xref: /linux-6.15/include/linux/sched.h (revision 586bc5cc)
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3 
4 /*
5  * cloning flags:
6  */
7 #define CSIGNAL		0x000000ff	/* signal mask to be sent at exit */
8 #define CLONE_VM	0x00000100	/* set if VM shared between processes */
9 #define CLONE_FS	0x00000200	/* set if fs info shared between processes */
10 #define CLONE_FILES	0x00000400	/* set if open files shared between processes */
11 #define CLONE_SIGHAND	0x00000800	/* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE	0x00002000	/* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK	0x00004000	/* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT	0x00008000	/* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD	0x00010000	/* Same thread group? */
16 #define CLONE_NEWNS	0x00020000	/* New namespace group? */
17 #define CLONE_SYSVSEM	0x00040000	/* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS	0x00080000	/* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID	0x00100000	/* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID	0x00200000	/* clear the TID in the child */
21 #define CLONE_DETACHED		0x00400000	/* Unused, ignored */
22 #define CLONE_UNTRACED		0x00800000	/* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID	0x01000000	/* set the TID in the child */
24 #define CLONE_STOPPED		0x02000000	/* Start in stopped state */
25 #define CLONE_NEWUTS		0x04000000	/* New utsname group? */
26 #define CLONE_NEWIPC		0x08000000	/* New ipcs */
27 #define CLONE_NEWUSER		0x10000000	/* New user namespace */
28 #define CLONE_NEWPID		0x20000000	/* New pid namespace */
29 #define CLONE_NEWNET		0x40000000	/* New network namespace */
30 #define CLONE_IO		0x80000000	/* Clone io context */
31 
32 /*
33  * Scheduling policies
34  */
35 #define SCHED_NORMAL		0
36 #define SCHED_FIFO		1
37 #define SCHED_RR		2
38 #define SCHED_BATCH		3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE		5
41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
42 #define SCHED_RESET_ON_FORK     0x40000000
43 
44 #ifdef __KERNEL__
45 
46 struct sched_param {
47 	int sched_priority;
48 };
49 
50 #include <asm/param.h>	/* for HZ */
51 
52 #include <linux/capability.h>
53 #include <linux/threads.h>
54 #include <linux/kernel.h>
55 #include <linux/types.h>
56 #include <linux/timex.h>
57 #include <linux/jiffies.h>
58 #include <linux/rbtree.h>
59 #include <linux/thread_info.h>
60 #include <linux/cpumask.h>
61 #include <linux/errno.h>
62 #include <linux/nodemask.h>
63 #include <linux/mm_types.h>
64 
65 #include <asm/system.h>
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
69 
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/path.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
84 
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/kobject.h>
92 #include <linux/latencytop.h>
93 #include <linux/cred.h>
94 
95 #include <asm/processor.h>
96 
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio;
101 struct fs_struct;
102 struct bts_context;
103 struct perf_event_context;
104 
105 /*
106  * List of flags we want to share for kernel threads,
107  * if only because they are not used by them anyway.
108  */
109 #define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
110 
111 /*
112  * These are the constant used to fake the fixed-point load-average
113  * counting. Some notes:
114  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
115  *    a load-average precision of 10 bits integer + 11 bits fractional
116  *  - if you want to count load-averages more often, you need more
117  *    precision, or rounding will get you. With 2-second counting freq,
118  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
119  *    11 bit fractions.
120  */
121 extern unsigned long avenrun[];		/* Load averages */
122 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
123 
124 #define FSHIFT		11		/* nr of bits of precision */
125 #define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
126 #define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
127 #define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
128 #define EXP_5		2014		/* 1/exp(5sec/5min) */
129 #define EXP_15		2037		/* 1/exp(5sec/15min) */
130 
131 #define CALC_LOAD(load,exp,n) \
132 	load *= exp; \
133 	load += n*(FIXED_1-exp); \
134 	load >>= FSHIFT;
135 
136 extern unsigned long total_forks;
137 extern int nr_threads;
138 DECLARE_PER_CPU(unsigned long, process_counts);
139 extern int nr_processes(void);
140 extern unsigned long nr_running(void);
141 extern unsigned long nr_uninterruptible(void);
142 extern unsigned long nr_iowait(void);
143 extern unsigned long nr_iowait_cpu(void);
144 extern unsigned long this_cpu_load(void);
145 
146 
147 extern void calc_global_load(void);
148 extern u64 cpu_nr_migrations(int cpu);
149 
150 extern unsigned long get_parent_ip(unsigned long addr);
151 
152 struct seq_file;
153 struct cfs_rq;
154 struct task_group;
155 #ifdef CONFIG_SCHED_DEBUG
156 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
157 extern void proc_sched_set_task(struct task_struct *p);
158 extern void
159 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
160 #else
161 static inline void
162 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
163 {
164 }
165 static inline void proc_sched_set_task(struct task_struct *p)
166 {
167 }
168 static inline void
169 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
170 {
171 }
172 #endif
173 
174 extern unsigned long long time_sync_thresh;
175 
176 /*
177  * Task state bitmask. NOTE! These bits are also
178  * encoded in fs/proc/array.c: get_task_state().
179  *
180  * We have two separate sets of flags: task->state
181  * is about runnability, while task->exit_state are
182  * about the task exiting. Confusing, but this way
183  * modifying one set can't modify the other one by
184  * mistake.
185  */
186 #define TASK_RUNNING		0
187 #define TASK_INTERRUPTIBLE	1
188 #define TASK_UNINTERRUPTIBLE	2
189 #define __TASK_STOPPED		4
190 #define __TASK_TRACED		8
191 /* in tsk->exit_state */
192 #define EXIT_ZOMBIE		16
193 #define EXIT_DEAD		32
194 /* in tsk->state again */
195 #define TASK_DEAD		64
196 #define TASK_WAKEKILL		128
197 #define TASK_WAKING		256
198 
199 /* Convenience macros for the sake of set_task_state */
200 #define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
201 #define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
202 #define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
203 
204 /* Convenience macros for the sake of wake_up */
205 #define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
206 #define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
207 
208 /* get_task_state() */
209 #define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
210 				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
211 				 __TASK_TRACED)
212 
213 #define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
214 #define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
215 #define task_is_stopped_or_traced(task)	\
216 			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
217 #define task_contributes_to_load(task)	\
218 				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
219 				 (task->flags & PF_FREEZING) == 0)
220 
221 #define __set_task_state(tsk, state_value)		\
222 	do { (tsk)->state = (state_value); } while (0)
223 #define set_task_state(tsk, state_value)		\
224 	set_mb((tsk)->state, (state_value))
225 
226 /*
227  * set_current_state() includes a barrier so that the write of current->state
228  * is correctly serialised wrt the caller's subsequent test of whether to
229  * actually sleep:
230  *
231  *	set_current_state(TASK_UNINTERRUPTIBLE);
232  *	if (do_i_need_to_sleep())
233  *		schedule();
234  *
235  * If the caller does not need such serialisation then use __set_current_state()
236  */
237 #define __set_current_state(state_value)			\
238 	do { current->state = (state_value); } while (0)
239 #define set_current_state(state_value)		\
240 	set_mb(current->state, (state_value))
241 
242 /* Task command name length */
243 #define TASK_COMM_LEN 16
244 
245 #include <linux/spinlock.h>
246 
247 /*
248  * This serializes "schedule()" and also protects
249  * the run-queue from deletions/modifications (but
250  * _adding_ to the beginning of the run-queue has
251  * a separate lock).
252  */
253 extern rwlock_t tasklist_lock;
254 extern spinlock_t mmlist_lock;
255 
256 struct task_struct;
257 
258 extern void sched_init(void);
259 extern void sched_init_smp(void);
260 extern asmlinkage void schedule_tail(struct task_struct *prev);
261 extern void init_idle(struct task_struct *idle, int cpu);
262 extern void init_idle_bootup_task(struct task_struct *idle);
263 
264 extern int runqueue_is_locked(int cpu);
265 extern void task_rq_unlock_wait(struct task_struct *p);
266 
267 extern cpumask_var_t nohz_cpu_mask;
268 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
269 extern int select_nohz_load_balancer(int cpu);
270 extern int get_nohz_load_balancer(void);
271 #else
272 static inline int select_nohz_load_balancer(int cpu)
273 {
274 	return 0;
275 }
276 #endif
277 
278 /*
279  * Only dump TASK_* tasks. (0 for all tasks)
280  */
281 extern void show_state_filter(unsigned long state_filter);
282 
283 static inline void show_state(void)
284 {
285 	show_state_filter(0);
286 }
287 
288 extern void show_regs(struct pt_regs *);
289 
290 /*
291  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
292  * task), SP is the stack pointer of the first frame that should be shown in the back
293  * trace (or NULL if the entire call-chain of the task should be shown).
294  */
295 extern void show_stack(struct task_struct *task, unsigned long *sp);
296 
297 void io_schedule(void);
298 long io_schedule_timeout(long timeout);
299 
300 extern void cpu_init (void);
301 extern void trap_init(void);
302 extern void update_process_times(int user);
303 extern void scheduler_tick(void);
304 
305 extern void sched_show_task(struct task_struct *p);
306 
307 #ifdef CONFIG_DETECT_SOFTLOCKUP
308 extern void softlockup_tick(void);
309 extern void touch_softlockup_watchdog(void);
310 extern void touch_all_softlockup_watchdogs(void);
311 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
312 				    void __user *buffer,
313 				    size_t *lenp, loff_t *ppos);
314 extern unsigned int  softlockup_panic;
315 extern int softlockup_thresh;
316 #else
317 static inline void softlockup_tick(void)
318 {
319 }
320 static inline void touch_softlockup_watchdog(void)
321 {
322 }
323 static inline void touch_all_softlockup_watchdogs(void)
324 {
325 }
326 #endif
327 
328 #ifdef CONFIG_DETECT_HUNG_TASK
329 extern unsigned int  sysctl_hung_task_panic;
330 extern unsigned long sysctl_hung_task_check_count;
331 extern unsigned long sysctl_hung_task_timeout_secs;
332 extern unsigned long sysctl_hung_task_warnings;
333 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
334 					 void __user *buffer,
335 					 size_t *lenp, loff_t *ppos);
336 #endif
337 
338 /* Attach to any functions which should be ignored in wchan output. */
339 #define __sched		__attribute__((__section__(".sched.text")))
340 
341 /* Linker adds these: start and end of __sched functions */
342 extern char __sched_text_start[], __sched_text_end[];
343 
344 /* Is this address in the __sched functions? */
345 extern int in_sched_functions(unsigned long addr);
346 
347 #define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
348 extern signed long schedule_timeout(signed long timeout);
349 extern signed long schedule_timeout_interruptible(signed long timeout);
350 extern signed long schedule_timeout_killable(signed long timeout);
351 extern signed long schedule_timeout_uninterruptible(signed long timeout);
352 asmlinkage void __schedule(void);
353 asmlinkage void schedule(void);
354 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
355 
356 struct nsproxy;
357 struct user_namespace;
358 
359 /*
360  * Default maximum number of active map areas, this limits the number of vmas
361  * per mm struct. Users can overwrite this number by sysctl but there is a
362  * problem.
363  *
364  * When a program's coredump is generated as ELF format, a section is created
365  * per a vma. In ELF, the number of sections is represented in unsigned short.
366  * This means the number of sections should be smaller than 65535 at coredump.
367  * Because the kernel adds some informative sections to a image of program at
368  * generating coredump, we need some margin. The number of extra sections is
369  * 1-3 now and depends on arch. We use "5" as safe margin, here.
370  */
371 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
372 #define DEFAULT_MAX_MAP_COUNT	(USHORT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
373 
374 extern int sysctl_max_map_count;
375 
376 #include <linux/aio.h>
377 
378 extern unsigned long
379 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
380 		       unsigned long, unsigned long);
381 extern unsigned long
382 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
383 			  unsigned long len, unsigned long pgoff,
384 			  unsigned long flags);
385 extern void arch_unmap_area(struct mm_struct *, unsigned long);
386 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
387 
388 #if USE_SPLIT_PTLOCKS
389 /*
390  * The mm counters are not protected by its page_table_lock,
391  * so must be incremented atomically.
392  */
393 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
394 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
395 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
396 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
397 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
398 
399 #else  /* !USE_SPLIT_PTLOCKS */
400 /*
401  * The mm counters are protected by its page_table_lock,
402  * so can be incremented directly.
403  */
404 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
405 #define get_mm_counter(mm, member) ((mm)->_##member)
406 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
407 #define inc_mm_counter(mm, member) (mm)->_##member++
408 #define dec_mm_counter(mm, member) (mm)->_##member--
409 
410 #endif /* !USE_SPLIT_PTLOCKS */
411 
412 #define get_mm_rss(mm)					\
413 	(get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
414 #define update_hiwater_rss(mm)	do {			\
415 	unsigned long _rss = get_mm_rss(mm);		\
416 	if ((mm)->hiwater_rss < _rss)			\
417 		(mm)->hiwater_rss = _rss;		\
418 } while (0)
419 #define update_hiwater_vm(mm)	do {			\
420 	if ((mm)->hiwater_vm < (mm)->total_vm)		\
421 		(mm)->hiwater_vm = (mm)->total_vm;	\
422 } while (0)
423 
424 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
425 {
426 	return max(mm->hiwater_rss, get_mm_rss(mm));
427 }
428 
429 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
430 					 struct mm_struct *mm)
431 {
432 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
433 
434 	if (*maxrss < hiwater_rss)
435 		*maxrss = hiwater_rss;
436 }
437 
438 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
439 {
440 	return max(mm->hiwater_vm, mm->total_vm);
441 }
442 
443 extern void set_dumpable(struct mm_struct *mm, int value);
444 extern int get_dumpable(struct mm_struct *mm);
445 
446 /* mm flags */
447 /* dumpable bits */
448 #define MMF_DUMPABLE      0  /* core dump is permitted */
449 #define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
450 
451 #define MMF_DUMPABLE_BITS 2
452 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
453 
454 /* coredump filter bits */
455 #define MMF_DUMP_ANON_PRIVATE	2
456 #define MMF_DUMP_ANON_SHARED	3
457 #define MMF_DUMP_MAPPED_PRIVATE	4
458 #define MMF_DUMP_MAPPED_SHARED	5
459 #define MMF_DUMP_ELF_HEADERS	6
460 #define MMF_DUMP_HUGETLB_PRIVATE 7
461 #define MMF_DUMP_HUGETLB_SHARED  8
462 
463 #define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
464 #define MMF_DUMP_FILTER_BITS	7
465 #define MMF_DUMP_FILTER_MASK \
466 	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
467 #define MMF_DUMP_FILTER_DEFAULT \
468 	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
469 	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
470 
471 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
472 # define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
473 #else
474 # define MMF_DUMP_MASK_DEFAULT_ELF	0
475 #endif
476 					/* leave room for more dump flags */
477 #define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
478 
479 #define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
480 
481 struct sighand_struct {
482 	atomic_t		count;
483 	struct k_sigaction	action[_NSIG];
484 	spinlock_t		siglock;
485 	wait_queue_head_t	signalfd_wqh;
486 };
487 
488 struct pacct_struct {
489 	int			ac_flag;
490 	long			ac_exitcode;
491 	unsigned long		ac_mem;
492 	cputime_t		ac_utime, ac_stime;
493 	unsigned long		ac_minflt, ac_majflt;
494 };
495 
496 struct cpu_itimer {
497 	cputime_t expires;
498 	cputime_t incr;
499 	u32 error;
500 	u32 incr_error;
501 };
502 
503 /**
504  * struct task_cputime - collected CPU time counts
505  * @utime:		time spent in user mode, in &cputime_t units
506  * @stime:		time spent in kernel mode, in &cputime_t units
507  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
508  *
509  * This structure groups together three kinds of CPU time that are
510  * tracked for threads and thread groups.  Most things considering
511  * CPU time want to group these counts together and treat all three
512  * of them in parallel.
513  */
514 struct task_cputime {
515 	cputime_t utime;
516 	cputime_t stime;
517 	unsigned long long sum_exec_runtime;
518 };
519 /* Alternate field names when used to cache expirations. */
520 #define prof_exp	stime
521 #define virt_exp	utime
522 #define sched_exp	sum_exec_runtime
523 
524 #define INIT_CPUTIME	\
525 	(struct task_cputime) {					\
526 		.utime = cputime_zero,				\
527 		.stime = cputime_zero,				\
528 		.sum_exec_runtime = 0,				\
529 	}
530 
531 /*
532  * Disable preemption until the scheduler is running.
533  * Reset by start_kernel()->sched_init()->init_idle().
534  *
535  * We include PREEMPT_ACTIVE to avoid cond_resched() from working
536  * before the scheduler is active -- see should_resched().
537  */
538 #define INIT_PREEMPT_COUNT	(1 + PREEMPT_ACTIVE)
539 
540 /**
541  * struct thread_group_cputimer - thread group interval timer counts
542  * @cputime:		thread group interval timers.
543  * @running:		non-zero when there are timers running and
544  * 			@cputime receives updates.
545  * @lock:		lock for fields in this struct.
546  *
547  * This structure contains the version of task_cputime, above, that is
548  * used for thread group CPU timer calculations.
549  */
550 struct thread_group_cputimer {
551 	struct task_cputime cputime;
552 	int running;
553 	spinlock_t lock;
554 };
555 
556 /*
557  * NOTE! "signal_struct" does not have it's own
558  * locking, because a shared signal_struct always
559  * implies a shared sighand_struct, so locking
560  * sighand_struct is always a proper superset of
561  * the locking of signal_struct.
562  */
563 struct signal_struct {
564 	atomic_t		count;
565 	atomic_t		live;
566 
567 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
568 
569 	/* current thread group signal load-balancing target: */
570 	struct task_struct	*curr_target;
571 
572 	/* shared signal handling: */
573 	struct sigpending	shared_pending;
574 
575 	/* thread group exit support */
576 	int			group_exit_code;
577 	/* overloaded:
578 	 * - notify group_exit_task when ->count is equal to notify_count
579 	 * - everyone except group_exit_task is stopped during signal delivery
580 	 *   of fatal signals, group_exit_task processes the signal.
581 	 */
582 	int			notify_count;
583 	struct task_struct	*group_exit_task;
584 
585 	/* thread group stop support, overloads group_exit_code too */
586 	int			group_stop_count;
587 	unsigned int		flags; /* see SIGNAL_* flags below */
588 
589 	/* POSIX.1b Interval Timers */
590 	struct list_head posix_timers;
591 
592 	/* ITIMER_REAL timer for the process */
593 	struct hrtimer real_timer;
594 	struct pid *leader_pid;
595 	ktime_t it_real_incr;
596 
597 	/*
598 	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
599 	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
600 	 * values are defined to 0 and 1 respectively
601 	 */
602 	struct cpu_itimer it[2];
603 
604 	/*
605 	 * Thread group totals for process CPU timers.
606 	 * See thread_group_cputimer(), et al, for details.
607 	 */
608 	struct thread_group_cputimer cputimer;
609 
610 	/* Earliest-expiration cache. */
611 	struct task_cputime cputime_expires;
612 
613 	struct list_head cpu_timers[3];
614 
615 	struct pid *tty_old_pgrp;
616 
617 	/* boolean value for session group leader */
618 	int leader;
619 
620 	struct tty_struct *tty; /* NULL if no tty */
621 
622 	/*
623 	 * Cumulative resource counters for dead threads in the group,
624 	 * and for reaped dead child processes forked by this group.
625 	 * Live threads maintain their own counters and add to these
626 	 * in __exit_signal, except for the group leader.
627 	 */
628 	cputime_t utime, stime, cutime, cstime;
629 	cputime_t gtime;
630 	cputime_t cgtime;
631 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
632 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
633 	unsigned long inblock, oublock, cinblock, coublock;
634 	unsigned long maxrss, cmaxrss;
635 	struct task_io_accounting ioac;
636 
637 	/*
638 	 * Cumulative ns of schedule CPU time fo dead threads in the
639 	 * group, not including a zombie group leader, (This only differs
640 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
641 	 * other than jiffies.)
642 	 */
643 	unsigned long long sum_sched_runtime;
644 
645 	/*
646 	 * We don't bother to synchronize most readers of this at all,
647 	 * because there is no reader checking a limit that actually needs
648 	 * to get both rlim_cur and rlim_max atomically, and either one
649 	 * alone is a single word that can safely be read normally.
650 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
651 	 * protect this instead of the siglock, because they really
652 	 * have no need to disable irqs.
653 	 */
654 	struct rlimit rlim[RLIM_NLIMITS];
655 
656 #ifdef CONFIG_BSD_PROCESS_ACCT
657 	struct pacct_struct pacct;	/* per-process accounting information */
658 #endif
659 #ifdef CONFIG_TASKSTATS
660 	struct taskstats *stats;
661 #endif
662 #ifdef CONFIG_AUDIT
663 	unsigned audit_tty;
664 	struct tty_audit_buf *tty_audit_buf;
665 #endif
666 
667 	int oom_adj;	/* OOM kill score adjustment (bit shift) */
668 };
669 
670 /* Context switch must be unlocked if interrupts are to be enabled */
671 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
672 # define __ARCH_WANT_UNLOCKED_CTXSW
673 #endif
674 
675 /*
676  * Bits in flags field of signal_struct.
677  */
678 #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
679 #define SIGNAL_STOP_DEQUEUED	0x00000002 /* stop signal dequeued */
680 #define SIGNAL_STOP_CONTINUED	0x00000004 /* SIGCONT since WCONTINUED reap */
681 #define SIGNAL_GROUP_EXIT	0x00000008 /* group exit in progress */
682 /*
683  * Pending notifications to parent.
684  */
685 #define SIGNAL_CLD_STOPPED	0x00000010
686 #define SIGNAL_CLD_CONTINUED	0x00000020
687 #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
688 
689 #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
690 
691 /* If true, all threads except ->group_exit_task have pending SIGKILL */
692 static inline int signal_group_exit(const struct signal_struct *sig)
693 {
694 	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
695 		(sig->group_exit_task != NULL);
696 }
697 
698 /*
699  * Some day this will be a full-fledged user tracking system..
700  */
701 struct user_struct {
702 	atomic_t __count;	/* reference count */
703 	atomic_t processes;	/* How many processes does this user have? */
704 	atomic_t files;		/* How many open files does this user have? */
705 	atomic_t sigpending;	/* How many pending signals does this user have? */
706 #ifdef CONFIG_INOTIFY_USER
707 	atomic_t inotify_watches; /* How many inotify watches does this user have? */
708 	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
709 #endif
710 #ifdef CONFIG_EPOLL
711 	atomic_t epoll_watches;	/* The number of file descriptors currently watched */
712 #endif
713 #ifdef CONFIG_POSIX_MQUEUE
714 	/* protected by mq_lock	*/
715 	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
716 #endif
717 	unsigned long locked_shm; /* How many pages of mlocked shm ? */
718 
719 #ifdef CONFIG_KEYS
720 	struct key *uid_keyring;	/* UID specific keyring */
721 	struct key *session_keyring;	/* UID's default session keyring */
722 #endif
723 
724 	/* Hash table maintenance information */
725 	struct hlist_node uidhash_node;
726 	uid_t uid;
727 	struct user_namespace *user_ns;
728 
729 #ifdef CONFIG_USER_SCHED
730 	struct task_group *tg;
731 #ifdef CONFIG_SYSFS
732 	struct kobject kobj;
733 	struct delayed_work work;
734 #endif
735 #endif
736 
737 #ifdef CONFIG_PERF_EVENTS
738 	atomic_long_t locked_vm;
739 #endif
740 };
741 
742 extern int uids_sysfs_init(void);
743 
744 extern struct user_struct *find_user(uid_t);
745 
746 extern struct user_struct root_user;
747 #define INIT_USER (&root_user)
748 
749 
750 struct backing_dev_info;
751 struct reclaim_state;
752 
753 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
754 struct sched_info {
755 	/* cumulative counters */
756 	unsigned long pcount;	      /* # of times run on this cpu */
757 	unsigned long long run_delay; /* time spent waiting on a runqueue */
758 
759 	/* timestamps */
760 	unsigned long long last_arrival,/* when we last ran on a cpu */
761 			   last_queued;	/* when we were last queued to run */
762 #ifdef CONFIG_SCHEDSTATS
763 	/* BKL stats */
764 	unsigned int bkl_count;
765 #endif
766 };
767 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
768 
769 #ifdef CONFIG_TASK_DELAY_ACCT
770 struct task_delay_info {
771 	spinlock_t	lock;
772 	unsigned int	flags;	/* Private per-task flags */
773 
774 	/* For each stat XXX, add following, aligned appropriately
775 	 *
776 	 * struct timespec XXX_start, XXX_end;
777 	 * u64 XXX_delay;
778 	 * u32 XXX_count;
779 	 *
780 	 * Atomicity of updates to XXX_delay, XXX_count protected by
781 	 * single lock above (split into XXX_lock if contention is an issue).
782 	 */
783 
784 	/*
785 	 * XXX_count is incremented on every XXX operation, the delay
786 	 * associated with the operation is added to XXX_delay.
787 	 * XXX_delay contains the accumulated delay time in nanoseconds.
788 	 */
789 	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
790 	u64 blkio_delay;	/* wait for sync block io completion */
791 	u64 swapin_delay;	/* wait for swapin block io completion */
792 	u32 blkio_count;	/* total count of the number of sync block */
793 				/* io operations performed */
794 	u32 swapin_count;	/* total count of the number of swapin block */
795 				/* io operations performed */
796 
797 	struct timespec freepages_start, freepages_end;
798 	u64 freepages_delay;	/* wait for memory reclaim */
799 	u32 freepages_count;	/* total count of memory reclaim */
800 };
801 #endif	/* CONFIG_TASK_DELAY_ACCT */
802 
803 static inline int sched_info_on(void)
804 {
805 #ifdef CONFIG_SCHEDSTATS
806 	return 1;
807 #elif defined(CONFIG_TASK_DELAY_ACCT)
808 	extern int delayacct_on;
809 	return delayacct_on;
810 #else
811 	return 0;
812 #endif
813 }
814 
815 enum cpu_idle_type {
816 	CPU_IDLE,
817 	CPU_NOT_IDLE,
818 	CPU_NEWLY_IDLE,
819 	CPU_MAX_IDLE_TYPES
820 };
821 
822 /*
823  * sched-domains (multiprocessor balancing) declarations:
824  */
825 
826 /*
827  * Increase resolution of nice-level calculations:
828  */
829 #define SCHED_LOAD_SHIFT	10
830 #define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
831 
832 #define SCHED_LOAD_SCALE_FUZZ	SCHED_LOAD_SCALE
833 
834 #ifdef CONFIG_SMP
835 #define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
836 #define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
837 #define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
838 #define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
839 #define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
840 #define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
841 #define SD_PREFER_LOCAL		0x0040  /* Prefer to keep tasks local to this domain */
842 #define SD_SHARE_CPUPOWER	0x0080	/* Domain members share cpu power */
843 #define SD_POWERSAVINGS_BALANCE	0x0100	/* Balance for power savings */
844 #define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
845 #define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
846 
847 #define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
848 
849 enum powersavings_balance_level {
850 	POWERSAVINGS_BALANCE_NONE = 0,  /* No power saving load balance */
851 	POWERSAVINGS_BALANCE_BASIC,	/* Fill one thread/core/package
852 					 * first for long running threads
853 					 */
854 	POWERSAVINGS_BALANCE_WAKEUP,	/* Also bias task wakeups to semi-idle
855 					 * cpu package for power savings
856 					 */
857 	MAX_POWERSAVINGS_BALANCE_LEVELS
858 };
859 
860 extern int sched_mc_power_savings, sched_smt_power_savings;
861 
862 static inline int sd_balance_for_mc_power(void)
863 {
864 	if (sched_smt_power_savings)
865 		return SD_POWERSAVINGS_BALANCE;
866 
867 	return SD_PREFER_SIBLING;
868 }
869 
870 static inline int sd_balance_for_package_power(void)
871 {
872 	if (sched_mc_power_savings | sched_smt_power_savings)
873 		return SD_POWERSAVINGS_BALANCE;
874 
875 	return SD_PREFER_SIBLING;
876 }
877 
878 /*
879  * Optimise SD flags for power savings:
880  * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
881  * Keep default SD flags if sched_{smt,mc}_power_saving=0
882  */
883 
884 static inline int sd_power_saving_flags(void)
885 {
886 	if (sched_mc_power_savings | sched_smt_power_savings)
887 		return SD_BALANCE_NEWIDLE;
888 
889 	return 0;
890 }
891 
892 struct sched_group {
893 	struct sched_group *next;	/* Must be a circular list */
894 
895 	/*
896 	 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
897 	 * single CPU.
898 	 */
899 	unsigned int cpu_power;
900 
901 	/*
902 	 * The CPUs this group covers.
903 	 *
904 	 * NOTE: this field is variable length. (Allocated dynamically
905 	 * by attaching extra space to the end of the structure,
906 	 * depending on how many CPUs the kernel has booted up with)
907 	 *
908 	 * It is also be embedded into static data structures at build
909 	 * time. (See 'struct static_sched_group' in kernel/sched.c)
910 	 */
911 	unsigned long cpumask[0];
912 };
913 
914 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
915 {
916 	return to_cpumask(sg->cpumask);
917 }
918 
919 enum sched_domain_level {
920 	SD_LV_NONE = 0,
921 	SD_LV_SIBLING,
922 	SD_LV_MC,
923 	SD_LV_CPU,
924 	SD_LV_NODE,
925 	SD_LV_ALLNODES,
926 	SD_LV_MAX
927 };
928 
929 struct sched_domain_attr {
930 	int relax_domain_level;
931 };
932 
933 #define SD_ATTR_INIT	(struct sched_domain_attr) {	\
934 	.relax_domain_level = -1,			\
935 }
936 
937 struct sched_domain {
938 	/* These fields must be setup */
939 	struct sched_domain *parent;	/* top domain must be null terminated */
940 	struct sched_domain *child;	/* bottom domain must be null terminated */
941 	struct sched_group *groups;	/* the balancing groups of the domain */
942 	unsigned long min_interval;	/* Minimum balance interval ms */
943 	unsigned long max_interval;	/* Maximum balance interval ms */
944 	unsigned int busy_factor;	/* less balancing by factor if busy */
945 	unsigned int imbalance_pct;	/* No balance until over watermark */
946 	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
947 	unsigned int busy_idx;
948 	unsigned int idle_idx;
949 	unsigned int newidle_idx;
950 	unsigned int wake_idx;
951 	unsigned int forkexec_idx;
952 	unsigned int smt_gain;
953 	int flags;			/* See SD_* */
954 	enum sched_domain_level level;
955 
956 	/* Runtime fields. */
957 	unsigned long last_balance;	/* init to jiffies. units in jiffies */
958 	unsigned int balance_interval;	/* initialise to 1. units in ms. */
959 	unsigned int nr_balance_failed; /* initialise to 0 */
960 
961 	u64 last_update;
962 
963 #ifdef CONFIG_SCHEDSTATS
964 	/* load_balance() stats */
965 	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
966 	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
967 	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
968 	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
969 	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
970 	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
971 	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
972 	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
973 
974 	/* Active load balancing */
975 	unsigned int alb_count;
976 	unsigned int alb_failed;
977 	unsigned int alb_pushed;
978 
979 	/* SD_BALANCE_EXEC stats */
980 	unsigned int sbe_count;
981 	unsigned int sbe_balanced;
982 	unsigned int sbe_pushed;
983 
984 	/* SD_BALANCE_FORK stats */
985 	unsigned int sbf_count;
986 	unsigned int sbf_balanced;
987 	unsigned int sbf_pushed;
988 
989 	/* try_to_wake_up() stats */
990 	unsigned int ttwu_wake_remote;
991 	unsigned int ttwu_move_affine;
992 	unsigned int ttwu_move_balance;
993 #endif
994 #ifdef CONFIG_SCHED_DEBUG
995 	char *name;
996 #endif
997 
998 	/*
999 	 * Span of all CPUs in this domain.
1000 	 *
1001 	 * NOTE: this field is variable length. (Allocated dynamically
1002 	 * by attaching extra space to the end of the structure,
1003 	 * depending on how many CPUs the kernel has booted up with)
1004 	 *
1005 	 * It is also be embedded into static data structures at build
1006 	 * time. (See 'struct static_sched_domain' in kernel/sched.c)
1007 	 */
1008 	unsigned long span[0];
1009 };
1010 
1011 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1012 {
1013 	return to_cpumask(sd->span);
1014 }
1015 
1016 extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1017 				    struct sched_domain_attr *dattr_new);
1018 
1019 /* Test a flag in parent sched domain */
1020 static inline int test_sd_parent(struct sched_domain *sd, int flag)
1021 {
1022 	if (sd->parent && (sd->parent->flags & flag))
1023 		return 1;
1024 
1025 	return 0;
1026 }
1027 
1028 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1029 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1030 
1031 #else /* CONFIG_SMP */
1032 
1033 struct sched_domain_attr;
1034 
1035 static inline void
1036 partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1037 			struct sched_domain_attr *dattr_new)
1038 {
1039 }
1040 #endif	/* !CONFIG_SMP */
1041 
1042 
1043 struct io_context;			/* See blkdev.h */
1044 
1045 
1046 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1047 extern void prefetch_stack(struct task_struct *t);
1048 #else
1049 static inline void prefetch_stack(struct task_struct *t) { }
1050 #endif
1051 
1052 struct audit_context;		/* See audit.c */
1053 struct mempolicy;
1054 struct pipe_inode_info;
1055 struct uts_namespace;
1056 
1057 struct rq;
1058 struct sched_domain;
1059 
1060 /*
1061  * wake flags
1062  */
1063 #define WF_SYNC		0x01		/* waker goes to sleep after wakup */
1064 #define WF_FORK		0x02		/* child wakeup after fork */
1065 
1066 struct sched_class {
1067 	const struct sched_class *next;
1068 
1069 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
1070 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
1071 	void (*yield_task) (struct rq *rq);
1072 
1073 	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1074 
1075 	struct task_struct * (*pick_next_task) (struct rq *rq);
1076 	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1077 
1078 #ifdef CONFIG_SMP
1079 	int  (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1080 
1081 	unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
1082 			struct rq *busiest, unsigned long max_load_move,
1083 			struct sched_domain *sd, enum cpu_idle_type idle,
1084 			int *all_pinned, int *this_best_prio);
1085 
1086 	int (*move_one_task) (struct rq *this_rq, int this_cpu,
1087 			      struct rq *busiest, struct sched_domain *sd,
1088 			      enum cpu_idle_type idle);
1089 	void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1090 	void (*post_schedule) (struct rq *this_rq);
1091 	void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
1092 
1093 	void (*set_cpus_allowed)(struct task_struct *p,
1094 				 const struct cpumask *newmask);
1095 
1096 	void (*rq_online)(struct rq *rq);
1097 	void (*rq_offline)(struct rq *rq);
1098 #endif
1099 
1100 	void (*set_curr_task) (struct rq *rq);
1101 	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1102 	void (*task_new) (struct rq *rq, struct task_struct *p);
1103 
1104 	void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1105 			       int running);
1106 	void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1107 			     int running);
1108 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1109 			     int oldprio, int running);
1110 
1111 	unsigned int (*get_rr_interval) (struct task_struct *task);
1112 
1113 #ifdef CONFIG_FAIR_GROUP_SCHED
1114 	void (*moved_group) (struct task_struct *p);
1115 #endif
1116 };
1117 
1118 struct load_weight {
1119 	unsigned long weight, inv_weight;
1120 };
1121 
1122 /*
1123  * CFS stats for a schedulable entity (task, task-group etc)
1124  *
1125  * Current field usage histogram:
1126  *
1127  *     4 se->block_start
1128  *     4 se->run_node
1129  *     4 se->sleep_start
1130  *     6 se->load.weight
1131  */
1132 struct sched_entity {
1133 	struct load_weight	load;		/* for load-balancing */
1134 	struct rb_node		run_node;
1135 	struct list_head	group_node;
1136 	unsigned int		on_rq;
1137 
1138 	u64			exec_start;
1139 	u64			sum_exec_runtime;
1140 	u64			vruntime;
1141 	u64			prev_sum_exec_runtime;
1142 
1143 	u64			last_wakeup;
1144 	u64			avg_overlap;
1145 
1146 	u64			nr_migrations;
1147 
1148 	u64			start_runtime;
1149 	u64			avg_wakeup;
1150 
1151 	u64			avg_running;
1152 
1153 #ifdef CONFIG_SCHEDSTATS
1154 	u64			wait_start;
1155 	u64			wait_max;
1156 	u64			wait_count;
1157 	u64			wait_sum;
1158 	u64			iowait_count;
1159 	u64			iowait_sum;
1160 
1161 	u64			sleep_start;
1162 	u64			sleep_max;
1163 	s64			sum_sleep_runtime;
1164 
1165 	u64			block_start;
1166 	u64			block_max;
1167 	u64			exec_max;
1168 	u64			slice_max;
1169 
1170 	u64			nr_migrations_cold;
1171 	u64			nr_failed_migrations_affine;
1172 	u64			nr_failed_migrations_running;
1173 	u64			nr_failed_migrations_hot;
1174 	u64			nr_forced_migrations;
1175 	u64			nr_forced2_migrations;
1176 
1177 	u64			nr_wakeups;
1178 	u64			nr_wakeups_sync;
1179 	u64			nr_wakeups_migrate;
1180 	u64			nr_wakeups_local;
1181 	u64			nr_wakeups_remote;
1182 	u64			nr_wakeups_affine;
1183 	u64			nr_wakeups_affine_attempts;
1184 	u64			nr_wakeups_passive;
1185 	u64			nr_wakeups_idle;
1186 #endif
1187 
1188 #ifdef CONFIG_FAIR_GROUP_SCHED
1189 	struct sched_entity	*parent;
1190 	/* rq on which this entity is (to be) queued: */
1191 	struct cfs_rq		*cfs_rq;
1192 	/* rq "owned" by this entity/group: */
1193 	struct cfs_rq		*my_q;
1194 #endif
1195 };
1196 
1197 struct sched_rt_entity {
1198 	struct list_head run_list;
1199 	unsigned long timeout;
1200 	unsigned int time_slice;
1201 	int nr_cpus_allowed;
1202 
1203 	struct sched_rt_entity *back;
1204 #ifdef CONFIG_RT_GROUP_SCHED
1205 	struct sched_rt_entity	*parent;
1206 	/* rq on which this entity is (to be) queued: */
1207 	struct rt_rq		*rt_rq;
1208 	/* rq "owned" by this entity/group: */
1209 	struct rt_rq		*my_q;
1210 #endif
1211 };
1212 
1213 struct rcu_node;
1214 
1215 struct task_struct {
1216 	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1217 	void *stack;
1218 	atomic_t usage;
1219 	unsigned int flags;	/* per process flags, defined below */
1220 	unsigned int ptrace;
1221 
1222 	int lock_depth;		/* BKL lock depth */
1223 
1224 #ifdef CONFIG_SMP
1225 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1226 	int oncpu;
1227 #endif
1228 #endif
1229 
1230 	int prio, static_prio, normal_prio;
1231 	unsigned int rt_priority;
1232 	const struct sched_class *sched_class;
1233 	struct sched_entity se;
1234 	struct sched_rt_entity rt;
1235 
1236 #ifdef CONFIG_PREEMPT_NOTIFIERS
1237 	/* list of struct preempt_notifier: */
1238 	struct hlist_head preempt_notifiers;
1239 #endif
1240 
1241 	/*
1242 	 * fpu_counter contains the number of consecutive context switches
1243 	 * that the FPU is used. If this is over a threshold, the lazy fpu
1244 	 * saving becomes unlazy to save the trap. This is an unsigned char
1245 	 * so that after 256 times the counter wraps and the behavior turns
1246 	 * lazy again; this to deal with bursty apps that only use FPU for
1247 	 * a short time
1248 	 */
1249 	unsigned char fpu_counter;
1250 #ifdef CONFIG_BLK_DEV_IO_TRACE
1251 	unsigned int btrace_seq;
1252 #endif
1253 
1254 	unsigned int policy;
1255 	cpumask_t cpus_allowed;
1256 
1257 #ifdef CONFIG_TREE_PREEMPT_RCU
1258 	int rcu_read_lock_nesting;
1259 	char rcu_read_unlock_special;
1260 	struct rcu_node *rcu_blocked_node;
1261 	struct list_head rcu_node_entry;
1262 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1263 
1264 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1265 	struct sched_info sched_info;
1266 #endif
1267 
1268 	struct list_head tasks;
1269 	struct plist_node pushable_tasks;
1270 
1271 	struct mm_struct *mm, *active_mm;
1272 
1273 /* task state */
1274 	int exit_state;
1275 	int exit_code, exit_signal;
1276 	int pdeath_signal;  /*  The signal sent when the parent dies  */
1277 	/* ??? */
1278 	unsigned int personality;
1279 	unsigned did_exec:1;
1280 	unsigned in_execve:1;	/* Tell the LSMs that the process is doing an
1281 				 * execve */
1282 	unsigned in_iowait:1;
1283 
1284 
1285 	/* Revert to default priority/policy when forking */
1286 	unsigned sched_reset_on_fork:1;
1287 
1288 	pid_t pid;
1289 	pid_t tgid;
1290 
1291 #ifdef CONFIG_CC_STACKPROTECTOR
1292 	/* Canary value for the -fstack-protector gcc feature */
1293 	unsigned long stack_canary;
1294 #endif
1295 
1296 	/*
1297 	 * pointers to (original) parent process, youngest child, younger sibling,
1298 	 * older sibling, respectively.  (p->father can be replaced with
1299 	 * p->real_parent->pid)
1300 	 */
1301 	struct task_struct *real_parent; /* real parent process */
1302 	struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1303 	/*
1304 	 * children/sibling forms the list of my natural children
1305 	 */
1306 	struct list_head children;	/* list of my children */
1307 	struct list_head sibling;	/* linkage in my parent's children list */
1308 	struct task_struct *group_leader;	/* threadgroup leader */
1309 
1310 	/*
1311 	 * ptraced is the list of tasks this task is using ptrace on.
1312 	 * This includes both natural children and PTRACE_ATTACH targets.
1313 	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1314 	 */
1315 	struct list_head ptraced;
1316 	struct list_head ptrace_entry;
1317 
1318 	/*
1319 	 * This is the tracer handle for the ptrace BTS extension.
1320 	 * This field actually belongs to the ptracer task.
1321 	 */
1322 	struct bts_context *bts;
1323 
1324 	/* PID/PID hash table linkage. */
1325 	struct pid_link pids[PIDTYPE_MAX];
1326 	struct list_head thread_group;
1327 
1328 	struct completion *vfork_done;		/* for vfork() */
1329 	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1330 	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1331 
1332 	cputime_t utime, stime, utimescaled, stimescaled;
1333 	cputime_t gtime;
1334 	cputime_t prev_utime, prev_stime;
1335 	unsigned long nvcsw, nivcsw; /* context switch counts */
1336 	struct timespec start_time; 		/* monotonic time */
1337 	struct timespec real_start_time;	/* boot based time */
1338 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1339 	unsigned long min_flt, maj_flt;
1340 
1341 	struct task_cputime cputime_expires;
1342 	struct list_head cpu_timers[3];
1343 
1344 /* process credentials */
1345 	const struct cred *real_cred;	/* objective and real subjective task
1346 					 * credentials (COW) */
1347 	const struct cred *cred;	/* effective (overridable) subjective task
1348 					 * credentials (COW) */
1349 	struct mutex cred_guard_mutex;	/* guard against foreign influences on
1350 					 * credential calculations
1351 					 * (notably. ptrace) */
1352 	struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1353 
1354 	char comm[TASK_COMM_LEN]; /* executable name excluding path
1355 				     - access with [gs]et_task_comm (which lock
1356 				       it with task_lock())
1357 				     - initialized normally by flush_old_exec */
1358 /* file system info */
1359 	int link_count, total_link_count;
1360 #ifdef CONFIG_SYSVIPC
1361 /* ipc stuff */
1362 	struct sysv_sem sysvsem;
1363 #endif
1364 #ifdef CONFIG_DETECT_HUNG_TASK
1365 /* hung task detection */
1366 	unsigned long last_switch_count;
1367 #endif
1368 /* CPU-specific state of this task */
1369 	struct thread_struct thread;
1370 /* filesystem information */
1371 	struct fs_struct *fs;
1372 /* open file information */
1373 	struct files_struct *files;
1374 /* namespaces */
1375 	struct nsproxy *nsproxy;
1376 /* signal handlers */
1377 	struct signal_struct *signal;
1378 	struct sighand_struct *sighand;
1379 
1380 	sigset_t blocked, real_blocked;
1381 	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1382 	struct sigpending pending;
1383 
1384 	unsigned long sas_ss_sp;
1385 	size_t sas_ss_size;
1386 	int (*notifier)(void *priv);
1387 	void *notifier_data;
1388 	sigset_t *notifier_mask;
1389 	struct audit_context *audit_context;
1390 #ifdef CONFIG_AUDITSYSCALL
1391 	uid_t loginuid;
1392 	unsigned int sessionid;
1393 #endif
1394 	seccomp_t seccomp;
1395 
1396 /* Thread group tracking */
1397    	u32 parent_exec_id;
1398    	u32 self_exec_id;
1399 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1400  * mempolicy */
1401 	spinlock_t alloc_lock;
1402 
1403 #ifdef CONFIG_GENERIC_HARDIRQS
1404 	/* IRQ handler threads */
1405 	struct irqaction *irqaction;
1406 #endif
1407 
1408 	/* Protection of the PI data structures: */
1409 	spinlock_t pi_lock;
1410 
1411 #ifdef CONFIG_RT_MUTEXES
1412 	/* PI waiters blocked on a rt_mutex held by this task */
1413 	struct plist_head pi_waiters;
1414 	/* Deadlock detection and priority inheritance handling */
1415 	struct rt_mutex_waiter *pi_blocked_on;
1416 #endif
1417 
1418 #ifdef CONFIG_DEBUG_MUTEXES
1419 	/* mutex deadlock detection */
1420 	struct mutex_waiter *blocked_on;
1421 #endif
1422 #ifdef CONFIG_TRACE_IRQFLAGS
1423 	unsigned int irq_events;
1424 	int hardirqs_enabled;
1425 	unsigned long hardirq_enable_ip;
1426 	unsigned int hardirq_enable_event;
1427 	unsigned long hardirq_disable_ip;
1428 	unsigned int hardirq_disable_event;
1429 	int softirqs_enabled;
1430 	unsigned long softirq_disable_ip;
1431 	unsigned int softirq_disable_event;
1432 	unsigned long softirq_enable_ip;
1433 	unsigned int softirq_enable_event;
1434 	int hardirq_context;
1435 	int softirq_context;
1436 #endif
1437 #ifdef CONFIG_LOCKDEP
1438 # define MAX_LOCK_DEPTH 48UL
1439 	u64 curr_chain_key;
1440 	int lockdep_depth;
1441 	unsigned int lockdep_recursion;
1442 	struct held_lock held_locks[MAX_LOCK_DEPTH];
1443 	gfp_t lockdep_reclaim_gfp;
1444 #endif
1445 
1446 /* journalling filesystem info */
1447 	void *journal_info;
1448 
1449 /* stacked block device info */
1450 	struct bio *bio_list, **bio_tail;
1451 
1452 /* VM state */
1453 	struct reclaim_state *reclaim_state;
1454 
1455 	struct backing_dev_info *backing_dev_info;
1456 
1457 	struct io_context *io_context;
1458 
1459 	unsigned long ptrace_message;
1460 	siginfo_t *last_siginfo; /* For ptrace use.  */
1461 	struct task_io_accounting ioac;
1462 #if defined(CONFIG_TASK_XACCT)
1463 	u64 acct_rss_mem1;	/* accumulated rss usage */
1464 	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1465 	cputime_t acct_timexpd;	/* stime + utime since last update */
1466 #endif
1467 #ifdef CONFIG_CPUSETS
1468 	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1469 	int cpuset_mem_spread_rotor;
1470 #endif
1471 #ifdef CONFIG_CGROUPS
1472 	/* Control Group info protected by css_set_lock */
1473 	struct css_set *cgroups;
1474 	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1475 	struct list_head cg_list;
1476 #endif
1477 #ifdef CONFIG_FUTEX
1478 	struct robust_list_head __user *robust_list;
1479 #ifdef CONFIG_COMPAT
1480 	struct compat_robust_list_head __user *compat_robust_list;
1481 #endif
1482 	struct list_head pi_state_list;
1483 	struct futex_pi_state *pi_state_cache;
1484 #endif
1485 #ifdef CONFIG_PERF_EVENTS
1486 	struct perf_event_context *perf_event_ctxp;
1487 	struct mutex perf_event_mutex;
1488 	struct list_head perf_event_list;
1489 #endif
1490 #ifdef CONFIG_NUMA
1491 	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1492 	short il_next;
1493 #endif
1494 	atomic_t fs_excl;	/* holding fs exclusive resources */
1495 	struct rcu_head rcu;
1496 
1497 	/*
1498 	 * cache last used pipe for splice
1499 	 */
1500 	struct pipe_inode_info *splice_pipe;
1501 #ifdef	CONFIG_TASK_DELAY_ACCT
1502 	struct task_delay_info *delays;
1503 #endif
1504 #ifdef CONFIG_FAULT_INJECTION
1505 	int make_it_fail;
1506 #endif
1507 	struct prop_local_single dirties;
1508 #ifdef CONFIG_LATENCYTOP
1509 	int latency_record_count;
1510 	struct latency_record latency_record[LT_SAVECOUNT];
1511 #endif
1512 	/*
1513 	 * time slack values; these are used to round up poll() and
1514 	 * select() etc timeout values. These are in nanoseconds.
1515 	 */
1516 	unsigned long timer_slack_ns;
1517 	unsigned long default_timer_slack_ns;
1518 
1519 	struct list_head	*scm_work_list;
1520 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1521 	/* Index of current stored adress in ret_stack */
1522 	int curr_ret_stack;
1523 	/* Stack of return addresses for return function tracing */
1524 	struct ftrace_ret_stack	*ret_stack;
1525 	/* time stamp for last schedule */
1526 	unsigned long long ftrace_timestamp;
1527 	/*
1528 	 * Number of functions that haven't been traced
1529 	 * because of depth overrun.
1530 	 */
1531 	atomic_t trace_overrun;
1532 	/* Pause for the tracing */
1533 	atomic_t tracing_graph_pause;
1534 #endif
1535 #ifdef CONFIG_TRACING
1536 	/* state flags for use by tracers */
1537 	unsigned long trace;
1538 	/* bitmask of trace recursion */
1539 	unsigned long trace_recursion;
1540 #endif /* CONFIG_TRACING */
1541 	unsigned long stack_start;
1542 };
1543 
1544 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1545 #define tsk_cpumask(tsk) (&(tsk)->cpus_allowed)
1546 
1547 /*
1548  * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1549  * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1550  * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1551  * values are inverted: lower p->prio value means higher priority.
1552  *
1553  * The MAX_USER_RT_PRIO value allows the actual maximum
1554  * RT priority to be separate from the value exported to
1555  * user-space.  This allows kernel threads to set their
1556  * priority to a value higher than any user task. Note:
1557  * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1558  */
1559 
1560 #define MAX_USER_RT_PRIO	100
1561 #define MAX_RT_PRIO		MAX_USER_RT_PRIO
1562 
1563 #define MAX_PRIO		(MAX_RT_PRIO + 40)
1564 #define DEFAULT_PRIO		(MAX_RT_PRIO + 20)
1565 
1566 static inline int rt_prio(int prio)
1567 {
1568 	if (unlikely(prio < MAX_RT_PRIO))
1569 		return 1;
1570 	return 0;
1571 }
1572 
1573 static inline int rt_task(struct task_struct *p)
1574 {
1575 	return rt_prio(p->prio);
1576 }
1577 
1578 static inline struct pid *task_pid(struct task_struct *task)
1579 {
1580 	return task->pids[PIDTYPE_PID].pid;
1581 }
1582 
1583 static inline struct pid *task_tgid(struct task_struct *task)
1584 {
1585 	return task->group_leader->pids[PIDTYPE_PID].pid;
1586 }
1587 
1588 /*
1589  * Without tasklist or rcu lock it is not safe to dereference
1590  * the result of task_pgrp/task_session even if task == current,
1591  * we can race with another thread doing sys_setsid/sys_setpgid.
1592  */
1593 static inline struct pid *task_pgrp(struct task_struct *task)
1594 {
1595 	return task->group_leader->pids[PIDTYPE_PGID].pid;
1596 }
1597 
1598 static inline struct pid *task_session(struct task_struct *task)
1599 {
1600 	return task->group_leader->pids[PIDTYPE_SID].pid;
1601 }
1602 
1603 struct pid_namespace;
1604 
1605 /*
1606  * the helpers to get the task's different pids as they are seen
1607  * from various namespaces
1608  *
1609  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1610  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1611  *                     current.
1612  * task_xid_nr_ns()  : id seen from the ns specified;
1613  *
1614  * set_task_vxid()   : assigns a virtual id to a task;
1615  *
1616  * see also pid_nr() etc in include/linux/pid.h
1617  */
1618 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1619 			struct pid_namespace *ns);
1620 
1621 static inline pid_t task_pid_nr(struct task_struct *tsk)
1622 {
1623 	return tsk->pid;
1624 }
1625 
1626 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1627 					struct pid_namespace *ns)
1628 {
1629 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1630 }
1631 
1632 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1633 {
1634 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1635 }
1636 
1637 
1638 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1639 {
1640 	return tsk->tgid;
1641 }
1642 
1643 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1644 
1645 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1646 {
1647 	return pid_vnr(task_tgid(tsk));
1648 }
1649 
1650 
1651 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1652 					struct pid_namespace *ns)
1653 {
1654 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1655 }
1656 
1657 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1658 {
1659 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1660 }
1661 
1662 
1663 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1664 					struct pid_namespace *ns)
1665 {
1666 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1667 }
1668 
1669 static inline pid_t task_session_vnr(struct task_struct *tsk)
1670 {
1671 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1672 }
1673 
1674 /* obsolete, do not use */
1675 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1676 {
1677 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1678 }
1679 
1680 /**
1681  * pid_alive - check that a task structure is not stale
1682  * @p: Task structure to be checked.
1683  *
1684  * Test if a process is not yet dead (at most zombie state)
1685  * If pid_alive fails, then pointers within the task structure
1686  * can be stale and must not be dereferenced.
1687  */
1688 static inline int pid_alive(struct task_struct *p)
1689 {
1690 	return p->pids[PIDTYPE_PID].pid != NULL;
1691 }
1692 
1693 /**
1694  * is_global_init - check if a task structure is init
1695  * @tsk: Task structure to be checked.
1696  *
1697  * Check if a task structure is the first user space task the kernel created.
1698  */
1699 static inline int is_global_init(struct task_struct *tsk)
1700 {
1701 	return tsk->pid == 1;
1702 }
1703 
1704 /*
1705  * is_container_init:
1706  * check whether in the task is init in its own pid namespace.
1707  */
1708 extern int is_container_init(struct task_struct *tsk);
1709 
1710 extern struct pid *cad_pid;
1711 
1712 extern void free_task(struct task_struct *tsk);
1713 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1714 
1715 extern void __put_task_struct(struct task_struct *t);
1716 
1717 static inline void put_task_struct(struct task_struct *t)
1718 {
1719 	if (atomic_dec_and_test(&t->usage))
1720 		__put_task_struct(t);
1721 }
1722 
1723 extern cputime_t task_utime(struct task_struct *p);
1724 extern cputime_t task_stime(struct task_struct *p);
1725 extern cputime_t task_gtime(struct task_struct *p);
1726 
1727 /*
1728  * Per process flags
1729  */
1730 #define PF_ALIGNWARN	0x00000001	/* Print alignment warning msgs */
1731 					/* Not implemented yet, only for 486*/
1732 #define PF_STARTING	0x00000002	/* being created */
1733 #define PF_EXITING	0x00000004	/* getting shut down */
1734 #define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1735 #define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1736 #define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1737 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1738 #define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1739 #define PF_DUMPCORE	0x00000200	/* dumped core */
1740 #define PF_SIGNALED	0x00000400	/* killed by a signal */
1741 #define PF_MEMALLOC	0x00000800	/* Allocating memory */
1742 #define PF_FLUSHER	0x00001000	/* responsible for disk writeback */
1743 #define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1744 #define PF_FREEZING	0x00004000	/* freeze in progress. do not account to load */
1745 #define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1746 #define PF_FROZEN	0x00010000	/* frozen for system suspend */
1747 #define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1748 #define PF_KSWAPD	0x00040000	/* I am kswapd */
1749 #define PF_OOM_ORIGIN	0x00080000	/* Allocating much memory to others */
1750 #define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1751 #define PF_KTHREAD	0x00200000	/* I am a kernel thread */
1752 #define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1753 #define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1754 #define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
1755 #define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
1756 #define PF_THREAD_BOUND	0x04000000	/* Thread bound to specific cpu */
1757 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1758 #define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
1759 #define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1760 #define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezeable */
1761 #define PF_FREEZER_NOSIG 0x80000000	/* Freezer won't send signals to it */
1762 
1763 /*
1764  * Only the _current_ task can read/write to tsk->flags, but other
1765  * tasks can access tsk->flags in readonly mode for example
1766  * with tsk_used_math (like during threaded core dumping).
1767  * There is however an exception to this rule during ptrace
1768  * or during fork: the ptracer task is allowed to write to the
1769  * child->flags of its traced child (same goes for fork, the parent
1770  * can write to the child->flags), because we're guaranteed the
1771  * child is not running and in turn not changing child->flags
1772  * at the same time the parent does it.
1773  */
1774 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1775 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1776 #define clear_used_math() clear_stopped_child_used_math(current)
1777 #define set_used_math() set_stopped_child_used_math(current)
1778 #define conditional_stopped_child_used_math(condition, child) \
1779 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1780 #define conditional_used_math(condition) \
1781 	conditional_stopped_child_used_math(condition, current)
1782 #define copy_to_stopped_child_used_math(child) \
1783 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1784 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1785 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1786 #define used_math() tsk_used_math(current)
1787 
1788 #ifdef CONFIG_TREE_PREEMPT_RCU
1789 
1790 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1791 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1792 
1793 static inline void rcu_copy_process(struct task_struct *p)
1794 {
1795 	p->rcu_read_lock_nesting = 0;
1796 	p->rcu_read_unlock_special = 0;
1797 	p->rcu_blocked_node = NULL;
1798 	INIT_LIST_HEAD(&p->rcu_node_entry);
1799 }
1800 
1801 #else
1802 
1803 static inline void rcu_copy_process(struct task_struct *p)
1804 {
1805 }
1806 
1807 #endif
1808 
1809 #ifdef CONFIG_SMP
1810 extern int set_cpus_allowed_ptr(struct task_struct *p,
1811 				const struct cpumask *new_mask);
1812 #else
1813 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1814 				       const struct cpumask *new_mask)
1815 {
1816 	if (!cpumask_test_cpu(0, new_mask))
1817 		return -EINVAL;
1818 	return 0;
1819 }
1820 #endif
1821 
1822 #ifndef CONFIG_CPUMASK_OFFSTACK
1823 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1824 {
1825 	return set_cpus_allowed_ptr(p, &new_mask);
1826 }
1827 #endif
1828 
1829 /*
1830  * Architectures can set this to 1 if they have specified
1831  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1832  * but then during bootup it turns out that sched_clock()
1833  * is reliable after all:
1834  */
1835 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1836 extern int sched_clock_stable;
1837 #endif
1838 
1839 /* ftrace calls sched_clock() directly */
1840 extern unsigned long long notrace sched_clock(void);
1841 
1842 extern void sched_clock_init(void);
1843 extern u64 sched_clock_cpu(int cpu);
1844 
1845 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1846 static inline void sched_clock_tick(void)
1847 {
1848 }
1849 
1850 static inline void sched_clock_idle_sleep_event(void)
1851 {
1852 }
1853 
1854 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1855 {
1856 }
1857 #else
1858 extern void sched_clock_tick(void);
1859 extern void sched_clock_idle_sleep_event(void);
1860 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1861 #endif
1862 
1863 /*
1864  * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1865  * clock constructed from sched_clock():
1866  */
1867 extern unsigned long long cpu_clock(int cpu);
1868 
1869 extern unsigned long long
1870 task_sched_runtime(struct task_struct *task);
1871 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1872 
1873 /* sched_exec is called by processes performing an exec */
1874 #ifdef CONFIG_SMP
1875 extern void sched_exec(void);
1876 #else
1877 #define sched_exec()   {}
1878 #endif
1879 
1880 extern void sched_clock_idle_sleep_event(void);
1881 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1882 
1883 #ifdef CONFIG_HOTPLUG_CPU
1884 extern void idle_task_exit(void);
1885 #else
1886 static inline void idle_task_exit(void) {}
1887 #endif
1888 
1889 extern void sched_idle_next(void);
1890 
1891 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1892 extern void wake_up_idle_cpu(int cpu);
1893 #else
1894 static inline void wake_up_idle_cpu(int cpu) { }
1895 #endif
1896 
1897 extern unsigned int sysctl_sched_latency;
1898 extern unsigned int sysctl_sched_min_granularity;
1899 extern unsigned int sysctl_sched_wakeup_granularity;
1900 extern unsigned int sysctl_sched_shares_ratelimit;
1901 extern unsigned int sysctl_sched_shares_thresh;
1902 extern unsigned int sysctl_sched_child_runs_first;
1903 #ifdef CONFIG_SCHED_DEBUG
1904 extern unsigned int sysctl_sched_features;
1905 extern unsigned int sysctl_sched_migration_cost;
1906 extern unsigned int sysctl_sched_nr_migrate;
1907 extern unsigned int sysctl_sched_time_avg;
1908 extern unsigned int sysctl_timer_migration;
1909 
1910 int sched_nr_latency_handler(struct ctl_table *table, int write,
1911 		void __user *buffer, size_t *length,
1912 		loff_t *ppos);
1913 #endif
1914 #ifdef CONFIG_SCHED_DEBUG
1915 static inline unsigned int get_sysctl_timer_migration(void)
1916 {
1917 	return sysctl_timer_migration;
1918 }
1919 #else
1920 static inline unsigned int get_sysctl_timer_migration(void)
1921 {
1922 	return 1;
1923 }
1924 #endif
1925 extern unsigned int sysctl_sched_rt_period;
1926 extern int sysctl_sched_rt_runtime;
1927 
1928 int sched_rt_handler(struct ctl_table *table, int write,
1929 		void __user *buffer, size_t *lenp,
1930 		loff_t *ppos);
1931 
1932 extern unsigned int sysctl_sched_compat_yield;
1933 
1934 #ifdef CONFIG_RT_MUTEXES
1935 extern int rt_mutex_getprio(struct task_struct *p);
1936 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1937 extern void rt_mutex_adjust_pi(struct task_struct *p);
1938 #else
1939 static inline int rt_mutex_getprio(struct task_struct *p)
1940 {
1941 	return p->normal_prio;
1942 }
1943 # define rt_mutex_adjust_pi(p)		do { } while (0)
1944 #endif
1945 
1946 extern void set_user_nice(struct task_struct *p, long nice);
1947 extern int task_prio(const struct task_struct *p);
1948 extern int task_nice(const struct task_struct *p);
1949 extern int can_nice(const struct task_struct *p, const int nice);
1950 extern int task_curr(const struct task_struct *p);
1951 extern int idle_cpu(int cpu);
1952 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1953 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1954 				      struct sched_param *);
1955 extern struct task_struct *idle_task(int cpu);
1956 extern struct task_struct *curr_task(int cpu);
1957 extern void set_curr_task(int cpu, struct task_struct *p);
1958 
1959 void yield(void);
1960 
1961 /*
1962  * The default (Linux) execution domain.
1963  */
1964 extern struct exec_domain	default_exec_domain;
1965 
1966 union thread_union {
1967 	struct thread_info thread_info;
1968 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1969 };
1970 
1971 #ifndef __HAVE_ARCH_KSTACK_END
1972 static inline int kstack_end(void *addr)
1973 {
1974 	/* Reliable end of stack detection:
1975 	 * Some APM bios versions misalign the stack
1976 	 */
1977 	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1978 }
1979 #endif
1980 
1981 extern union thread_union init_thread_union;
1982 extern struct task_struct init_task;
1983 
1984 extern struct   mm_struct init_mm;
1985 
1986 extern struct pid_namespace init_pid_ns;
1987 
1988 /*
1989  * find a task by one of its numerical ids
1990  *
1991  * find_task_by_pid_ns():
1992  *      finds a task by its pid in the specified namespace
1993  * find_task_by_vpid():
1994  *      finds a task by its virtual pid
1995  *
1996  * see also find_vpid() etc in include/linux/pid.h
1997  */
1998 
1999 extern struct task_struct *find_task_by_vpid(pid_t nr);
2000 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2001 		struct pid_namespace *ns);
2002 
2003 extern void __set_special_pids(struct pid *pid);
2004 
2005 /* per-UID process charging. */
2006 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2007 static inline struct user_struct *get_uid(struct user_struct *u)
2008 {
2009 	atomic_inc(&u->__count);
2010 	return u;
2011 }
2012 extern void free_uid(struct user_struct *);
2013 extern void release_uids(struct user_namespace *ns);
2014 
2015 #include <asm/current.h>
2016 
2017 extern void do_timer(unsigned long ticks);
2018 
2019 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2020 extern int wake_up_process(struct task_struct *tsk);
2021 extern void wake_up_new_task(struct task_struct *tsk,
2022 				unsigned long clone_flags);
2023 #ifdef CONFIG_SMP
2024  extern void kick_process(struct task_struct *tsk);
2025 #else
2026  static inline void kick_process(struct task_struct *tsk) { }
2027 #endif
2028 extern void sched_fork(struct task_struct *p, int clone_flags);
2029 extern void sched_dead(struct task_struct *p);
2030 
2031 extern void proc_caches_init(void);
2032 extern void flush_signals(struct task_struct *);
2033 extern void __flush_signals(struct task_struct *);
2034 extern void ignore_signals(struct task_struct *);
2035 extern void flush_signal_handlers(struct task_struct *, int force_default);
2036 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2037 
2038 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2039 {
2040 	unsigned long flags;
2041 	int ret;
2042 
2043 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
2044 	ret = dequeue_signal(tsk, mask, info);
2045 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2046 
2047 	return ret;
2048 }
2049 
2050 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2051 			      sigset_t *mask);
2052 extern void unblock_all_signals(void);
2053 extern void release_task(struct task_struct * p);
2054 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2055 extern int force_sigsegv(int, struct task_struct *);
2056 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2057 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2058 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2059 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2060 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2061 extern int kill_pid(struct pid *pid, int sig, int priv);
2062 extern int kill_proc_info(int, struct siginfo *, pid_t);
2063 extern int do_notify_parent(struct task_struct *, int);
2064 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2065 extern void force_sig(int, struct task_struct *);
2066 extern void force_sig_specific(int, struct task_struct *);
2067 extern int send_sig(int, struct task_struct *, int);
2068 extern void zap_other_threads(struct task_struct *p);
2069 extern struct sigqueue *sigqueue_alloc(void);
2070 extern void sigqueue_free(struct sigqueue *);
2071 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2072 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2073 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2074 
2075 static inline int kill_cad_pid(int sig, int priv)
2076 {
2077 	return kill_pid(cad_pid, sig, priv);
2078 }
2079 
2080 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2081 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2082 #define SEND_SIG_PRIV	((struct siginfo *) 1)
2083 #define SEND_SIG_FORCED	((struct siginfo *) 2)
2084 
2085 static inline int is_si_special(const struct siginfo *info)
2086 {
2087 	return info <= SEND_SIG_FORCED;
2088 }
2089 
2090 /* True if we are on the alternate signal stack.  */
2091 
2092 static inline int on_sig_stack(unsigned long sp)
2093 {
2094 	return (sp - current->sas_ss_sp < current->sas_ss_size);
2095 }
2096 
2097 static inline int sas_ss_flags(unsigned long sp)
2098 {
2099 	return (current->sas_ss_size == 0 ? SS_DISABLE
2100 		: on_sig_stack(sp) ? SS_ONSTACK : 0);
2101 }
2102 
2103 /*
2104  * Routines for handling mm_structs
2105  */
2106 extern struct mm_struct * mm_alloc(void);
2107 
2108 /* mmdrop drops the mm and the page tables */
2109 extern void __mmdrop(struct mm_struct *);
2110 static inline void mmdrop(struct mm_struct * mm)
2111 {
2112 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2113 		__mmdrop(mm);
2114 }
2115 
2116 /* mmput gets rid of the mappings and all user-space */
2117 extern void mmput(struct mm_struct *);
2118 /* Grab a reference to a task's mm, if it is not already going away */
2119 extern struct mm_struct *get_task_mm(struct task_struct *task);
2120 /* Remove the current tasks stale references to the old mm_struct */
2121 extern void mm_release(struct task_struct *, struct mm_struct *);
2122 /* Allocate a new mm structure and copy contents from tsk->mm */
2123 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2124 
2125 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2126 			struct task_struct *, struct pt_regs *);
2127 extern void flush_thread(void);
2128 extern void exit_thread(void);
2129 
2130 extern void exit_files(struct task_struct *);
2131 extern void __cleanup_signal(struct signal_struct *);
2132 extern void __cleanup_sighand(struct sighand_struct *);
2133 
2134 extern void exit_itimers(struct signal_struct *);
2135 extern void flush_itimer_signals(void);
2136 
2137 extern NORET_TYPE void do_group_exit(int);
2138 
2139 extern void daemonize(const char *, ...);
2140 extern int allow_signal(int);
2141 extern int disallow_signal(int);
2142 
2143 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2144 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2145 struct task_struct *fork_idle(int);
2146 
2147 extern void set_task_comm(struct task_struct *tsk, char *from);
2148 extern char *get_task_comm(char *to, struct task_struct *tsk);
2149 
2150 #ifdef CONFIG_SMP
2151 extern void wait_task_context_switch(struct task_struct *p);
2152 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2153 #else
2154 static inline void wait_task_context_switch(struct task_struct *p) {}
2155 static inline unsigned long wait_task_inactive(struct task_struct *p,
2156 					       long match_state)
2157 {
2158 	return 1;
2159 }
2160 #endif
2161 
2162 #define next_task(p) \
2163 	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2164 
2165 #define for_each_process(p) \
2166 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2167 
2168 extern bool current_is_single_threaded(void);
2169 
2170 /*
2171  * Careful: do_each_thread/while_each_thread is a double loop so
2172  *          'break' will not work as expected - use goto instead.
2173  */
2174 #define do_each_thread(g, t) \
2175 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2176 
2177 #define while_each_thread(g, t) \
2178 	while ((t = next_thread(t)) != g)
2179 
2180 /* de_thread depends on thread_group_leader not being a pid based check */
2181 #define thread_group_leader(p)	(p == p->group_leader)
2182 
2183 /* Do to the insanities of de_thread it is possible for a process
2184  * to have the pid of the thread group leader without actually being
2185  * the thread group leader.  For iteration through the pids in proc
2186  * all we care about is that we have a task with the appropriate
2187  * pid, we don't actually care if we have the right task.
2188  */
2189 static inline int has_group_leader_pid(struct task_struct *p)
2190 {
2191 	return p->pid == p->tgid;
2192 }
2193 
2194 static inline
2195 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2196 {
2197 	return p1->tgid == p2->tgid;
2198 }
2199 
2200 static inline struct task_struct *next_thread(const struct task_struct *p)
2201 {
2202 	return list_entry_rcu(p->thread_group.next,
2203 			      struct task_struct, thread_group);
2204 }
2205 
2206 static inline int thread_group_empty(struct task_struct *p)
2207 {
2208 	return list_empty(&p->thread_group);
2209 }
2210 
2211 #define delay_group_leader(p) \
2212 		(thread_group_leader(p) && !thread_group_empty(p))
2213 
2214 static inline int task_detached(struct task_struct *p)
2215 {
2216 	return p->exit_signal == -1;
2217 }
2218 
2219 /*
2220  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2221  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2222  * pins the final release of task.io_context.  Also protects ->cpuset and
2223  * ->cgroup.subsys[].
2224  *
2225  * Nests both inside and outside of read_lock(&tasklist_lock).
2226  * It must not be nested with write_lock_irq(&tasklist_lock),
2227  * neither inside nor outside.
2228  */
2229 static inline void task_lock(struct task_struct *p)
2230 {
2231 	spin_lock(&p->alloc_lock);
2232 }
2233 
2234 static inline void task_unlock(struct task_struct *p)
2235 {
2236 	spin_unlock(&p->alloc_lock);
2237 }
2238 
2239 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2240 							unsigned long *flags);
2241 
2242 static inline void unlock_task_sighand(struct task_struct *tsk,
2243 						unsigned long *flags)
2244 {
2245 	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2246 }
2247 
2248 #ifndef __HAVE_THREAD_FUNCTIONS
2249 
2250 #define task_thread_info(task)	((struct thread_info *)(task)->stack)
2251 #define task_stack_page(task)	((task)->stack)
2252 
2253 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2254 {
2255 	*task_thread_info(p) = *task_thread_info(org);
2256 	task_thread_info(p)->task = p;
2257 }
2258 
2259 static inline unsigned long *end_of_stack(struct task_struct *p)
2260 {
2261 	return (unsigned long *)(task_thread_info(p) + 1);
2262 }
2263 
2264 #endif
2265 
2266 static inline int object_is_on_stack(void *obj)
2267 {
2268 	void *stack = task_stack_page(current);
2269 
2270 	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2271 }
2272 
2273 extern void thread_info_cache_init(void);
2274 
2275 #ifdef CONFIG_DEBUG_STACK_USAGE
2276 static inline unsigned long stack_not_used(struct task_struct *p)
2277 {
2278 	unsigned long *n = end_of_stack(p);
2279 
2280 	do { 	/* Skip over canary */
2281 		n++;
2282 	} while (!*n);
2283 
2284 	return (unsigned long)n - (unsigned long)end_of_stack(p);
2285 }
2286 #endif
2287 
2288 /* set thread flags in other task's structures
2289  * - see asm/thread_info.h for TIF_xxxx flags available
2290  */
2291 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2292 {
2293 	set_ti_thread_flag(task_thread_info(tsk), flag);
2294 }
2295 
2296 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2297 {
2298 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2299 }
2300 
2301 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2302 {
2303 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2304 }
2305 
2306 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2307 {
2308 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2309 }
2310 
2311 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2312 {
2313 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2314 }
2315 
2316 static inline void set_tsk_need_resched(struct task_struct *tsk)
2317 {
2318 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2319 }
2320 
2321 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2322 {
2323 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2324 }
2325 
2326 static inline int test_tsk_need_resched(struct task_struct *tsk)
2327 {
2328 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2329 }
2330 
2331 static inline int restart_syscall(void)
2332 {
2333 	set_tsk_thread_flag(current, TIF_SIGPENDING);
2334 	return -ERESTARTNOINTR;
2335 }
2336 
2337 static inline int signal_pending(struct task_struct *p)
2338 {
2339 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2340 }
2341 
2342 static inline int __fatal_signal_pending(struct task_struct *p)
2343 {
2344 	return unlikely(sigismember(&p->pending.signal, SIGKILL));
2345 }
2346 
2347 static inline int fatal_signal_pending(struct task_struct *p)
2348 {
2349 	return signal_pending(p) && __fatal_signal_pending(p);
2350 }
2351 
2352 static inline int signal_pending_state(long state, struct task_struct *p)
2353 {
2354 	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2355 		return 0;
2356 	if (!signal_pending(p))
2357 		return 0;
2358 
2359 	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2360 }
2361 
2362 static inline int need_resched(void)
2363 {
2364 	return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2365 }
2366 
2367 /*
2368  * cond_resched() and cond_resched_lock(): latency reduction via
2369  * explicit rescheduling in places that are safe. The return
2370  * value indicates whether a reschedule was done in fact.
2371  * cond_resched_lock() will drop the spinlock before scheduling,
2372  * cond_resched_softirq() will enable bhs before scheduling.
2373  */
2374 extern int _cond_resched(void);
2375 
2376 #define cond_resched() ({			\
2377 	__might_sleep(__FILE__, __LINE__, 0);	\
2378 	_cond_resched();			\
2379 })
2380 
2381 extern int __cond_resched_lock(spinlock_t *lock);
2382 
2383 #ifdef CONFIG_PREEMPT
2384 #define PREEMPT_LOCK_OFFSET	PREEMPT_OFFSET
2385 #else
2386 #define PREEMPT_LOCK_OFFSET	0
2387 #endif
2388 
2389 #define cond_resched_lock(lock) ({				\
2390 	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
2391 	__cond_resched_lock(lock);				\
2392 })
2393 
2394 extern int __cond_resched_softirq(void);
2395 
2396 #define cond_resched_softirq() ({				\
2397 	__might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET);	\
2398 	__cond_resched_softirq();				\
2399 })
2400 
2401 /*
2402  * Does a critical section need to be broken due to another
2403  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2404  * but a general need for low latency)
2405  */
2406 static inline int spin_needbreak(spinlock_t *lock)
2407 {
2408 #ifdef CONFIG_PREEMPT
2409 	return spin_is_contended(lock);
2410 #else
2411 	return 0;
2412 #endif
2413 }
2414 
2415 /*
2416  * Thread group CPU time accounting.
2417  */
2418 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2419 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2420 
2421 static inline void thread_group_cputime_init(struct signal_struct *sig)
2422 {
2423 	sig->cputimer.cputime = INIT_CPUTIME;
2424 	spin_lock_init(&sig->cputimer.lock);
2425 	sig->cputimer.running = 0;
2426 }
2427 
2428 static inline void thread_group_cputime_free(struct signal_struct *sig)
2429 {
2430 }
2431 
2432 /*
2433  * Reevaluate whether the task has signals pending delivery.
2434  * Wake the task if so.
2435  * This is required every time the blocked sigset_t changes.
2436  * callers must hold sighand->siglock.
2437  */
2438 extern void recalc_sigpending_and_wake(struct task_struct *t);
2439 extern void recalc_sigpending(void);
2440 
2441 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2442 
2443 /*
2444  * Wrappers for p->thread_info->cpu access. No-op on UP.
2445  */
2446 #ifdef CONFIG_SMP
2447 
2448 static inline unsigned int task_cpu(const struct task_struct *p)
2449 {
2450 	return task_thread_info(p)->cpu;
2451 }
2452 
2453 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2454 
2455 #else
2456 
2457 static inline unsigned int task_cpu(const struct task_struct *p)
2458 {
2459 	return 0;
2460 }
2461 
2462 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2463 {
2464 }
2465 
2466 #endif /* CONFIG_SMP */
2467 
2468 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2469 
2470 #ifdef CONFIG_TRACING
2471 extern void
2472 __trace_special(void *__tr, void *__data,
2473 		unsigned long arg1, unsigned long arg2, unsigned long arg3);
2474 #else
2475 static inline void
2476 __trace_special(void *__tr, void *__data,
2477 		unsigned long arg1, unsigned long arg2, unsigned long arg3)
2478 {
2479 }
2480 #endif
2481 
2482 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2483 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2484 
2485 extern void normalize_rt_tasks(void);
2486 
2487 #ifdef CONFIG_GROUP_SCHED
2488 
2489 extern struct task_group init_task_group;
2490 #ifdef CONFIG_USER_SCHED
2491 extern struct task_group root_task_group;
2492 extern void set_tg_uid(struct user_struct *user);
2493 #endif
2494 
2495 extern struct task_group *sched_create_group(struct task_group *parent);
2496 extern void sched_destroy_group(struct task_group *tg);
2497 extern void sched_move_task(struct task_struct *tsk);
2498 #ifdef CONFIG_FAIR_GROUP_SCHED
2499 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2500 extern unsigned long sched_group_shares(struct task_group *tg);
2501 #endif
2502 #ifdef CONFIG_RT_GROUP_SCHED
2503 extern int sched_group_set_rt_runtime(struct task_group *tg,
2504 				      long rt_runtime_us);
2505 extern long sched_group_rt_runtime(struct task_group *tg);
2506 extern int sched_group_set_rt_period(struct task_group *tg,
2507 				      long rt_period_us);
2508 extern long sched_group_rt_period(struct task_group *tg);
2509 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2510 #endif
2511 #endif
2512 
2513 extern int task_can_switch_user(struct user_struct *up,
2514 					struct task_struct *tsk);
2515 
2516 #ifdef CONFIG_TASK_XACCT
2517 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2518 {
2519 	tsk->ioac.rchar += amt;
2520 }
2521 
2522 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2523 {
2524 	tsk->ioac.wchar += amt;
2525 }
2526 
2527 static inline void inc_syscr(struct task_struct *tsk)
2528 {
2529 	tsk->ioac.syscr++;
2530 }
2531 
2532 static inline void inc_syscw(struct task_struct *tsk)
2533 {
2534 	tsk->ioac.syscw++;
2535 }
2536 #else
2537 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2538 {
2539 }
2540 
2541 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2542 {
2543 }
2544 
2545 static inline void inc_syscr(struct task_struct *tsk)
2546 {
2547 }
2548 
2549 static inline void inc_syscw(struct task_struct *tsk)
2550 {
2551 }
2552 #endif
2553 
2554 #ifndef TASK_SIZE_OF
2555 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2556 #endif
2557 
2558 /*
2559  * Call the function if the target task is executing on a CPU right now:
2560  */
2561 extern void task_oncpu_function_call(struct task_struct *p,
2562 				     void (*func) (void *info), void *info);
2563 
2564 
2565 #ifdef CONFIG_MM_OWNER
2566 extern void mm_update_next_owner(struct mm_struct *mm);
2567 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2568 #else
2569 static inline void mm_update_next_owner(struct mm_struct *mm)
2570 {
2571 }
2572 
2573 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2574 {
2575 }
2576 #endif /* CONFIG_MM_OWNER */
2577 
2578 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2579 
2580 #endif /* __KERNEL__ */
2581 
2582 #endif
2583