xref: /linux-6.15/include/linux/sched.h (revision 54525552)
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3 
4 /*
5  * cloning flags:
6  */
7 #define CSIGNAL		0x000000ff	/* signal mask to be sent at exit */
8 #define CLONE_VM	0x00000100	/* set if VM shared between processes */
9 #define CLONE_FS	0x00000200	/* set if fs info shared between processes */
10 #define CLONE_FILES	0x00000400	/* set if open files shared between processes */
11 #define CLONE_SIGHAND	0x00000800	/* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE	0x00002000	/* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK	0x00004000	/* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT	0x00008000	/* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD	0x00010000	/* Same thread group? */
16 #define CLONE_NEWNS	0x00020000	/* New namespace group? */
17 #define CLONE_SYSVSEM	0x00040000	/* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS	0x00080000	/* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID	0x00100000	/* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID	0x00200000	/* clear the TID in the child */
21 #define CLONE_DETACHED		0x00400000	/* Unused, ignored */
22 #define CLONE_UNTRACED		0x00800000	/* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID	0x01000000	/* set the TID in the child */
24 /* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state)
25    and is now available for re-use. */
26 #define CLONE_NEWUTS		0x04000000	/* New utsname group? */
27 #define CLONE_NEWIPC		0x08000000	/* New ipcs */
28 #define CLONE_NEWUSER		0x10000000	/* New user namespace */
29 #define CLONE_NEWPID		0x20000000	/* New pid namespace */
30 #define CLONE_NEWNET		0x40000000	/* New network namespace */
31 #define CLONE_IO		0x80000000	/* Clone io context */
32 
33 /*
34  * Scheduling policies
35  */
36 #define SCHED_NORMAL		0
37 #define SCHED_FIFO		1
38 #define SCHED_RR		2
39 #define SCHED_BATCH		3
40 /* SCHED_ISO: reserved but not implemented yet */
41 #define SCHED_IDLE		5
42 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
43 #define SCHED_RESET_ON_FORK     0x40000000
44 
45 #ifdef __KERNEL__
46 
47 struct sched_param {
48 	int sched_priority;
49 };
50 
51 #include <asm/param.h>	/* for HZ */
52 
53 #include <linux/capability.h>
54 #include <linux/threads.h>
55 #include <linux/kernel.h>
56 #include <linux/types.h>
57 #include <linux/timex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rbtree.h>
60 #include <linux/thread_info.h>
61 #include <linux/cpumask.h>
62 #include <linux/errno.h>
63 #include <linux/nodemask.h>
64 #include <linux/mm_types.h>
65 
66 #include <asm/system.h>
67 #include <asm/page.h>
68 #include <asm/ptrace.h>
69 #include <asm/cputime.h>
70 
71 #include <linux/smp.h>
72 #include <linux/sem.h>
73 #include <linux/signal.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
84 
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/latencytop.h>
92 #include <linux/cred.h>
93 
94 #include <asm/processor.h>
95 
96 struct exec_domain;
97 struct futex_pi_state;
98 struct robust_list_head;
99 struct bio_list;
100 struct fs_struct;
101 struct perf_event_context;
102 struct blk_plug;
103 
104 /*
105  * List of flags we want to share for kernel threads,
106  * if only because they are not used by them anyway.
107  */
108 #define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
109 
110 /*
111  * These are the constant used to fake the fixed-point load-average
112  * counting. Some notes:
113  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
114  *    a load-average precision of 10 bits integer + 11 bits fractional
115  *  - if you want to count load-averages more often, you need more
116  *    precision, or rounding will get you. With 2-second counting freq,
117  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
118  *    11 bit fractions.
119  */
120 extern unsigned long avenrun[];		/* Load averages */
121 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
122 
123 #define FSHIFT		11		/* nr of bits of precision */
124 #define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
125 #define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
126 #define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
127 #define EXP_5		2014		/* 1/exp(5sec/5min) */
128 #define EXP_15		2037		/* 1/exp(5sec/15min) */
129 
130 #define CALC_LOAD(load,exp,n) \
131 	load *= exp; \
132 	load += n*(FIXED_1-exp); \
133 	load >>= FSHIFT;
134 
135 extern unsigned long total_forks;
136 extern int nr_threads;
137 DECLARE_PER_CPU(unsigned long, process_counts);
138 extern int nr_processes(void);
139 extern unsigned long nr_running(void);
140 extern unsigned long nr_uninterruptible(void);
141 extern unsigned long nr_iowait(void);
142 extern unsigned long nr_iowait_cpu(int cpu);
143 extern unsigned long this_cpu_load(void);
144 
145 
146 extern void calc_global_load(unsigned long ticks);
147 
148 extern unsigned long get_parent_ip(unsigned long addr);
149 
150 struct seq_file;
151 struct cfs_rq;
152 struct task_group;
153 #ifdef CONFIG_SCHED_DEBUG
154 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
155 extern void proc_sched_set_task(struct task_struct *p);
156 extern void
157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
158 #else
159 static inline void
160 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
161 {
162 }
163 static inline void proc_sched_set_task(struct task_struct *p)
164 {
165 }
166 static inline void
167 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
168 {
169 }
170 #endif
171 
172 /*
173  * Task state bitmask. NOTE! These bits are also
174  * encoded in fs/proc/array.c: get_task_state().
175  *
176  * We have two separate sets of flags: task->state
177  * is about runnability, while task->exit_state are
178  * about the task exiting. Confusing, but this way
179  * modifying one set can't modify the other one by
180  * mistake.
181  */
182 #define TASK_RUNNING		0
183 #define TASK_INTERRUPTIBLE	1
184 #define TASK_UNINTERRUPTIBLE	2
185 #define __TASK_STOPPED		4
186 #define __TASK_TRACED		8
187 /* in tsk->exit_state */
188 #define EXIT_ZOMBIE		16
189 #define EXIT_DEAD		32
190 /* in tsk->state again */
191 #define TASK_DEAD		64
192 #define TASK_WAKEKILL		128
193 #define TASK_WAKING		256
194 #define TASK_STATE_MAX		512
195 
196 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
197 
198 extern char ___assert_task_state[1 - 2*!!(
199 		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
200 
201 /* Convenience macros for the sake of set_task_state */
202 #define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
203 #define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
204 #define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
205 
206 /* Convenience macros for the sake of wake_up */
207 #define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
208 #define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
209 
210 /* get_task_state() */
211 #define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
212 				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
213 				 __TASK_TRACED)
214 
215 #define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
216 #define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
217 #define task_is_dead(task)	((task)->exit_state != 0)
218 #define task_is_stopped_or_traced(task)	\
219 			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
220 #define task_contributes_to_load(task)	\
221 				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
222 				 (task->flags & PF_FREEZING) == 0)
223 
224 #define __set_task_state(tsk, state_value)		\
225 	do { (tsk)->state = (state_value); } while (0)
226 #define set_task_state(tsk, state_value)		\
227 	set_mb((tsk)->state, (state_value))
228 
229 /*
230  * set_current_state() includes a barrier so that the write of current->state
231  * is correctly serialised wrt the caller's subsequent test of whether to
232  * actually sleep:
233  *
234  *	set_current_state(TASK_UNINTERRUPTIBLE);
235  *	if (do_i_need_to_sleep())
236  *		schedule();
237  *
238  * If the caller does not need such serialisation then use __set_current_state()
239  */
240 #define __set_current_state(state_value)			\
241 	do { current->state = (state_value); } while (0)
242 #define set_current_state(state_value)		\
243 	set_mb(current->state, (state_value))
244 
245 /* Task command name length */
246 #define TASK_COMM_LEN 16
247 
248 #include <linux/spinlock.h>
249 
250 /*
251  * This serializes "schedule()" and also protects
252  * the run-queue from deletions/modifications (but
253  * _adding_ to the beginning of the run-queue has
254  * a separate lock).
255  */
256 extern rwlock_t tasklist_lock;
257 extern spinlock_t mmlist_lock;
258 
259 struct task_struct;
260 
261 #ifdef CONFIG_PROVE_RCU
262 extern int lockdep_tasklist_lock_is_held(void);
263 #endif /* #ifdef CONFIG_PROVE_RCU */
264 
265 extern void sched_init(void);
266 extern void sched_init_smp(void);
267 extern asmlinkage void schedule_tail(struct task_struct *prev);
268 extern void init_idle(struct task_struct *idle, int cpu);
269 extern void init_idle_bootup_task(struct task_struct *idle);
270 
271 extern int runqueue_is_locked(int cpu);
272 
273 extern cpumask_var_t nohz_cpu_mask;
274 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
275 extern void select_nohz_load_balancer(int stop_tick);
276 extern int get_nohz_timer_target(void);
277 #else
278 static inline void select_nohz_load_balancer(int stop_tick) { }
279 #endif
280 
281 /*
282  * Only dump TASK_* tasks. (0 for all tasks)
283  */
284 extern void show_state_filter(unsigned long state_filter);
285 
286 static inline void show_state(void)
287 {
288 	show_state_filter(0);
289 }
290 
291 extern void show_regs(struct pt_regs *);
292 
293 /*
294  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
295  * task), SP is the stack pointer of the first frame that should be shown in the back
296  * trace (or NULL if the entire call-chain of the task should be shown).
297  */
298 extern void show_stack(struct task_struct *task, unsigned long *sp);
299 
300 void io_schedule(void);
301 long io_schedule_timeout(long timeout);
302 
303 extern void cpu_init (void);
304 extern void trap_init(void);
305 extern void update_process_times(int user);
306 extern void scheduler_tick(void);
307 
308 extern void sched_show_task(struct task_struct *p);
309 
310 #ifdef CONFIG_LOCKUP_DETECTOR
311 extern void touch_softlockup_watchdog(void);
312 extern void touch_softlockup_watchdog_sync(void);
313 extern void touch_all_softlockup_watchdogs(void);
314 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
315 				  void __user *buffer,
316 				  size_t *lenp, loff_t *ppos);
317 extern unsigned int  softlockup_panic;
318 void lockup_detector_init(void);
319 #else
320 static inline void touch_softlockup_watchdog(void)
321 {
322 }
323 static inline void touch_softlockup_watchdog_sync(void)
324 {
325 }
326 static inline void touch_all_softlockup_watchdogs(void)
327 {
328 }
329 static inline void lockup_detector_init(void)
330 {
331 }
332 #endif
333 
334 #ifdef CONFIG_DETECT_HUNG_TASK
335 extern unsigned int  sysctl_hung_task_panic;
336 extern unsigned long sysctl_hung_task_check_count;
337 extern unsigned long sysctl_hung_task_timeout_secs;
338 extern unsigned long sysctl_hung_task_warnings;
339 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
340 					 void __user *buffer,
341 					 size_t *lenp, loff_t *ppos);
342 #else
343 /* Avoid need for ifdefs elsewhere in the code */
344 enum { sysctl_hung_task_timeout_secs = 0 };
345 #endif
346 
347 /* Attach to any functions which should be ignored in wchan output. */
348 #define __sched		__attribute__((__section__(".sched.text")))
349 
350 /* Linker adds these: start and end of __sched functions */
351 extern char __sched_text_start[], __sched_text_end[];
352 
353 /* Is this address in the __sched functions? */
354 extern int in_sched_functions(unsigned long addr);
355 
356 #define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
357 extern signed long schedule_timeout(signed long timeout);
358 extern signed long schedule_timeout_interruptible(signed long timeout);
359 extern signed long schedule_timeout_killable(signed long timeout);
360 extern signed long schedule_timeout_uninterruptible(signed long timeout);
361 asmlinkage void schedule(void);
362 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
363 
364 struct nsproxy;
365 struct user_namespace;
366 
367 /*
368  * Default maximum number of active map areas, this limits the number of vmas
369  * per mm struct. Users can overwrite this number by sysctl but there is a
370  * problem.
371  *
372  * When a program's coredump is generated as ELF format, a section is created
373  * per a vma. In ELF, the number of sections is represented in unsigned short.
374  * This means the number of sections should be smaller than 65535 at coredump.
375  * Because the kernel adds some informative sections to a image of program at
376  * generating coredump, we need some margin. The number of extra sections is
377  * 1-3 now and depends on arch. We use "5" as safe margin, here.
378  */
379 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
380 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
381 
382 extern int sysctl_max_map_count;
383 
384 #include <linux/aio.h>
385 
386 #ifdef CONFIG_MMU
387 extern void arch_pick_mmap_layout(struct mm_struct *mm);
388 extern unsigned long
389 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
390 		       unsigned long, unsigned long);
391 extern unsigned long
392 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
393 			  unsigned long len, unsigned long pgoff,
394 			  unsigned long flags);
395 extern void arch_unmap_area(struct mm_struct *, unsigned long);
396 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
397 #else
398 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
399 #endif
400 
401 
402 extern void set_dumpable(struct mm_struct *mm, int value);
403 extern int get_dumpable(struct mm_struct *mm);
404 
405 /* mm flags */
406 /* dumpable bits */
407 #define MMF_DUMPABLE      0  /* core dump is permitted */
408 #define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
409 
410 #define MMF_DUMPABLE_BITS 2
411 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
412 
413 /* coredump filter bits */
414 #define MMF_DUMP_ANON_PRIVATE	2
415 #define MMF_DUMP_ANON_SHARED	3
416 #define MMF_DUMP_MAPPED_PRIVATE	4
417 #define MMF_DUMP_MAPPED_SHARED	5
418 #define MMF_DUMP_ELF_HEADERS	6
419 #define MMF_DUMP_HUGETLB_PRIVATE 7
420 #define MMF_DUMP_HUGETLB_SHARED  8
421 
422 #define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
423 #define MMF_DUMP_FILTER_BITS	7
424 #define MMF_DUMP_FILTER_MASK \
425 	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
426 #define MMF_DUMP_FILTER_DEFAULT \
427 	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
428 	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
429 
430 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
431 # define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
432 #else
433 # define MMF_DUMP_MASK_DEFAULT_ELF	0
434 #endif
435 					/* leave room for more dump flags */
436 #define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
437 #define MMF_VM_HUGEPAGE		17	/* set when VM_HUGEPAGE is set on vma */
438 
439 #define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
440 
441 struct sighand_struct {
442 	atomic_t		count;
443 	struct k_sigaction	action[_NSIG];
444 	spinlock_t		siglock;
445 	wait_queue_head_t	signalfd_wqh;
446 };
447 
448 struct pacct_struct {
449 	int			ac_flag;
450 	long			ac_exitcode;
451 	unsigned long		ac_mem;
452 	cputime_t		ac_utime, ac_stime;
453 	unsigned long		ac_minflt, ac_majflt;
454 };
455 
456 struct cpu_itimer {
457 	cputime_t expires;
458 	cputime_t incr;
459 	u32 error;
460 	u32 incr_error;
461 };
462 
463 /**
464  * struct task_cputime - collected CPU time counts
465  * @utime:		time spent in user mode, in &cputime_t units
466  * @stime:		time spent in kernel mode, in &cputime_t units
467  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
468  *
469  * This structure groups together three kinds of CPU time that are
470  * tracked for threads and thread groups.  Most things considering
471  * CPU time want to group these counts together and treat all three
472  * of them in parallel.
473  */
474 struct task_cputime {
475 	cputime_t utime;
476 	cputime_t stime;
477 	unsigned long long sum_exec_runtime;
478 };
479 /* Alternate field names when used to cache expirations. */
480 #define prof_exp	stime
481 #define virt_exp	utime
482 #define sched_exp	sum_exec_runtime
483 
484 #define INIT_CPUTIME	\
485 	(struct task_cputime) {					\
486 		.utime = cputime_zero,				\
487 		.stime = cputime_zero,				\
488 		.sum_exec_runtime = 0,				\
489 	}
490 
491 /*
492  * Disable preemption until the scheduler is running.
493  * Reset by start_kernel()->sched_init()->init_idle().
494  *
495  * We include PREEMPT_ACTIVE to avoid cond_resched() from working
496  * before the scheduler is active -- see should_resched().
497  */
498 #define INIT_PREEMPT_COUNT	(1 + PREEMPT_ACTIVE)
499 
500 /**
501  * struct thread_group_cputimer - thread group interval timer counts
502  * @cputime:		thread group interval timers.
503  * @running:		non-zero when there are timers running and
504  * 			@cputime receives updates.
505  * @lock:		lock for fields in this struct.
506  *
507  * This structure contains the version of task_cputime, above, that is
508  * used for thread group CPU timer calculations.
509  */
510 struct thread_group_cputimer {
511 	struct task_cputime cputime;
512 	int running;
513 	spinlock_t lock;
514 };
515 
516 struct autogroup;
517 
518 /*
519  * NOTE! "signal_struct" does not have its own
520  * locking, because a shared signal_struct always
521  * implies a shared sighand_struct, so locking
522  * sighand_struct is always a proper superset of
523  * the locking of signal_struct.
524  */
525 struct signal_struct {
526 	atomic_t		sigcnt;
527 	atomic_t		live;
528 	int			nr_threads;
529 
530 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
531 
532 	/* current thread group signal load-balancing target: */
533 	struct task_struct	*curr_target;
534 
535 	/* shared signal handling: */
536 	struct sigpending	shared_pending;
537 
538 	/* thread group exit support */
539 	int			group_exit_code;
540 	/* overloaded:
541 	 * - notify group_exit_task when ->count is equal to notify_count
542 	 * - everyone except group_exit_task is stopped during signal delivery
543 	 *   of fatal signals, group_exit_task processes the signal.
544 	 */
545 	int			notify_count;
546 	struct task_struct	*group_exit_task;
547 
548 	/* thread group stop support, overloads group_exit_code too */
549 	int			group_stop_count;
550 	unsigned int		flags; /* see SIGNAL_* flags below */
551 
552 	/* POSIX.1b Interval Timers */
553 	struct list_head posix_timers;
554 
555 	/* ITIMER_REAL timer for the process */
556 	struct hrtimer real_timer;
557 	struct pid *leader_pid;
558 	ktime_t it_real_incr;
559 
560 	/*
561 	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
562 	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
563 	 * values are defined to 0 and 1 respectively
564 	 */
565 	struct cpu_itimer it[2];
566 
567 	/*
568 	 * Thread group totals for process CPU timers.
569 	 * See thread_group_cputimer(), et al, for details.
570 	 */
571 	struct thread_group_cputimer cputimer;
572 
573 	/* Earliest-expiration cache. */
574 	struct task_cputime cputime_expires;
575 
576 	struct list_head cpu_timers[3];
577 
578 	struct pid *tty_old_pgrp;
579 
580 	/* boolean value for session group leader */
581 	int leader;
582 
583 	struct tty_struct *tty; /* NULL if no tty */
584 
585 #ifdef CONFIG_SCHED_AUTOGROUP
586 	struct autogroup *autogroup;
587 #endif
588 	/*
589 	 * Cumulative resource counters for dead threads in the group,
590 	 * and for reaped dead child processes forked by this group.
591 	 * Live threads maintain their own counters and add to these
592 	 * in __exit_signal, except for the group leader.
593 	 */
594 	cputime_t utime, stime, cutime, cstime;
595 	cputime_t gtime;
596 	cputime_t cgtime;
597 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
598 	cputime_t prev_utime, prev_stime;
599 #endif
600 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
601 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
602 	unsigned long inblock, oublock, cinblock, coublock;
603 	unsigned long maxrss, cmaxrss;
604 	struct task_io_accounting ioac;
605 
606 	/*
607 	 * Cumulative ns of schedule CPU time fo dead threads in the
608 	 * group, not including a zombie group leader, (This only differs
609 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
610 	 * other than jiffies.)
611 	 */
612 	unsigned long long sum_sched_runtime;
613 
614 	/*
615 	 * We don't bother to synchronize most readers of this at all,
616 	 * because there is no reader checking a limit that actually needs
617 	 * to get both rlim_cur and rlim_max atomically, and either one
618 	 * alone is a single word that can safely be read normally.
619 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
620 	 * protect this instead of the siglock, because they really
621 	 * have no need to disable irqs.
622 	 */
623 	struct rlimit rlim[RLIM_NLIMITS];
624 
625 #ifdef CONFIG_BSD_PROCESS_ACCT
626 	struct pacct_struct pacct;	/* per-process accounting information */
627 #endif
628 #ifdef CONFIG_TASKSTATS
629 	struct taskstats *stats;
630 #endif
631 #ifdef CONFIG_AUDIT
632 	unsigned audit_tty;
633 	struct tty_audit_buf *tty_audit_buf;
634 #endif
635 
636 	int oom_adj;		/* OOM kill score adjustment (bit shift) */
637 	int oom_score_adj;	/* OOM kill score adjustment */
638 	int oom_score_adj_min;	/* OOM kill score adjustment minimum value.
639 				 * Only settable by CAP_SYS_RESOURCE. */
640 
641 	struct mutex cred_guard_mutex;	/* guard against foreign influences on
642 					 * credential calculations
643 					 * (notably. ptrace) */
644 };
645 
646 /* Context switch must be unlocked if interrupts are to be enabled */
647 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
648 # define __ARCH_WANT_UNLOCKED_CTXSW
649 #endif
650 
651 /*
652  * Bits in flags field of signal_struct.
653  */
654 #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
655 #define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
656 #define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
657 /*
658  * Pending notifications to parent.
659  */
660 #define SIGNAL_CLD_STOPPED	0x00000010
661 #define SIGNAL_CLD_CONTINUED	0x00000020
662 #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
663 
664 #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
665 
666 /* If true, all threads except ->group_exit_task have pending SIGKILL */
667 static inline int signal_group_exit(const struct signal_struct *sig)
668 {
669 	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
670 		(sig->group_exit_task != NULL);
671 }
672 
673 /*
674  * Some day this will be a full-fledged user tracking system..
675  */
676 struct user_struct {
677 	atomic_t __count;	/* reference count */
678 	atomic_t processes;	/* How many processes does this user have? */
679 	atomic_t files;		/* How many open files does this user have? */
680 	atomic_t sigpending;	/* How many pending signals does this user have? */
681 #ifdef CONFIG_INOTIFY_USER
682 	atomic_t inotify_watches; /* How many inotify watches does this user have? */
683 	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
684 #endif
685 #ifdef CONFIG_FANOTIFY
686 	atomic_t fanotify_listeners;
687 #endif
688 #ifdef CONFIG_EPOLL
689 	atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
690 #endif
691 #ifdef CONFIG_POSIX_MQUEUE
692 	/* protected by mq_lock	*/
693 	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
694 #endif
695 	unsigned long locked_shm; /* How many pages of mlocked shm ? */
696 
697 #ifdef CONFIG_KEYS
698 	struct key *uid_keyring;	/* UID specific keyring */
699 	struct key *session_keyring;	/* UID's default session keyring */
700 #endif
701 
702 	/* Hash table maintenance information */
703 	struct hlist_node uidhash_node;
704 	uid_t uid;
705 	struct user_namespace *user_ns;
706 
707 #ifdef CONFIG_PERF_EVENTS
708 	atomic_long_t locked_vm;
709 #endif
710 };
711 
712 extern int uids_sysfs_init(void);
713 
714 extern struct user_struct *find_user(uid_t);
715 
716 extern struct user_struct root_user;
717 #define INIT_USER (&root_user)
718 
719 
720 struct backing_dev_info;
721 struct reclaim_state;
722 
723 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
724 struct sched_info {
725 	/* cumulative counters */
726 	unsigned long pcount;	      /* # of times run on this cpu */
727 	unsigned long long run_delay; /* time spent waiting on a runqueue */
728 
729 	/* timestamps */
730 	unsigned long long last_arrival,/* when we last ran on a cpu */
731 			   last_queued;	/* when we were last queued to run */
732 };
733 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
734 
735 #ifdef CONFIG_TASK_DELAY_ACCT
736 struct task_delay_info {
737 	spinlock_t	lock;
738 	unsigned int	flags;	/* Private per-task flags */
739 
740 	/* For each stat XXX, add following, aligned appropriately
741 	 *
742 	 * struct timespec XXX_start, XXX_end;
743 	 * u64 XXX_delay;
744 	 * u32 XXX_count;
745 	 *
746 	 * Atomicity of updates to XXX_delay, XXX_count protected by
747 	 * single lock above (split into XXX_lock if contention is an issue).
748 	 */
749 
750 	/*
751 	 * XXX_count is incremented on every XXX operation, the delay
752 	 * associated with the operation is added to XXX_delay.
753 	 * XXX_delay contains the accumulated delay time in nanoseconds.
754 	 */
755 	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
756 	u64 blkio_delay;	/* wait for sync block io completion */
757 	u64 swapin_delay;	/* wait for swapin block io completion */
758 	u32 blkio_count;	/* total count of the number of sync block */
759 				/* io operations performed */
760 	u32 swapin_count;	/* total count of the number of swapin block */
761 				/* io operations performed */
762 
763 	struct timespec freepages_start, freepages_end;
764 	u64 freepages_delay;	/* wait for memory reclaim */
765 	u32 freepages_count;	/* total count of memory reclaim */
766 };
767 #endif	/* CONFIG_TASK_DELAY_ACCT */
768 
769 static inline int sched_info_on(void)
770 {
771 #ifdef CONFIG_SCHEDSTATS
772 	return 1;
773 #elif defined(CONFIG_TASK_DELAY_ACCT)
774 	extern int delayacct_on;
775 	return delayacct_on;
776 #else
777 	return 0;
778 #endif
779 }
780 
781 enum cpu_idle_type {
782 	CPU_IDLE,
783 	CPU_NOT_IDLE,
784 	CPU_NEWLY_IDLE,
785 	CPU_MAX_IDLE_TYPES
786 };
787 
788 /*
789  * Increase resolution of nice-level calculations for 64-bit architectures.
790  * The extra resolution improves shares distribution and load balancing of
791  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
792  * hierarchies, especially on larger systems. This is not a user-visible change
793  * and does not change the user-interface for setting shares/weights.
794  *
795  * We increase resolution only if we have enough bits to allow this increased
796  * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
797  * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
798  * increased costs.
799  */
800 #if BITS_PER_LONG > 32
801 # define SCHED_LOAD_RESOLUTION	10
802 # define scale_load(w)		((w) << SCHED_LOAD_RESOLUTION)
803 # define scale_load_down(w)	((w) >> SCHED_LOAD_RESOLUTION)
804 #else
805 # define SCHED_LOAD_RESOLUTION	0
806 # define scale_load(w)		(w)
807 # define scale_load_down(w)	(w)
808 #endif
809 
810 #define SCHED_LOAD_SHIFT	(10 + SCHED_LOAD_RESOLUTION)
811 #define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
812 
813 /*
814  * Increase resolution of cpu_power calculations
815  */
816 #define SCHED_POWER_SHIFT	10
817 #define SCHED_POWER_SCALE	(1L << SCHED_POWER_SHIFT)
818 
819 /*
820  * sched-domains (multiprocessor balancing) declarations:
821  */
822 #ifdef CONFIG_SMP
823 #define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
824 #define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
825 #define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
826 #define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
827 #define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
828 #define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
829 #define SD_PREFER_LOCAL		0x0040  /* Prefer to keep tasks local to this domain */
830 #define SD_SHARE_CPUPOWER	0x0080	/* Domain members share cpu power */
831 #define SD_POWERSAVINGS_BALANCE	0x0100	/* Balance for power savings */
832 #define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
833 #define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
834 #define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */
835 #define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
836 
837 enum powersavings_balance_level {
838 	POWERSAVINGS_BALANCE_NONE = 0,  /* No power saving load balance */
839 	POWERSAVINGS_BALANCE_BASIC,	/* Fill one thread/core/package
840 					 * first for long running threads
841 					 */
842 	POWERSAVINGS_BALANCE_WAKEUP,	/* Also bias task wakeups to semi-idle
843 					 * cpu package for power savings
844 					 */
845 	MAX_POWERSAVINGS_BALANCE_LEVELS
846 };
847 
848 extern int sched_mc_power_savings, sched_smt_power_savings;
849 
850 static inline int sd_balance_for_mc_power(void)
851 {
852 	if (sched_smt_power_savings)
853 		return SD_POWERSAVINGS_BALANCE;
854 
855 	if (!sched_mc_power_savings)
856 		return SD_PREFER_SIBLING;
857 
858 	return 0;
859 }
860 
861 static inline int sd_balance_for_package_power(void)
862 {
863 	if (sched_mc_power_savings | sched_smt_power_savings)
864 		return SD_POWERSAVINGS_BALANCE;
865 
866 	return SD_PREFER_SIBLING;
867 }
868 
869 extern int __weak arch_sd_sibiling_asym_packing(void);
870 
871 /*
872  * Optimise SD flags for power savings:
873  * SD_BALANCE_NEWIDLE helps aggressive task consolidation and power savings.
874  * Keep default SD flags if sched_{smt,mc}_power_saving=0
875  */
876 
877 static inline int sd_power_saving_flags(void)
878 {
879 	if (sched_mc_power_savings | sched_smt_power_savings)
880 		return SD_BALANCE_NEWIDLE;
881 
882 	return 0;
883 }
884 
885 struct sched_group {
886 	struct sched_group *next;	/* Must be a circular list */
887 	atomic_t ref;
888 
889 	/*
890 	 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
891 	 * single CPU.
892 	 */
893 	unsigned int cpu_power, cpu_power_orig;
894 	unsigned int group_weight;
895 
896 	/*
897 	 * The CPUs this group covers.
898 	 *
899 	 * NOTE: this field is variable length. (Allocated dynamically
900 	 * by attaching extra space to the end of the structure,
901 	 * depending on how many CPUs the kernel has booted up with)
902 	 */
903 	unsigned long cpumask[0];
904 };
905 
906 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
907 {
908 	return to_cpumask(sg->cpumask);
909 }
910 
911 struct sched_domain_attr {
912 	int relax_domain_level;
913 };
914 
915 #define SD_ATTR_INIT	(struct sched_domain_attr) {	\
916 	.relax_domain_level = -1,			\
917 }
918 
919 extern int sched_domain_level_max;
920 
921 struct sched_domain {
922 	/* These fields must be setup */
923 	struct sched_domain *parent;	/* top domain must be null terminated */
924 	struct sched_domain *child;	/* bottom domain must be null terminated */
925 	struct sched_group *groups;	/* the balancing groups of the domain */
926 	unsigned long min_interval;	/* Minimum balance interval ms */
927 	unsigned long max_interval;	/* Maximum balance interval ms */
928 	unsigned int busy_factor;	/* less balancing by factor if busy */
929 	unsigned int imbalance_pct;	/* No balance until over watermark */
930 	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
931 	unsigned int busy_idx;
932 	unsigned int idle_idx;
933 	unsigned int newidle_idx;
934 	unsigned int wake_idx;
935 	unsigned int forkexec_idx;
936 	unsigned int smt_gain;
937 	int flags;			/* See SD_* */
938 	int level;
939 
940 	/* Runtime fields. */
941 	unsigned long last_balance;	/* init to jiffies. units in jiffies */
942 	unsigned int balance_interval;	/* initialise to 1. units in ms. */
943 	unsigned int nr_balance_failed; /* initialise to 0 */
944 
945 	u64 last_update;
946 
947 #ifdef CONFIG_SCHEDSTATS
948 	/* load_balance() stats */
949 	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
950 	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
951 	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
952 	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
953 	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
954 	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
955 	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
956 	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
957 
958 	/* Active load balancing */
959 	unsigned int alb_count;
960 	unsigned int alb_failed;
961 	unsigned int alb_pushed;
962 
963 	/* SD_BALANCE_EXEC stats */
964 	unsigned int sbe_count;
965 	unsigned int sbe_balanced;
966 	unsigned int sbe_pushed;
967 
968 	/* SD_BALANCE_FORK stats */
969 	unsigned int sbf_count;
970 	unsigned int sbf_balanced;
971 	unsigned int sbf_pushed;
972 
973 	/* try_to_wake_up() stats */
974 	unsigned int ttwu_wake_remote;
975 	unsigned int ttwu_move_affine;
976 	unsigned int ttwu_move_balance;
977 #endif
978 #ifdef CONFIG_SCHED_DEBUG
979 	char *name;
980 #endif
981 	union {
982 		void *private;		/* used during construction */
983 		struct rcu_head rcu;	/* used during destruction */
984 	};
985 
986 	unsigned int span_weight;
987 	/*
988 	 * Span of all CPUs in this domain.
989 	 *
990 	 * NOTE: this field is variable length. (Allocated dynamically
991 	 * by attaching extra space to the end of the structure,
992 	 * depending on how many CPUs the kernel has booted up with)
993 	 */
994 	unsigned long span[0];
995 };
996 
997 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
998 {
999 	return to_cpumask(sd->span);
1000 }
1001 
1002 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1003 				    struct sched_domain_attr *dattr_new);
1004 
1005 /* Allocate an array of sched domains, for partition_sched_domains(). */
1006 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1007 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1008 
1009 /* Test a flag in parent sched domain */
1010 static inline int test_sd_parent(struct sched_domain *sd, int flag)
1011 {
1012 	if (sd->parent && (sd->parent->flags & flag))
1013 		return 1;
1014 
1015 	return 0;
1016 }
1017 
1018 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1019 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1020 
1021 #else /* CONFIG_SMP */
1022 
1023 struct sched_domain_attr;
1024 
1025 static inline void
1026 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1027 			struct sched_domain_attr *dattr_new)
1028 {
1029 }
1030 #endif	/* !CONFIG_SMP */
1031 
1032 
1033 struct io_context;			/* See blkdev.h */
1034 
1035 
1036 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1037 extern void prefetch_stack(struct task_struct *t);
1038 #else
1039 static inline void prefetch_stack(struct task_struct *t) { }
1040 #endif
1041 
1042 struct audit_context;		/* See audit.c */
1043 struct mempolicy;
1044 struct pipe_inode_info;
1045 struct uts_namespace;
1046 
1047 struct rq;
1048 struct sched_domain;
1049 
1050 /*
1051  * wake flags
1052  */
1053 #define WF_SYNC		0x01		/* waker goes to sleep after wakup */
1054 #define WF_FORK		0x02		/* child wakeup after fork */
1055 
1056 #define ENQUEUE_WAKEUP		1
1057 #define ENQUEUE_HEAD		2
1058 #ifdef CONFIG_SMP
1059 #define ENQUEUE_WAKING		4	/* sched_class::task_waking was called */
1060 #else
1061 #define ENQUEUE_WAKING		0
1062 #endif
1063 
1064 #define DEQUEUE_SLEEP		1
1065 
1066 struct sched_class {
1067 	const struct sched_class *next;
1068 
1069 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1070 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1071 	void (*yield_task) (struct rq *rq);
1072 	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1073 
1074 	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1075 
1076 	struct task_struct * (*pick_next_task) (struct rq *rq);
1077 	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1078 
1079 #ifdef CONFIG_SMP
1080 	int  (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1081 
1082 	void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1083 	void (*post_schedule) (struct rq *this_rq);
1084 	void (*task_waking) (struct task_struct *task);
1085 	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1086 
1087 	void (*set_cpus_allowed)(struct task_struct *p,
1088 				 const struct cpumask *newmask);
1089 
1090 	void (*rq_online)(struct rq *rq);
1091 	void (*rq_offline)(struct rq *rq);
1092 #endif
1093 
1094 	void (*set_curr_task) (struct rq *rq);
1095 	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1096 	void (*task_fork) (struct task_struct *p);
1097 
1098 	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1099 	void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1100 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1101 			     int oldprio);
1102 
1103 	unsigned int (*get_rr_interval) (struct rq *rq,
1104 					 struct task_struct *task);
1105 
1106 #ifdef CONFIG_FAIR_GROUP_SCHED
1107 	void (*task_move_group) (struct task_struct *p, int on_rq);
1108 #endif
1109 };
1110 
1111 struct load_weight {
1112 	unsigned long weight, inv_weight;
1113 };
1114 
1115 #ifdef CONFIG_SCHEDSTATS
1116 struct sched_statistics {
1117 	u64			wait_start;
1118 	u64			wait_max;
1119 	u64			wait_count;
1120 	u64			wait_sum;
1121 	u64			iowait_count;
1122 	u64			iowait_sum;
1123 
1124 	u64			sleep_start;
1125 	u64			sleep_max;
1126 	s64			sum_sleep_runtime;
1127 
1128 	u64			block_start;
1129 	u64			block_max;
1130 	u64			exec_max;
1131 	u64			slice_max;
1132 
1133 	u64			nr_migrations_cold;
1134 	u64			nr_failed_migrations_affine;
1135 	u64			nr_failed_migrations_running;
1136 	u64			nr_failed_migrations_hot;
1137 	u64			nr_forced_migrations;
1138 
1139 	u64			nr_wakeups;
1140 	u64			nr_wakeups_sync;
1141 	u64			nr_wakeups_migrate;
1142 	u64			nr_wakeups_local;
1143 	u64			nr_wakeups_remote;
1144 	u64			nr_wakeups_affine;
1145 	u64			nr_wakeups_affine_attempts;
1146 	u64			nr_wakeups_passive;
1147 	u64			nr_wakeups_idle;
1148 };
1149 #endif
1150 
1151 struct sched_entity {
1152 	struct load_weight	load;		/* for load-balancing */
1153 	struct rb_node		run_node;
1154 	struct list_head	group_node;
1155 	unsigned int		on_rq;
1156 
1157 	u64			exec_start;
1158 	u64			sum_exec_runtime;
1159 	u64			vruntime;
1160 	u64			prev_sum_exec_runtime;
1161 
1162 	u64			nr_migrations;
1163 
1164 #ifdef CONFIG_SCHEDSTATS
1165 	struct sched_statistics statistics;
1166 #endif
1167 
1168 #ifdef CONFIG_FAIR_GROUP_SCHED
1169 	struct sched_entity	*parent;
1170 	/* rq on which this entity is (to be) queued: */
1171 	struct cfs_rq		*cfs_rq;
1172 	/* rq "owned" by this entity/group: */
1173 	struct cfs_rq		*my_q;
1174 #endif
1175 };
1176 
1177 struct sched_rt_entity {
1178 	struct list_head run_list;
1179 	unsigned long timeout;
1180 	unsigned int time_slice;
1181 	int nr_cpus_allowed;
1182 
1183 	struct sched_rt_entity *back;
1184 #ifdef CONFIG_RT_GROUP_SCHED
1185 	struct sched_rt_entity	*parent;
1186 	/* rq on which this entity is (to be) queued: */
1187 	struct rt_rq		*rt_rq;
1188 	/* rq "owned" by this entity/group: */
1189 	struct rt_rq		*my_q;
1190 #endif
1191 };
1192 
1193 struct rcu_node;
1194 
1195 enum perf_event_task_context {
1196 	perf_invalid_context = -1,
1197 	perf_hw_context = 0,
1198 	perf_sw_context,
1199 	perf_nr_task_contexts,
1200 };
1201 
1202 struct task_struct {
1203 	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1204 	void *stack;
1205 	atomic_t usage;
1206 	unsigned int flags;	/* per process flags, defined below */
1207 	unsigned int ptrace;
1208 
1209 #ifdef CONFIG_SMP
1210 	struct task_struct *wake_entry;
1211 	int on_cpu;
1212 #endif
1213 	int on_rq;
1214 
1215 	int prio, static_prio, normal_prio;
1216 	unsigned int rt_priority;
1217 	const struct sched_class *sched_class;
1218 	struct sched_entity se;
1219 	struct sched_rt_entity rt;
1220 
1221 #ifdef CONFIG_PREEMPT_NOTIFIERS
1222 	/* list of struct preempt_notifier: */
1223 	struct hlist_head preempt_notifiers;
1224 #endif
1225 
1226 	/*
1227 	 * fpu_counter contains the number of consecutive context switches
1228 	 * that the FPU is used. If this is over a threshold, the lazy fpu
1229 	 * saving becomes unlazy to save the trap. This is an unsigned char
1230 	 * so that after 256 times the counter wraps and the behavior turns
1231 	 * lazy again; this to deal with bursty apps that only use FPU for
1232 	 * a short time
1233 	 */
1234 	unsigned char fpu_counter;
1235 #ifdef CONFIG_BLK_DEV_IO_TRACE
1236 	unsigned int btrace_seq;
1237 #endif
1238 
1239 	unsigned int policy;
1240 	cpumask_t cpus_allowed;
1241 
1242 #ifdef CONFIG_PREEMPT_RCU
1243 	int rcu_read_lock_nesting;
1244 	char rcu_read_unlock_special;
1245 	struct list_head rcu_node_entry;
1246 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1247 #ifdef CONFIG_TREE_PREEMPT_RCU
1248 	struct rcu_node *rcu_blocked_node;
1249 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1250 #ifdef CONFIG_RCU_BOOST
1251 	struct rt_mutex *rcu_boost_mutex;
1252 #endif /* #ifdef CONFIG_RCU_BOOST */
1253 
1254 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1255 	struct sched_info sched_info;
1256 #endif
1257 
1258 	struct list_head tasks;
1259 #ifdef CONFIG_SMP
1260 	struct plist_node pushable_tasks;
1261 #endif
1262 
1263 	struct mm_struct *mm, *active_mm;
1264 #ifdef CONFIG_COMPAT_BRK
1265 	unsigned brk_randomized:1;
1266 #endif
1267 #if defined(SPLIT_RSS_COUNTING)
1268 	struct task_rss_stat	rss_stat;
1269 #endif
1270 /* task state */
1271 	int exit_state;
1272 	int exit_code, exit_signal;
1273 	int pdeath_signal;  /*  The signal sent when the parent dies  */
1274 	unsigned int group_stop;	/* GROUP_STOP_*, siglock protected */
1275 	/* ??? */
1276 	unsigned int personality;
1277 	unsigned did_exec:1;
1278 	unsigned in_execve:1;	/* Tell the LSMs that the process is doing an
1279 				 * execve */
1280 	unsigned in_iowait:1;
1281 
1282 
1283 	/* Revert to default priority/policy when forking */
1284 	unsigned sched_reset_on_fork:1;
1285 	unsigned sched_contributes_to_load:1;
1286 
1287 	pid_t pid;
1288 	pid_t tgid;
1289 
1290 #ifdef CONFIG_CC_STACKPROTECTOR
1291 	/* Canary value for the -fstack-protector gcc feature */
1292 	unsigned long stack_canary;
1293 #endif
1294 
1295 	/*
1296 	 * pointers to (original) parent process, youngest child, younger sibling,
1297 	 * older sibling, respectively.  (p->father can be replaced with
1298 	 * p->real_parent->pid)
1299 	 */
1300 	struct task_struct *real_parent; /* real parent process */
1301 	struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1302 	/*
1303 	 * children/sibling forms the list of my natural children
1304 	 */
1305 	struct list_head children;	/* list of my children */
1306 	struct list_head sibling;	/* linkage in my parent's children list */
1307 	struct task_struct *group_leader;	/* threadgroup leader */
1308 
1309 	/*
1310 	 * ptraced is the list of tasks this task is using ptrace on.
1311 	 * This includes both natural children and PTRACE_ATTACH targets.
1312 	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1313 	 */
1314 	struct list_head ptraced;
1315 	struct list_head ptrace_entry;
1316 
1317 	/* PID/PID hash table linkage. */
1318 	struct pid_link pids[PIDTYPE_MAX];
1319 	struct list_head thread_group;
1320 
1321 	struct completion *vfork_done;		/* for vfork() */
1322 	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1323 	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1324 
1325 	cputime_t utime, stime, utimescaled, stimescaled;
1326 	cputime_t gtime;
1327 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1328 	cputime_t prev_utime, prev_stime;
1329 #endif
1330 	unsigned long nvcsw, nivcsw; /* context switch counts */
1331 	struct timespec start_time; 		/* monotonic time */
1332 	struct timespec real_start_time;	/* boot based time */
1333 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1334 	unsigned long min_flt, maj_flt;
1335 
1336 	struct task_cputime cputime_expires;
1337 	struct list_head cpu_timers[3];
1338 
1339 /* process credentials */
1340 	const struct cred __rcu *real_cred; /* objective and real subjective task
1341 					 * credentials (COW) */
1342 	const struct cred __rcu *cred;	/* effective (overridable) subjective task
1343 					 * credentials (COW) */
1344 	struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1345 
1346 	char comm[TASK_COMM_LEN]; /* executable name excluding path
1347 				     - access with [gs]et_task_comm (which lock
1348 				       it with task_lock())
1349 				     - initialized normally by setup_new_exec */
1350 /* file system info */
1351 	int link_count, total_link_count;
1352 #ifdef CONFIG_SYSVIPC
1353 /* ipc stuff */
1354 	struct sysv_sem sysvsem;
1355 #endif
1356 #ifdef CONFIG_DETECT_HUNG_TASK
1357 /* hung task detection */
1358 	unsigned long last_switch_count;
1359 #endif
1360 /* CPU-specific state of this task */
1361 	struct thread_struct thread;
1362 /* filesystem information */
1363 	struct fs_struct *fs;
1364 /* open file information */
1365 	struct files_struct *files;
1366 /* namespaces */
1367 	struct nsproxy *nsproxy;
1368 /* signal handlers */
1369 	struct signal_struct *signal;
1370 	struct sighand_struct *sighand;
1371 
1372 	sigset_t blocked, real_blocked;
1373 	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1374 	struct sigpending pending;
1375 
1376 	unsigned long sas_ss_sp;
1377 	size_t sas_ss_size;
1378 	int (*notifier)(void *priv);
1379 	void *notifier_data;
1380 	sigset_t *notifier_mask;
1381 	struct audit_context *audit_context;
1382 #ifdef CONFIG_AUDITSYSCALL
1383 	uid_t loginuid;
1384 	unsigned int sessionid;
1385 #endif
1386 	seccomp_t seccomp;
1387 
1388 /* Thread group tracking */
1389    	u32 parent_exec_id;
1390    	u32 self_exec_id;
1391 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1392  * mempolicy */
1393 	spinlock_t alloc_lock;
1394 
1395 #ifdef CONFIG_GENERIC_HARDIRQS
1396 	/* IRQ handler threads */
1397 	struct irqaction *irqaction;
1398 #endif
1399 
1400 	/* Protection of the PI data structures: */
1401 	raw_spinlock_t pi_lock;
1402 
1403 #ifdef CONFIG_RT_MUTEXES
1404 	/* PI waiters blocked on a rt_mutex held by this task */
1405 	struct plist_head pi_waiters;
1406 	/* Deadlock detection and priority inheritance handling */
1407 	struct rt_mutex_waiter *pi_blocked_on;
1408 #endif
1409 
1410 #ifdef CONFIG_DEBUG_MUTEXES
1411 	/* mutex deadlock detection */
1412 	struct mutex_waiter *blocked_on;
1413 #endif
1414 #ifdef CONFIG_TRACE_IRQFLAGS
1415 	unsigned int irq_events;
1416 	unsigned long hardirq_enable_ip;
1417 	unsigned long hardirq_disable_ip;
1418 	unsigned int hardirq_enable_event;
1419 	unsigned int hardirq_disable_event;
1420 	int hardirqs_enabled;
1421 	int hardirq_context;
1422 	unsigned long softirq_disable_ip;
1423 	unsigned long softirq_enable_ip;
1424 	unsigned int softirq_disable_event;
1425 	unsigned int softirq_enable_event;
1426 	int softirqs_enabled;
1427 	int softirq_context;
1428 #endif
1429 #ifdef CONFIG_LOCKDEP
1430 # define MAX_LOCK_DEPTH 48UL
1431 	u64 curr_chain_key;
1432 	int lockdep_depth;
1433 	unsigned int lockdep_recursion;
1434 	struct held_lock held_locks[MAX_LOCK_DEPTH];
1435 	gfp_t lockdep_reclaim_gfp;
1436 #endif
1437 
1438 /* journalling filesystem info */
1439 	void *journal_info;
1440 
1441 /* stacked block device info */
1442 	struct bio_list *bio_list;
1443 
1444 #ifdef CONFIG_BLOCK
1445 /* stack plugging */
1446 	struct blk_plug *plug;
1447 #endif
1448 
1449 /* VM state */
1450 	struct reclaim_state *reclaim_state;
1451 
1452 	struct backing_dev_info *backing_dev_info;
1453 
1454 	struct io_context *io_context;
1455 
1456 	unsigned long ptrace_message;
1457 	siginfo_t *last_siginfo; /* For ptrace use.  */
1458 	struct task_io_accounting ioac;
1459 #if defined(CONFIG_TASK_XACCT)
1460 	u64 acct_rss_mem1;	/* accumulated rss usage */
1461 	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1462 	cputime_t acct_timexpd;	/* stime + utime since last update */
1463 #endif
1464 #ifdef CONFIG_CPUSETS
1465 	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1466 	int mems_allowed_change_disable;
1467 	int cpuset_mem_spread_rotor;
1468 	int cpuset_slab_spread_rotor;
1469 #endif
1470 #ifdef CONFIG_CGROUPS
1471 	/* Control Group info protected by css_set_lock */
1472 	struct css_set __rcu *cgroups;
1473 	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1474 	struct list_head cg_list;
1475 #endif
1476 #ifdef CONFIG_FUTEX
1477 	struct robust_list_head __user *robust_list;
1478 #ifdef CONFIG_COMPAT
1479 	struct compat_robust_list_head __user *compat_robust_list;
1480 #endif
1481 	struct list_head pi_state_list;
1482 	struct futex_pi_state *pi_state_cache;
1483 #endif
1484 #ifdef CONFIG_PERF_EVENTS
1485 	struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1486 	struct mutex perf_event_mutex;
1487 	struct list_head perf_event_list;
1488 #endif
1489 #ifdef CONFIG_NUMA
1490 	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1491 	short il_next;
1492 	short pref_node_fork;
1493 #endif
1494 	atomic_t fs_excl;	/* holding fs exclusive resources */
1495 	struct rcu_head rcu;
1496 
1497 	/*
1498 	 * cache last used pipe for splice
1499 	 */
1500 	struct pipe_inode_info *splice_pipe;
1501 #ifdef	CONFIG_TASK_DELAY_ACCT
1502 	struct task_delay_info *delays;
1503 #endif
1504 #ifdef CONFIG_FAULT_INJECTION
1505 	int make_it_fail;
1506 #endif
1507 	struct prop_local_single dirties;
1508 #ifdef CONFIG_LATENCYTOP
1509 	int latency_record_count;
1510 	struct latency_record latency_record[LT_SAVECOUNT];
1511 #endif
1512 	/*
1513 	 * time slack values; these are used to round up poll() and
1514 	 * select() etc timeout values. These are in nanoseconds.
1515 	 */
1516 	unsigned long timer_slack_ns;
1517 	unsigned long default_timer_slack_ns;
1518 
1519 	struct list_head	*scm_work_list;
1520 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1521 	/* Index of current stored address in ret_stack */
1522 	int curr_ret_stack;
1523 	/* Stack of return addresses for return function tracing */
1524 	struct ftrace_ret_stack	*ret_stack;
1525 	/* time stamp for last schedule */
1526 	unsigned long long ftrace_timestamp;
1527 	/*
1528 	 * Number of functions that haven't been traced
1529 	 * because of depth overrun.
1530 	 */
1531 	atomic_t trace_overrun;
1532 	/* Pause for the tracing */
1533 	atomic_t tracing_graph_pause;
1534 #endif
1535 #ifdef CONFIG_TRACING
1536 	/* state flags for use by tracers */
1537 	unsigned long trace;
1538 	/* bitmask of trace recursion */
1539 	unsigned long trace_recursion;
1540 #endif /* CONFIG_TRACING */
1541 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1542 	struct memcg_batch_info {
1543 		int do_batch;	/* incremented when batch uncharge started */
1544 		struct mem_cgroup *memcg; /* target memcg of uncharge */
1545 		unsigned long nr_pages;	/* uncharged usage */
1546 		unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1547 	} memcg_batch;
1548 #endif
1549 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1550 	atomic_t ptrace_bp_refcnt;
1551 #endif
1552 };
1553 
1554 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1555 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1556 
1557 /*
1558  * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1559  * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1560  * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1561  * values are inverted: lower p->prio value means higher priority.
1562  *
1563  * The MAX_USER_RT_PRIO value allows the actual maximum
1564  * RT priority to be separate from the value exported to
1565  * user-space.  This allows kernel threads to set their
1566  * priority to a value higher than any user task. Note:
1567  * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1568  */
1569 
1570 #define MAX_USER_RT_PRIO	100
1571 #define MAX_RT_PRIO		MAX_USER_RT_PRIO
1572 
1573 #define MAX_PRIO		(MAX_RT_PRIO + 40)
1574 #define DEFAULT_PRIO		(MAX_RT_PRIO + 20)
1575 
1576 static inline int rt_prio(int prio)
1577 {
1578 	if (unlikely(prio < MAX_RT_PRIO))
1579 		return 1;
1580 	return 0;
1581 }
1582 
1583 static inline int rt_task(struct task_struct *p)
1584 {
1585 	return rt_prio(p->prio);
1586 }
1587 
1588 static inline struct pid *task_pid(struct task_struct *task)
1589 {
1590 	return task->pids[PIDTYPE_PID].pid;
1591 }
1592 
1593 static inline struct pid *task_tgid(struct task_struct *task)
1594 {
1595 	return task->group_leader->pids[PIDTYPE_PID].pid;
1596 }
1597 
1598 /*
1599  * Without tasklist or rcu lock it is not safe to dereference
1600  * the result of task_pgrp/task_session even if task == current,
1601  * we can race with another thread doing sys_setsid/sys_setpgid.
1602  */
1603 static inline struct pid *task_pgrp(struct task_struct *task)
1604 {
1605 	return task->group_leader->pids[PIDTYPE_PGID].pid;
1606 }
1607 
1608 static inline struct pid *task_session(struct task_struct *task)
1609 {
1610 	return task->group_leader->pids[PIDTYPE_SID].pid;
1611 }
1612 
1613 struct pid_namespace;
1614 
1615 /*
1616  * the helpers to get the task's different pids as they are seen
1617  * from various namespaces
1618  *
1619  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1620  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1621  *                     current.
1622  * task_xid_nr_ns()  : id seen from the ns specified;
1623  *
1624  * set_task_vxid()   : assigns a virtual id to a task;
1625  *
1626  * see also pid_nr() etc in include/linux/pid.h
1627  */
1628 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1629 			struct pid_namespace *ns);
1630 
1631 static inline pid_t task_pid_nr(struct task_struct *tsk)
1632 {
1633 	return tsk->pid;
1634 }
1635 
1636 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1637 					struct pid_namespace *ns)
1638 {
1639 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1640 }
1641 
1642 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1643 {
1644 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1645 }
1646 
1647 
1648 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1649 {
1650 	return tsk->tgid;
1651 }
1652 
1653 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1654 
1655 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1656 {
1657 	return pid_vnr(task_tgid(tsk));
1658 }
1659 
1660 
1661 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1662 					struct pid_namespace *ns)
1663 {
1664 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1665 }
1666 
1667 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1668 {
1669 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1670 }
1671 
1672 
1673 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1674 					struct pid_namespace *ns)
1675 {
1676 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1677 }
1678 
1679 static inline pid_t task_session_vnr(struct task_struct *tsk)
1680 {
1681 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1682 }
1683 
1684 /* obsolete, do not use */
1685 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1686 {
1687 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1688 }
1689 
1690 /**
1691  * pid_alive - check that a task structure is not stale
1692  * @p: Task structure to be checked.
1693  *
1694  * Test if a process is not yet dead (at most zombie state)
1695  * If pid_alive fails, then pointers within the task structure
1696  * can be stale and must not be dereferenced.
1697  */
1698 static inline int pid_alive(struct task_struct *p)
1699 {
1700 	return p->pids[PIDTYPE_PID].pid != NULL;
1701 }
1702 
1703 /**
1704  * is_global_init - check if a task structure is init
1705  * @tsk: Task structure to be checked.
1706  *
1707  * Check if a task structure is the first user space task the kernel created.
1708  */
1709 static inline int is_global_init(struct task_struct *tsk)
1710 {
1711 	return tsk->pid == 1;
1712 }
1713 
1714 /*
1715  * is_container_init:
1716  * check whether in the task is init in its own pid namespace.
1717  */
1718 extern int is_container_init(struct task_struct *tsk);
1719 
1720 extern struct pid *cad_pid;
1721 
1722 extern void free_task(struct task_struct *tsk);
1723 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1724 
1725 extern void __put_task_struct(struct task_struct *t);
1726 
1727 static inline void put_task_struct(struct task_struct *t)
1728 {
1729 	if (atomic_dec_and_test(&t->usage))
1730 		__put_task_struct(t);
1731 }
1732 
1733 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1734 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1735 
1736 /*
1737  * Per process flags
1738  */
1739 #define PF_STARTING	0x00000002	/* being created */
1740 #define PF_EXITING	0x00000004	/* getting shut down */
1741 #define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1742 #define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1743 #define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */
1744 #define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1745 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1746 #define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1747 #define PF_DUMPCORE	0x00000200	/* dumped core */
1748 #define PF_SIGNALED	0x00000400	/* killed by a signal */
1749 #define PF_MEMALLOC	0x00000800	/* Allocating memory */
1750 #define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1751 #define PF_FREEZING	0x00004000	/* freeze in progress. do not account to load */
1752 #define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1753 #define PF_FROZEN	0x00010000	/* frozen for system suspend */
1754 #define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1755 #define PF_KSWAPD	0x00040000	/* I am kswapd */
1756 #define PF_OOM_ORIGIN	0x00080000	/* Allocating much memory to others */
1757 #define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1758 #define PF_KTHREAD	0x00200000	/* I am a kernel thread */
1759 #define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1760 #define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1761 #define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
1762 #define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
1763 #define PF_THREAD_BOUND	0x04000000	/* Thread bound to specific cpu */
1764 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1765 #define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
1766 #define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1767 #define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezable */
1768 #define PF_FREEZER_NOSIG 0x80000000	/* Freezer won't send signals to it */
1769 
1770 /*
1771  * Only the _current_ task can read/write to tsk->flags, but other
1772  * tasks can access tsk->flags in readonly mode for example
1773  * with tsk_used_math (like during threaded core dumping).
1774  * There is however an exception to this rule during ptrace
1775  * or during fork: the ptracer task is allowed to write to the
1776  * child->flags of its traced child (same goes for fork, the parent
1777  * can write to the child->flags), because we're guaranteed the
1778  * child is not running and in turn not changing child->flags
1779  * at the same time the parent does it.
1780  */
1781 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1782 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1783 #define clear_used_math() clear_stopped_child_used_math(current)
1784 #define set_used_math() set_stopped_child_used_math(current)
1785 #define conditional_stopped_child_used_math(condition, child) \
1786 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1787 #define conditional_used_math(condition) \
1788 	conditional_stopped_child_used_math(condition, current)
1789 #define copy_to_stopped_child_used_math(child) \
1790 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1791 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1792 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1793 #define used_math() tsk_used_math(current)
1794 
1795 /*
1796  * task->group_stop flags
1797  */
1798 #define GROUP_STOP_SIGMASK	0xffff    /* signr of the last group stop */
1799 #define GROUP_STOP_PENDING	(1 << 16) /* task should stop for group stop */
1800 #define GROUP_STOP_CONSUME	(1 << 17) /* consume group stop count */
1801 #define GROUP_STOP_TRAPPING	(1 << 18) /* switching from STOPPED to TRACED */
1802 #define GROUP_STOP_DEQUEUED	(1 << 19) /* stop signal dequeued */
1803 
1804 extern void task_clear_group_stop_pending(struct task_struct *task);
1805 
1806 #ifdef CONFIG_PREEMPT_RCU
1807 
1808 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1809 #define RCU_READ_UNLOCK_BOOSTED (1 << 1) /* boosted while in RCU read-side. */
1810 #define RCU_READ_UNLOCK_NEED_QS (1 << 2) /* RCU core needs CPU response. */
1811 
1812 static inline void rcu_copy_process(struct task_struct *p)
1813 {
1814 	p->rcu_read_lock_nesting = 0;
1815 	p->rcu_read_unlock_special = 0;
1816 #ifdef CONFIG_TREE_PREEMPT_RCU
1817 	p->rcu_blocked_node = NULL;
1818 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1819 #ifdef CONFIG_RCU_BOOST
1820 	p->rcu_boost_mutex = NULL;
1821 #endif /* #ifdef CONFIG_RCU_BOOST */
1822 	INIT_LIST_HEAD(&p->rcu_node_entry);
1823 }
1824 
1825 #else
1826 
1827 static inline void rcu_copy_process(struct task_struct *p)
1828 {
1829 }
1830 
1831 #endif
1832 
1833 #ifdef CONFIG_SMP
1834 extern int set_cpus_allowed_ptr(struct task_struct *p,
1835 				const struct cpumask *new_mask);
1836 #else
1837 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1838 				       const struct cpumask *new_mask)
1839 {
1840 	if (!cpumask_test_cpu(0, new_mask))
1841 		return -EINVAL;
1842 	return 0;
1843 }
1844 #endif
1845 
1846 #ifndef CONFIG_CPUMASK_OFFSTACK
1847 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1848 {
1849 	return set_cpus_allowed_ptr(p, &new_mask);
1850 }
1851 #endif
1852 
1853 /*
1854  * Do not use outside of architecture code which knows its limitations.
1855  *
1856  * sched_clock() has no promise of monotonicity or bounded drift between
1857  * CPUs, use (which you should not) requires disabling IRQs.
1858  *
1859  * Please use one of the three interfaces below.
1860  */
1861 extern unsigned long long notrace sched_clock(void);
1862 /*
1863  * See the comment in kernel/sched_clock.c
1864  */
1865 extern u64 cpu_clock(int cpu);
1866 extern u64 local_clock(void);
1867 extern u64 sched_clock_cpu(int cpu);
1868 
1869 
1870 extern void sched_clock_init(void);
1871 
1872 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1873 static inline void sched_clock_tick(void)
1874 {
1875 }
1876 
1877 static inline void sched_clock_idle_sleep_event(void)
1878 {
1879 }
1880 
1881 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1882 {
1883 }
1884 #else
1885 /*
1886  * Architectures can set this to 1 if they have specified
1887  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1888  * but then during bootup it turns out that sched_clock()
1889  * is reliable after all:
1890  */
1891 extern int sched_clock_stable;
1892 
1893 extern void sched_clock_tick(void);
1894 extern void sched_clock_idle_sleep_event(void);
1895 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1896 #endif
1897 
1898 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1899 /*
1900  * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1901  * The reason for this explicit opt-in is not to have perf penalty with
1902  * slow sched_clocks.
1903  */
1904 extern void enable_sched_clock_irqtime(void);
1905 extern void disable_sched_clock_irqtime(void);
1906 #else
1907 static inline void enable_sched_clock_irqtime(void) {}
1908 static inline void disable_sched_clock_irqtime(void) {}
1909 #endif
1910 
1911 extern unsigned long long
1912 task_sched_runtime(struct task_struct *task);
1913 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1914 
1915 /* sched_exec is called by processes performing an exec */
1916 #ifdef CONFIG_SMP
1917 extern void sched_exec(void);
1918 #else
1919 #define sched_exec()   {}
1920 #endif
1921 
1922 extern void sched_clock_idle_sleep_event(void);
1923 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1924 
1925 #ifdef CONFIG_HOTPLUG_CPU
1926 extern void idle_task_exit(void);
1927 #else
1928 static inline void idle_task_exit(void) {}
1929 #endif
1930 
1931 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1932 extern void wake_up_idle_cpu(int cpu);
1933 #else
1934 static inline void wake_up_idle_cpu(int cpu) { }
1935 #endif
1936 
1937 extern unsigned int sysctl_sched_latency;
1938 extern unsigned int sysctl_sched_min_granularity;
1939 extern unsigned int sysctl_sched_wakeup_granularity;
1940 extern unsigned int sysctl_sched_child_runs_first;
1941 
1942 enum sched_tunable_scaling {
1943 	SCHED_TUNABLESCALING_NONE,
1944 	SCHED_TUNABLESCALING_LOG,
1945 	SCHED_TUNABLESCALING_LINEAR,
1946 	SCHED_TUNABLESCALING_END,
1947 };
1948 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1949 
1950 #ifdef CONFIG_SCHED_DEBUG
1951 extern unsigned int sysctl_sched_migration_cost;
1952 extern unsigned int sysctl_sched_nr_migrate;
1953 extern unsigned int sysctl_sched_time_avg;
1954 extern unsigned int sysctl_timer_migration;
1955 extern unsigned int sysctl_sched_shares_window;
1956 
1957 int sched_proc_update_handler(struct ctl_table *table, int write,
1958 		void __user *buffer, size_t *length,
1959 		loff_t *ppos);
1960 #endif
1961 #ifdef CONFIG_SCHED_DEBUG
1962 static inline unsigned int get_sysctl_timer_migration(void)
1963 {
1964 	return sysctl_timer_migration;
1965 }
1966 #else
1967 static inline unsigned int get_sysctl_timer_migration(void)
1968 {
1969 	return 1;
1970 }
1971 #endif
1972 extern unsigned int sysctl_sched_rt_period;
1973 extern int sysctl_sched_rt_runtime;
1974 
1975 int sched_rt_handler(struct ctl_table *table, int write,
1976 		void __user *buffer, size_t *lenp,
1977 		loff_t *ppos);
1978 
1979 #ifdef CONFIG_SCHED_AUTOGROUP
1980 extern unsigned int sysctl_sched_autogroup_enabled;
1981 
1982 extern void sched_autogroup_create_attach(struct task_struct *p);
1983 extern void sched_autogroup_detach(struct task_struct *p);
1984 extern void sched_autogroup_fork(struct signal_struct *sig);
1985 extern void sched_autogroup_exit(struct signal_struct *sig);
1986 #ifdef CONFIG_PROC_FS
1987 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1988 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice);
1989 #endif
1990 #else
1991 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1992 static inline void sched_autogroup_detach(struct task_struct *p) { }
1993 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1994 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1995 #endif
1996 
1997 #ifdef CONFIG_RT_MUTEXES
1998 extern int rt_mutex_getprio(struct task_struct *p);
1999 extern void rt_mutex_setprio(struct task_struct *p, int prio);
2000 extern void rt_mutex_adjust_pi(struct task_struct *p);
2001 #else
2002 static inline int rt_mutex_getprio(struct task_struct *p)
2003 {
2004 	return p->normal_prio;
2005 }
2006 # define rt_mutex_adjust_pi(p)		do { } while (0)
2007 #endif
2008 
2009 extern bool yield_to(struct task_struct *p, bool preempt);
2010 extern void set_user_nice(struct task_struct *p, long nice);
2011 extern int task_prio(const struct task_struct *p);
2012 extern int task_nice(const struct task_struct *p);
2013 extern int can_nice(const struct task_struct *p, const int nice);
2014 extern int task_curr(const struct task_struct *p);
2015 extern int idle_cpu(int cpu);
2016 extern int sched_setscheduler(struct task_struct *, int,
2017 			      const struct sched_param *);
2018 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2019 				      const struct sched_param *);
2020 extern struct task_struct *idle_task(int cpu);
2021 extern struct task_struct *curr_task(int cpu);
2022 extern void set_curr_task(int cpu, struct task_struct *p);
2023 
2024 void yield(void);
2025 
2026 /*
2027  * The default (Linux) execution domain.
2028  */
2029 extern struct exec_domain	default_exec_domain;
2030 
2031 union thread_union {
2032 	struct thread_info thread_info;
2033 	unsigned long stack[THREAD_SIZE/sizeof(long)];
2034 };
2035 
2036 #ifndef __HAVE_ARCH_KSTACK_END
2037 static inline int kstack_end(void *addr)
2038 {
2039 	/* Reliable end of stack detection:
2040 	 * Some APM bios versions misalign the stack
2041 	 */
2042 	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2043 }
2044 #endif
2045 
2046 extern union thread_union init_thread_union;
2047 extern struct task_struct init_task;
2048 
2049 extern struct   mm_struct init_mm;
2050 
2051 extern struct pid_namespace init_pid_ns;
2052 
2053 /*
2054  * find a task by one of its numerical ids
2055  *
2056  * find_task_by_pid_ns():
2057  *      finds a task by its pid in the specified namespace
2058  * find_task_by_vpid():
2059  *      finds a task by its virtual pid
2060  *
2061  * see also find_vpid() etc in include/linux/pid.h
2062  */
2063 
2064 extern struct task_struct *find_task_by_vpid(pid_t nr);
2065 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2066 		struct pid_namespace *ns);
2067 
2068 extern void __set_special_pids(struct pid *pid);
2069 
2070 /* per-UID process charging. */
2071 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2072 static inline struct user_struct *get_uid(struct user_struct *u)
2073 {
2074 	atomic_inc(&u->__count);
2075 	return u;
2076 }
2077 extern void free_uid(struct user_struct *);
2078 extern void release_uids(struct user_namespace *ns);
2079 
2080 #include <asm/current.h>
2081 
2082 extern void xtime_update(unsigned long ticks);
2083 
2084 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2085 extern int wake_up_process(struct task_struct *tsk);
2086 extern void wake_up_new_task(struct task_struct *tsk);
2087 #ifdef CONFIG_SMP
2088  extern void kick_process(struct task_struct *tsk);
2089 #else
2090  static inline void kick_process(struct task_struct *tsk) { }
2091 #endif
2092 extern void sched_fork(struct task_struct *p);
2093 extern void sched_dead(struct task_struct *p);
2094 
2095 extern void proc_caches_init(void);
2096 extern void flush_signals(struct task_struct *);
2097 extern void __flush_signals(struct task_struct *);
2098 extern void ignore_signals(struct task_struct *);
2099 extern void flush_signal_handlers(struct task_struct *, int force_default);
2100 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2101 
2102 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2103 {
2104 	unsigned long flags;
2105 	int ret;
2106 
2107 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
2108 	ret = dequeue_signal(tsk, mask, info);
2109 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2110 
2111 	return ret;
2112 }
2113 
2114 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2115 			      sigset_t *mask);
2116 extern void unblock_all_signals(void);
2117 extern void release_task(struct task_struct * p);
2118 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2119 extern int force_sigsegv(int, struct task_struct *);
2120 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2121 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2122 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2123 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2124 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2125 extern int kill_pid(struct pid *pid, int sig, int priv);
2126 extern int kill_proc_info(int, struct siginfo *, pid_t);
2127 extern int do_notify_parent(struct task_struct *, int);
2128 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2129 extern void force_sig(int, struct task_struct *);
2130 extern int send_sig(int, struct task_struct *, int);
2131 extern int zap_other_threads(struct task_struct *p);
2132 extern struct sigqueue *sigqueue_alloc(void);
2133 extern void sigqueue_free(struct sigqueue *);
2134 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2135 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2136 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2137 
2138 static inline int kill_cad_pid(int sig, int priv)
2139 {
2140 	return kill_pid(cad_pid, sig, priv);
2141 }
2142 
2143 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2144 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2145 #define SEND_SIG_PRIV	((struct siginfo *) 1)
2146 #define SEND_SIG_FORCED	((struct siginfo *) 2)
2147 
2148 /*
2149  * True if we are on the alternate signal stack.
2150  */
2151 static inline int on_sig_stack(unsigned long sp)
2152 {
2153 #ifdef CONFIG_STACK_GROWSUP
2154 	return sp >= current->sas_ss_sp &&
2155 		sp - current->sas_ss_sp < current->sas_ss_size;
2156 #else
2157 	return sp > current->sas_ss_sp &&
2158 		sp - current->sas_ss_sp <= current->sas_ss_size;
2159 #endif
2160 }
2161 
2162 static inline int sas_ss_flags(unsigned long sp)
2163 {
2164 	return (current->sas_ss_size == 0 ? SS_DISABLE
2165 		: on_sig_stack(sp) ? SS_ONSTACK : 0);
2166 }
2167 
2168 /*
2169  * Routines for handling mm_structs
2170  */
2171 extern struct mm_struct * mm_alloc(void);
2172 
2173 /* mmdrop drops the mm and the page tables */
2174 extern void __mmdrop(struct mm_struct *);
2175 static inline void mmdrop(struct mm_struct * mm)
2176 {
2177 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2178 		__mmdrop(mm);
2179 }
2180 
2181 /* mmput gets rid of the mappings and all user-space */
2182 extern void mmput(struct mm_struct *);
2183 /* Grab a reference to a task's mm, if it is not already going away */
2184 extern struct mm_struct *get_task_mm(struct task_struct *task);
2185 /* Remove the current tasks stale references to the old mm_struct */
2186 extern void mm_release(struct task_struct *, struct mm_struct *);
2187 /* Allocate a new mm structure and copy contents from tsk->mm */
2188 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2189 
2190 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2191 			struct task_struct *, struct pt_regs *);
2192 extern void flush_thread(void);
2193 extern void exit_thread(void);
2194 
2195 extern void exit_files(struct task_struct *);
2196 extern void __cleanup_sighand(struct sighand_struct *);
2197 
2198 extern void exit_itimers(struct signal_struct *);
2199 extern void flush_itimer_signals(void);
2200 
2201 extern NORET_TYPE void do_group_exit(int);
2202 
2203 extern void daemonize(const char *, ...);
2204 extern int allow_signal(int);
2205 extern int disallow_signal(int);
2206 
2207 extern int do_execve(const char *,
2208 		     const char __user * const __user *,
2209 		     const char __user * const __user *, struct pt_regs *);
2210 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2211 struct task_struct *fork_idle(int);
2212 
2213 extern void set_task_comm(struct task_struct *tsk, char *from);
2214 extern char *get_task_comm(char *to, struct task_struct *tsk);
2215 
2216 #ifdef CONFIG_SMP
2217 void scheduler_ipi(void);
2218 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2219 #else
2220 static inline void scheduler_ipi(void) { }
2221 static inline unsigned long wait_task_inactive(struct task_struct *p,
2222 					       long match_state)
2223 {
2224 	return 1;
2225 }
2226 #endif
2227 
2228 #define next_task(p) \
2229 	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2230 
2231 #define for_each_process(p) \
2232 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2233 
2234 extern bool current_is_single_threaded(void);
2235 
2236 /*
2237  * Careful: do_each_thread/while_each_thread is a double loop so
2238  *          'break' will not work as expected - use goto instead.
2239  */
2240 #define do_each_thread(g, t) \
2241 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2242 
2243 #define while_each_thread(g, t) \
2244 	while ((t = next_thread(t)) != g)
2245 
2246 static inline int get_nr_threads(struct task_struct *tsk)
2247 {
2248 	return tsk->signal->nr_threads;
2249 }
2250 
2251 /* de_thread depends on thread_group_leader not being a pid based check */
2252 #define thread_group_leader(p)	(p == p->group_leader)
2253 
2254 /* Do to the insanities of de_thread it is possible for a process
2255  * to have the pid of the thread group leader without actually being
2256  * the thread group leader.  For iteration through the pids in proc
2257  * all we care about is that we have a task with the appropriate
2258  * pid, we don't actually care if we have the right task.
2259  */
2260 static inline int has_group_leader_pid(struct task_struct *p)
2261 {
2262 	return p->pid == p->tgid;
2263 }
2264 
2265 static inline
2266 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2267 {
2268 	return p1->tgid == p2->tgid;
2269 }
2270 
2271 static inline struct task_struct *next_thread(const struct task_struct *p)
2272 {
2273 	return list_entry_rcu(p->thread_group.next,
2274 			      struct task_struct, thread_group);
2275 }
2276 
2277 static inline int thread_group_empty(struct task_struct *p)
2278 {
2279 	return list_empty(&p->thread_group);
2280 }
2281 
2282 #define delay_group_leader(p) \
2283 		(thread_group_leader(p) && !thread_group_empty(p))
2284 
2285 static inline int task_detached(struct task_struct *p)
2286 {
2287 	return p->exit_signal == -1;
2288 }
2289 
2290 /*
2291  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2292  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2293  * pins the final release of task.io_context.  Also protects ->cpuset and
2294  * ->cgroup.subsys[].
2295  *
2296  * Nests both inside and outside of read_lock(&tasklist_lock).
2297  * It must not be nested with write_lock_irq(&tasklist_lock),
2298  * neither inside nor outside.
2299  */
2300 static inline void task_lock(struct task_struct *p)
2301 {
2302 	spin_lock(&p->alloc_lock);
2303 }
2304 
2305 static inline void task_unlock(struct task_struct *p)
2306 {
2307 	spin_unlock(&p->alloc_lock);
2308 }
2309 
2310 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2311 							unsigned long *flags);
2312 
2313 #define lock_task_sighand(tsk, flags)					\
2314 ({	struct sighand_struct *__ss;					\
2315 	__cond_lock(&(tsk)->sighand->siglock,				\
2316 		    (__ss = __lock_task_sighand(tsk, flags)));		\
2317 	__ss;								\
2318 })									\
2319 
2320 static inline void unlock_task_sighand(struct task_struct *tsk,
2321 						unsigned long *flags)
2322 {
2323 	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2324 }
2325 
2326 #ifndef __HAVE_THREAD_FUNCTIONS
2327 
2328 #define task_thread_info(task)	((struct thread_info *)(task)->stack)
2329 #define task_stack_page(task)	((task)->stack)
2330 
2331 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2332 {
2333 	*task_thread_info(p) = *task_thread_info(org);
2334 	task_thread_info(p)->task = p;
2335 }
2336 
2337 static inline unsigned long *end_of_stack(struct task_struct *p)
2338 {
2339 	return (unsigned long *)(task_thread_info(p) + 1);
2340 }
2341 
2342 #endif
2343 
2344 static inline int object_is_on_stack(void *obj)
2345 {
2346 	void *stack = task_stack_page(current);
2347 
2348 	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2349 }
2350 
2351 extern void thread_info_cache_init(void);
2352 
2353 #ifdef CONFIG_DEBUG_STACK_USAGE
2354 static inline unsigned long stack_not_used(struct task_struct *p)
2355 {
2356 	unsigned long *n = end_of_stack(p);
2357 
2358 	do { 	/* Skip over canary */
2359 		n++;
2360 	} while (!*n);
2361 
2362 	return (unsigned long)n - (unsigned long)end_of_stack(p);
2363 }
2364 #endif
2365 
2366 /* set thread flags in other task's structures
2367  * - see asm/thread_info.h for TIF_xxxx flags available
2368  */
2369 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2370 {
2371 	set_ti_thread_flag(task_thread_info(tsk), flag);
2372 }
2373 
2374 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2375 {
2376 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2377 }
2378 
2379 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2380 {
2381 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2382 }
2383 
2384 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2385 {
2386 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2387 }
2388 
2389 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2390 {
2391 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2392 }
2393 
2394 static inline void set_tsk_need_resched(struct task_struct *tsk)
2395 {
2396 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2397 }
2398 
2399 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2400 {
2401 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2402 }
2403 
2404 static inline int test_tsk_need_resched(struct task_struct *tsk)
2405 {
2406 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2407 }
2408 
2409 static inline int restart_syscall(void)
2410 {
2411 	set_tsk_thread_flag(current, TIF_SIGPENDING);
2412 	return -ERESTARTNOINTR;
2413 }
2414 
2415 static inline int signal_pending(struct task_struct *p)
2416 {
2417 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2418 }
2419 
2420 static inline int __fatal_signal_pending(struct task_struct *p)
2421 {
2422 	return unlikely(sigismember(&p->pending.signal, SIGKILL));
2423 }
2424 
2425 static inline int fatal_signal_pending(struct task_struct *p)
2426 {
2427 	return signal_pending(p) && __fatal_signal_pending(p);
2428 }
2429 
2430 static inline int signal_pending_state(long state, struct task_struct *p)
2431 {
2432 	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2433 		return 0;
2434 	if (!signal_pending(p))
2435 		return 0;
2436 
2437 	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2438 }
2439 
2440 static inline int need_resched(void)
2441 {
2442 	return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2443 }
2444 
2445 /*
2446  * cond_resched() and cond_resched_lock(): latency reduction via
2447  * explicit rescheduling in places that are safe. The return
2448  * value indicates whether a reschedule was done in fact.
2449  * cond_resched_lock() will drop the spinlock before scheduling,
2450  * cond_resched_softirq() will enable bhs before scheduling.
2451  */
2452 extern int _cond_resched(void);
2453 
2454 #define cond_resched() ({			\
2455 	__might_sleep(__FILE__, __LINE__, 0);	\
2456 	_cond_resched();			\
2457 })
2458 
2459 extern int __cond_resched_lock(spinlock_t *lock);
2460 
2461 #ifdef CONFIG_PREEMPT
2462 #define PREEMPT_LOCK_OFFSET	PREEMPT_OFFSET
2463 #else
2464 #define PREEMPT_LOCK_OFFSET	0
2465 #endif
2466 
2467 #define cond_resched_lock(lock) ({				\
2468 	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
2469 	__cond_resched_lock(lock);				\
2470 })
2471 
2472 extern int __cond_resched_softirq(void);
2473 
2474 #define cond_resched_softirq() ({					\
2475 	__might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
2476 	__cond_resched_softirq();					\
2477 })
2478 
2479 /*
2480  * Does a critical section need to be broken due to another
2481  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2482  * but a general need for low latency)
2483  */
2484 static inline int spin_needbreak(spinlock_t *lock)
2485 {
2486 #ifdef CONFIG_PREEMPT
2487 	return spin_is_contended(lock);
2488 #else
2489 	return 0;
2490 #endif
2491 }
2492 
2493 /*
2494  * Thread group CPU time accounting.
2495  */
2496 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2497 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2498 
2499 static inline void thread_group_cputime_init(struct signal_struct *sig)
2500 {
2501 	spin_lock_init(&sig->cputimer.lock);
2502 }
2503 
2504 /*
2505  * Reevaluate whether the task has signals pending delivery.
2506  * Wake the task if so.
2507  * This is required every time the blocked sigset_t changes.
2508  * callers must hold sighand->siglock.
2509  */
2510 extern void recalc_sigpending_and_wake(struct task_struct *t);
2511 extern void recalc_sigpending(void);
2512 
2513 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2514 
2515 /*
2516  * Wrappers for p->thread_info->cpu access. No-op on UP.
2517  */
2518 #ifdef CONFIG_SMP
2519 
2520 static inline unsigned int task_cpu(const struct task_struct *p)
2521 {
2522 	return task_thread_info(p)->cpu;
2523 }
2524 
2525 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2526 
2527 #else
2528 
2529 static inline unsigned int task_cpu(const struct task_struct *p)
2530 {
2531 	return 0;
2532 }
2533 
2534 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2535 {
2536 }
2537 
2538 #endif /* CONFIG_SMP */
2539 
2540 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2541 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2542 
2543 extern void normalize_rt_tasks(void);
2544 
2545 #ifdef CONFIG_CGROUP_SCHED
2546 
2547 extern struct task_group root_task_group;
2548 
2549 extern struct task_group *sched_create_group(struct task_group *parent);
2550 extern void sched_destroy_group(struct task_group *tg);
2551 extern void sched_move_task(struct task_struct *tsk);
2552 #ifdef CONFIG_FAIR_GROUP_SCHED
2553 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2554 extern unsigned long sched_group_shares(struct task_group *tg);
2555 #endif
2556 #ifdef CONFIG_RT_GROUP_SCHED
2557 extern int sched_group_set_rt_runtime(struct task_group *tg,
2558 				      long rt_runtime_us);
2559 extern long sched_group_rt_runtime(struct task_group *tg);
2560 extern int sched_group_set_rt_period(struct task_group *tg,
2561 				      long rt_period_us);
2562 extern long sched_group_rt_period(struct task_group *tg);
2563 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2564 #endif
2565 #endif
2566 
2567 extern int task_can_switch_user(struct user_struct *up,
2568 					struct task_struct *tsk);
2569 
2570 #ifdef CONFIG_TASK_XACCT
2571 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2572 {
2573 	tsk->ioac.rchar += amt;
2574 }
2575 
2576 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2577 {
2578 	tsk->ioac.wchar += amt;
2579 }
2580 
2581 static inline void inc_syscr(struct task_struct *tsk)
2582 {
2583 	tsk->ioac.syscr++;
2584 }
2585 
2586 static inline void inc_syscw(struct task_struct *tsk)
2587 {
2588 	tsk->ioac.syscw++;
2589 }
2590 #else
2591 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2592 {
2593 }
2594 
2595 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2596 {
2597 }
2598 
2599 static inline void inc_syscr(struct task_struct *tsk)
2600 {
2601 }
2602 
2603 static inline void inc_syscw(struct task_struct *tsk)
2604 {
2605 }
2606 #endif
2607 
2608 #ifndef TASK_SIZE_OF
2609 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2610 #endif
2611 
2612 #ifdef CONFIG_MM_OWNER
2613 extern void mm_update_next_owner(struct mm_struct *mm);
2614 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2615 #else
2616 static inline void mm_update_next_owner(struct mm_struct *mm)
2617 {
2618 }
2619 
2620 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2621 {
2622 }
2623 #endif /* CONFIG_MM_OWNER */
2624 
2625 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2626 		unsigned int limit)
2627 {
2628 	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2629 }
2630 
2631 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2632 		unsigned int limit)
2633 {
2634 	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2635 }
2636 
2637 static inline unsigned long rlimit(unsigned int limit)
2638 {
2639 	return task_rlimit(current, limit);
2640 }
2641 
2642 static inline unsigned long rlimit_max(unsigned int limit)
2643 {
2644 	return task_rlimit_max(current, limit);
2645 }
2646 
2647 #endif /* __KERNEL__ */
2648 
2649 #endif
2650