_pending(p) && __fatal_signal_pending(p); 2385 } 2386 2387 static inline int signal_pending_state(long state, struct task_struct *p) 2388 { 2389 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2390 return 0; 2391 if (!signal_pending(p)) 2392 return 0; 2393 2394 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2395 } 2396 2397 static inline int need_resched(void) 2398 { 2399 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2400 } 2401 2402 /* 2403 * cond_resched() and cond_resched_lock(): latency reduction via 2404 * explicit rescheduling in places that are safe. The return 2405 * value indicates whether a reschedule was done in fact. 2406 * cond_resched_lock() will drop the spinlock before scheduling, 2407 * cond_resched_softirq() will enable bhs before scheduling. 2408 */ 2409 extern int _cond_resched(void); 2410 2411 #define cond_resched() ({ \ 2412 __might_sleep(__FILE__, __LINE__, 0); \ 2413 _cond_resched(); \ 2414 }) 2415 2416 extern int __cond_resched_lock(spinlock_t *lock); 2417 2418 #ifdef CONFIG_PREEMPT 2419 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2420 #else 2421 #define PREEMPT_LOCK_OFFSET 0 2422 #endif 2423 2424 #define cond_resched_lock(lock) ({ \ 2425 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2426 __cond_resched_lock(lock); \ 2427 }) 2428 2429 extern int __cond_resched_softirq(void); 2430 2431 #define cond_resched_softirq() ({ \ 2432 __might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET); \ 2433 __cond_resched_softirq(); \ 2434 }) 2435 2436 /* 2437 * Does a critical section need to be broken due to another 2438 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2439 * but a general need for low latency) 2440 */ 2441 static inline int spin_needbreak(spinlock_t *lock) 2442 { 2443 #ifdef CONFIG_PREEMPT 2444 return spin_is_contended(lock); 2445 #else 2446 return 0; 2447 #endif 2448 } 2449 2450 /* 2451 * Thread group CPU time accounting. 2452 */ 2453 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2454 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2455 2456 static inline void thread_group_cputime_init(struct signal_struct *sig) 2457 { 2458 sig->cputimer.cputime = INIT_CPUTIME; 2459 spin_lock_init(&sig->cputimer.lock); 2460 sig->cputimer.running = 0; 2461 } 2462 2463 static inline void thread_group_cputime_free(struct signal_struct *sig) 2464 { 2465 } 2466 2467 /* 2468 * Reevaluate whether the task has signals pending delivery. 2469 * Wake the task if so. 2470 * This is required every time the blocked sigset_t changes. 2471 * callers must hold sighand->siglock. 2472 */ 2473 extern void recalc_sigpending_and_wake(struct task_struct *t); 2474 extern void recalc_sigpending(void); 2475 2476 extern void signal_wake_up(struct task_struct *t, int resume_stopped); 2477 2478 /* 2479 * Wrappers for p->thread_info->cpu access. No-op on UP. 2480 */ 2481 #ifdef CONFIG_SMP 2482 2483 static inline unsigned int task_cpu(const struct task_struct *p) 2484 { 2485 return task_thread_info(p)->cpu; 2486 } 2487 2488 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2489 2490 #else 2491 2492 static inline unsigned int task_cpu(const struct task_struct *p) 2493 { 2494 return 0; 2495 } 2496 2497 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2498 { 2499 } 2500 2501 #endif /* CONFIG_SMP */ 2502 2503 #ifdef CONFIG_TRACING 2504 extern void 2505 __trace_special(void *__tr, void *__data, 2506 unsigned long arg1, unsigned long arg2, unsigned long arg3); 2507 #else 2508 static inline void 2509 __trace_special(void *__tr, void *__data, 2510 unsigned long arg1, unsigned long arg2, unsigned long arg3) 2511 { 2512 } 2513 #endif 2514 2515 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2516 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2517 2518 extern void normalize_rt_tasks(void); 2519 2520 #ifdef CONFIG_GROUP_SCHED 2521 2522 extern struct task_group init_task_group; 2523 #ifdef CONFIG_USER_SCHED 2524 extern struct task_group root_task_group; 2525 extern void set_tg_uid(struct user_struct *user); 2526 #endif 2527 2528 extern struct task_group *sched_create_group(struct task_group *parent); 2529 extern void sched_destroy_group(struct task_group *tg); 2530 extern void sched_move_task(struct task_struct *tsk); 2531 #ifdef CONFIG_FAIR_GROUP_SCHED 2532 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2533 extern unsigned long sched_group_shares(struct task_group *tg); 2534 #endif 2535 #ifdef CONFIG_RT_GROUP_SCHED 2536 extern int sched_group_set_rt_runtime(struct task_group *tg, 2537 long rt_runtime_us); 2538 extern long sched_group_rt_runtime(struct task_group *tg); 2539 extern int sched_group_set_rt_period(struct task_group *tg, 2540 long rt_period_us); 2541 extern long sched_group_rt_period(struct task_group *tg); 2542 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 2543 #endif 2544 #endif 2545 2546 extern int task_can_switch_user(struct user_struct *up, 2547 struct task_struct *tsk); 2548 2549 #ifdef CONFIG_TASK_XACCT 2550 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2551 { 2552 tsk->ioac.rchar += amt; 2553 } 2554 2555 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2556 { 2557 tsk->ioac.wchar += amt; 2558 } 2559 2560 static inline void inc_syscr(struct task_struct *tsk) 2561 { 2562 tsk->ioac.syscr++; 2563 } 2564 2565 static inline void inc_syscw(struct task_struct *tsk) 2566 { 2567 tsk->ioac.syscw++; 2568 } 2569 #else 2570 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2571 { 2572 } 2573 2574 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2575 { 2576 } 2577 2578 static inline void inc_syscr(struct task_struct *tsk) 2579 { 2580 } 2581 2582 static inline void inc_syscw(struct task_struct *tsk) 2583 { 2584 } 2585 #endif 2586 2587 #ifndef TASK_SIZE_OF 2588 #define TASK_SIZE_OF(tsk) TASK_SIZE 2589 #endif 2590 2591 /* 2592 * Call the function if the target task is executing on a CPU right now: 2593 */ 2594 extern void task_oncpu_function_call(struct task_struct *p, 2595 void (*func) (void *info), void *info); 2596 2597 2598 #ifdef CONFIG_MM_OWNER 2599 extern void mm_update_next_owner(struct mm_struct *mm); 2600 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2601 #else 2602 static inline void mm_update_next_owner(struct mm_struct *mm) 2603 { 2604 } 2605 2606 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2607 { 2608 } 2609 #endif /* CONFIG_MM_OWNER */ 2610 2611 static inline unsigned long task_rlimit(const struct task_struct *tsk, 2612 unsigned int limit) 2613 { 2614 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2615 } 2616 2617 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2618 unsigned int limit) 2619 { 2620 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2621 } 2622 2623 static inline unsigned long rlimit(unsigned int limit) 2624 { 2625 return task_rlimit(current, limit); 2626 } 2627 2628 static inline unsigned long rlimit_max(unsigned int limit) 2629 { 2630 return task_rlimit_max(current, limit); 2631 } 2632 2633 #endif /* __KERNEL__ */ 2634 2635 #endif 2636