1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 /* 5 * cloning flags: 6 */ 7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15 #define CLONE_THREAD 0x00010000 /* Same thread group? */ 16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24 /* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state) 25 and is now available for re-use. */ 26 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 27 #define CLONE_NEWIPC 0x08000000 /* New ipcs */ 28 #define CLONE_NEWUSER 0x10000000 /* New user namespace */ 29 #define CLONE_NEWPID 0x20000000 /* New pid namespace */ 30 #define CLONE_NEWNET 0x40000000 /* New network namespace */ 31 #define CLONE_IO 0x80000000 /* Clone io context */ 32 33 /* 34 * Scheduling policies 35 */ 36 #define SCHED_NORMAL 0 37 #define SCHED_FIFO 1 38 #define SCHED_RR 2 39 #define SCHED_BATCH 3 40 /* SCHED_ISO: reserved but not implemented yet */ 41 #define SCHED_IDLE 5 42 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */ 43 #define SCHED_RESET_ON_FORK 0x40000000 44 45 #ifdef __KERNEL__ 46 47 struct sched_param { 48 int sched_priority; 49 }; 50 51 #include <asm/param.h> /* for HZ */ 52 53 #include <linux/capability.h> 54 #include <linux/threads.h> 55 #include <linux/kernel.h> 56 #include <linux/types.h> 57 #include <linux/timex.h> 58 #include <linux/jiffies.h> 59 #include <linux/rbtree.h> 60 #include <linux/thread_info.h> 61 #include <linux/cpumask.h> 62 #include <linux/errno.h> 63 #include <linux/nodemask.h> 64 #include <linux/mm_types.h> 65 66 #include <asm/system.h> 67 #include <asm/page.h> 68 #include <asm/ptrace.h> 69 #include <asm/cputime.h> 70 71 #include <linux/smp.h> 72 #include <linux/sem.h> 73 #include <linux/signal.h> 74 #include <linux/compiler.h> 75 #include <linux/completion.h> 76 #include <linux/pid.h> 77 #include <linux/percpu.h> 78 #include <linux/topology.h> 79 #include <linux/proportions.h> 80 #include <linux/seccomp.h> 81 #include <linux/rcupdate.h> 82 #include <linux/rculist.h> 83 #include <linux/rtmutex.h> 84 85 #include <linux/time.h> 86 #include <linux/param.h> 87 #include <linux/resource.h> 88 #include <linux/timer.h> 89 #include <linux/hrtimer.h> 90 #include <linux/task_io_accounting.h> 91 #include <linux/latencytop.h> 92 #include <linux/cred.h> 93 94 #include <asm/processor.h> 95 96 struct exec_domain; 97 struct futex_pi_state; 98 struct robust_list_head; 99 struct bio_list; 100 struct fs_struct; 101 struct perf_event_context; 102 struct blk_plug; 103 104 /* 105 * List of flags we want to share for kernel threads, 106 * if only because they are not used by them anyway. 107 */ 108 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 109 110 /* 111 * These are the constant used to fake the fixed-point load-average 112 * counting. Some notes: 113 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 114 * a load-average precision of 10 bits integer + 11 bits fractional 115 * - if you want to count load-averages more often, you need more 116 * precision, or rounding will get you. With 2-second counting freq, 117 * the EXP_n values would be 1981, 2034 and 2043 if still using only 118 * 11 bit fractions. 119 */ 120 extern unsigned long avenrun[]; /* Load averages */ 121 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 122 123 #define FSHIFT 11 /* nr of bits of precision */ 124 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 125 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 126 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 127 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 128 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 129 130 #define CALC_LOAD(load,exp,n) \ 131 load *= exp; \ 132 load += n*(FIXED_1-exp); \ 133 load >>= FSHIFT; 134 135 extern unsigned long total_forks; 136 extern int nr_threads; 137 DECLARE_PER_CPU(unsigned long, process_counts); 138 extern int nr_processes(void); 139 extern unsigned long nr_running(void); 140 extern unsigned long nr_uninterruptible(void); 141 extern unsigned long nr_iowait(void); 142 extern unsigned long nr_iowait_cpu(int cpu); 143 extern unsigned long this_cpu_load(void); 144 145 146 extern void calc_global_load(unsigned long ticks); 147 148 extern unsigned long get_parent_ip(unsigned long addr); 149 150 struct seq_file; 151 struct cfs_rq; 152 struct task_group; 153 #ifdef CONFIG_SCHED_DEBUG 154 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 155 extern void proc_sched_set_task(struct task_struct *p); 156 extern void 157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 158 #else 159 static inline void 160 proc_sched_show_task(struct task_struct *p, struct seq_file *m) 161 { 162 } 163 static inline void proc_sched_set_task(struct task_struct *p) 164 { 165 } 166 static inline void 167 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 168 { 169 } 170 #endif 171 172 /* 173 * Task state bitmask. NOTE! These bits are also 174 * encoded in fs/proc/array.c: get_task_state(). 175 * 176 * We have two separate sets of flags: task->state 177 * is about runnability, while task->exit_state are 178 * about the task exiting. Confusing, but this way 179 * modifying one set can't modify the other one by 180 * mistake. 181 */ 182 #define TASK_RUNNING 0 183 #define TASK_INTERRUPTIBLE 1 184 #define TASK_UNINTERRUPTIBLE 2 185 #define __TASK_STOPPED 4 186 #define __TASK_TRACED 8 187 /* in tsk->exit_state */ 188 #define EXIT_ZOMBIE 16 189 #define EXIT_DEAD 32 190 /* in tsk->state again */ 191 #define TASK_DEAD 64 192 #define TASK_WAKEKILL 128 193 #define TASK_WAKING 256 194 #define TASK_STATE_MAX 512 195 196 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW" 197 198 extern char ___assert_task_state[1 - 2*!!( 199 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 200 201 /* Convenience macros for the sake of set_task_state */ 202 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 203 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 204 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 205 206 /* Convenience macros for the sake of wake_up */ 207 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 208 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 209 210 /* get_task_state() */ 211 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 212 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 213 __TASK_TRACED) 214 215 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 216 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 217 #define task_is_dead(task) ((task)->exit_state != 0) 218 #define task_is_stopped_or_traced(task) \ 219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 220 #define task_contributes_to_load(task) \ 221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 222 (task->flags & PF_FREEZING) == 0) 223 224 #define __set_task_state(tsk, state_value) \ 225 do { (tsk)->state = (state_value); } while (0) 226 #define set_task_state(tsk, state_value) \ 227 set_mb((tsk)->state, (state_value)) 228 229 /* 230 * set_current_state() includes a barrier so that the write of current->state 231 * is correctly serialised wrt the caller's subsequent test of whether to 232 * actually sleep: 233 * 234 * set_current_state(TASK_UNINTERRUPTIBLE); 235 * if (do_i_need_to_sleep()) 236 * schedule(); 237 * 238 * If the caller does not need such serialisation then use __set_current_state() 239 */ 240 #define __set_current_state(state_value) \ 241 do { current->state = (state_value); } while (0) 242 #define set_current_state(state_value) \ 243 set_mb(current->state, (state_value)) 244 245 /* Task command name length */ 246 #define TASK_COMM_LEN 16 247 248 #include <linux/spinlock.h> 249 250 /* 251 * This serializes "schedule()" and also protects 252 * the run-queue from deletions/modifications (but 253 * _adding_ to the beginning of the run-queue has 254 * a separate lock). 255 */ 256 extern rwlock_t tasklist_lock; 257 extern spinlock_t mmlist_lock; 258 259 struct task_struct; 260 261 #ifdef CONFIG_PROVE_RCU 262 extern int lockdep_tasklist_lock_is_held(void); 263 #endif /* #ifdef CONFIG_PROVE_RCU */ 264 265 extern void sched_init(void); 266 extern void sched_init_smp(void); 267 extern asmlinkage void schedule_tail(struct task_struct *prev); 268 extern void init_idle(struct task_struct *idle, int cpu); 269 extern void init_idle_bootup_task(struct task_struct *idle); 270 271 extern int runqueue_is_locked(int cpu); 272 273 extern cpumask_var_t nohz_cpu_mask; 274 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 275 extern void select_nohz_load_balancer(int stop_tick); 276 extern int get_nohz_timer_target(void); 277 #else 278 static inline void select_nohz_load_balancer(int stop_tick) { } 279 #endif 280 281 /* 282 * Only dump TASK_* tasks. (0 for all tasks) 283 */ 284 extern void show_state_filter(unsigned long state_filter); 285 286 static inline void show_state(void) 287 { 288 show_state_filter(0); 289 } 290 291 extern void show_regs(struct pt_regs *); 292 293 /* 294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 295 * task), SP is the stack pointer of the first frame that should be shown in the back 296 * trace (or NULL if the entire call-chain of the task should be shown). 297 */ 298 extern void show_stack(struct task_struct *task, unsigned long *sp); 299 300 void io_schedule(void); 301 long io_schedule_timeout(long timeout); 302 303 extern void cpu_init (void); 304 extern void trap_init(void); 305 extern void update_process_times(int user); 306 extern void scheduler_tick(void); 307 308 extern void sched_show_task(struct task_struct *p); 309 310 #ifdef CONFIG_LOCKUP_DETECTOR 311 extern void touch_softlockup_watchdog(void); 312 extern void touch_softlockup_watchdog_sync(void); 313 extern void touch_all_softlockup_watchdogs(void); 314 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 315 void __user *buffer, 316 size_t *lenp, loff_t *ppos); 317 extern unsigned int softlockup_panic; 318 void lockup_detector_init(void); 319 #else 320 static inline void touch_softlockup_watchdog(void) 321 { 322 } 323 static inline void touch_softlockup_watchdog_sync(void) 324 { 325 } 326 static inline void touch_all_softlockup_watchdogs(void) 327 { 328 } 329 static inline void lockup_detector_init(void) 330 { 331 } 332 #endif 333 334 #ifdef CONFIG_DETECT_HUNG_TASK 335 extern unsigned int sysctl_hung_task_panic; 336 extern unsigned long sysctl_hung_task_check_count; 337 extern unsigned long sysctl_hung_task_timeout_secs; 338 extern unsigned long sysctl_hung_task_warnings; 339 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, 340 void __user *buffer, 341 size_t *lenp, loff_t *ppos); 342 #else 343 /* Avoid need for ifdefs elsewhere in the code */ 344 enum { sysctl_hung_task_timeout_secs = 0 }; 345 #endif 346 347 /* Attach to any functions which should be ignored in wchan output. */ 348 #define __sched __attribute__((__section__(".sched.text"))) 349 350 /* Linker adds these: start and end of __sched functions */ 351 extern char __sched_text_start[], __sched_text_end[]; 352 353 /* Is this address in the __sched functions? */ 354 extern int in_sched_functions(unsigned long addr); 355 356 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 357 extern signed long schedule_timeout(signed long timeout); 358 extern signed long schedule_timeout_interruptible(signed long timeout); 359 extern signed long schedule_timeout_killable(signed long timeout); 360 extern signed long schedule_timeout_uninterruptible(signed long timeout); 361 asmlinkage void schedule(void); 362 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner); 363 364 struct nsproxy; 365 struct user_namespace; 366 367 /* 368 * Default maximum number of active map areas, this limits the number of vmas 369 * per mm struct. Users can overwrite this number by sysctl but there is a 370 * problem. 371 * 372 * When a program's coredump is generated as ELF format, a section is created 373 * per a vma. In ELF, the number of sections is represented in unsigned short. 374 * This means the number of sections should be smaller than 65535 at coredump. 375 * Because the kernel adds some informative sections to a image of program at 376 * generating coredump, we need some margin. The number of extra sections is 377 * 1-3 now and depends on arch. We use "5" as safe margin, here. 378 */ 379 #define MAPCOUNT_ELF_CORE_MARGIN (5) 380 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 381 382 extern int sysctl_max_map_count; 383 384 #include <linux/aio.h> 385 386 #ifdef CONFIG_MMU 387 extern void arch_pick_mmap_layout(struct mm_struct *mm); 388 extern unsigned long 389 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 390 unsigned long, unsigned long); 391 extern unsigned long 392 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 393 unsigned long len, unsigned long pgoff, 394 unsigned long flags); 395 extern void arch_unmap_area(struct mm_struct *, unsigned long); 396 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 397 #else 398 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 399 #endif 400 401 402 extern void set_dumpable(struct mm_struct *mm, int value); 403 extern int get_dumpable(struct mm_struct *mm); 404 405 /* mm flags */ 406 /* dumpable bits */ 407 #define MMF_DUMPABLE 0 /* core dump is permitted */ 408 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 409 410 #define MMF_DUMPABLE_BITS 2 411 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 412 413 /* coredump filter bits */ 414 #define MMF_DUMP_ANON_PRIVATE 2 415 #define MMF_DUMP_ANON_SHARED 3 416 #define MMF_DUMP_MAPPED_PRIVATE 4 417 #define MMF_DUMP_MAPPED_SHARED 5 418 #define MMF_DUMP_ELF_HEADERS 6 419 #define MMF_DUMP_HUGETLB_PRIVATE 7 420 #define MMF_DUMP_HUGETLB_SHARED 8 421 422 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 423 #define MMF_DUMP_FILTER_BITS 7 424 #define MMF_DUMP_FILTER_MASK \ 425 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 426 #define MMF_DUMP_FILTER_DEFAULT \ 427 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 428 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 429 430 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 431 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 432 #else 433 # define MMF_DUMP_MASK_DEFAULT_ELF 0 434 #endif 435 /* leave room for more dump flags */ 436 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 437 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 438 439 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 440 441 struct sighand_struct { 442 atomic_t count; 443 struct k_sigaction action[_NSIG]; 444 spinlock_t siglock; 445 wait_queue_head_t signalfd_wqh; 446 }; 447 448 struct pacct_struct { 449 int ac_flag; 450 long ac_exitcode; 451 unsigned long ac_mem; 452 cputime_t ac_utime, ac_stime; 453 unsigned long ac_minflt, ac_majflt; 454 }; 455 456 struct cpu_itimer { 457 cputime_t expires; 458 cputime_t incr; 459 u32 error; 460 u32 incr_error; 461 }; 462 463 /** 464 * struct task_cputime - collected CPU time counts 465 * @utime: time spent in user mode, in &cputime_t units 466 * @stime: time spent in kernel mode, in &cputime_t units 467 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 468 * 469 * This structure groups together three kinds of CPU time that are 470 * tracked for threads and thread groups. Most things considering 471 * CPU time want to group these counts together and treat all three 472 * of them in parallel. 473 */ 474 struct task_cputime { 475 cputime_t utime; 476 cputime_t stime; 477 unsigned long long sum_exec_runtime; 478 }; 479 /* Alternate field names when used to cache expirations. */ 480 #define prof_exp stime 481 #define virt_exp utime 482 #define sched_exp sum_exec_runtime 483 484 #define INIT_CPUTIME \ 485 (struct task_cputime) { \ 486 .utime = cputime_zero, \ 487 .stime = cputime_zero, \ 488 .sum_exec_runtime = 0, \ 489 } 490 491 /* 492 * Disable preemption until the scheduler is running. 493 * Reset by start_kernel()->sched_init()->init_idle(). 494 * 495 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 496 * before the scheduler is active -- see should_resched(). 497 */ 498 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 499 500 /** 501 * struct thread_group_cputimer - thread group interval timer counts 502 * @cputime: thread group interval timers. 503 * @running: non-zero when there are timers running and 504 * @cputime receives updates. 505 * @lock: lock for fields in this struct. 506 * 507 * This structure contains the version of task_cputime, above, that is 508 * used for thread group CPU timer calculations. 509 */ 510 struct thread_group_cputimer { 511 struct task_cputime cputime; 512 int running; 513 spinlock_t lock; 514 }; 515 516 struct autogroup; 517 518 /* 519 * NOTE! "signal_struct" does not have its own 520 * locking, because a shared signal_struct always 521 * implies a shared sighand_struct, so locking 522 * sighand_struct is always a proper superset of 523 * the locking of signal_struct. 524 */ 525 struct signal_struct { 526 atomic_t sigcnt; 527 atomic_t live; 528 int nr_threads; 529 530 wait_queue_head_t wait_chldexit; /* for wait4() */ 531 532 /* current thread group signal load-balancing target: */ 533 struct task_struct *curr_target; 534 535 /* shared signal handling: */ 536 struct sigpending shared_pending; 537 538 /* thread group exit support */ 539 int group_exit_code; 540 /* overloaded: 541 * - notify group_exit_task when ->count is equal to notify_count 542 * - everyone except group_exit_task is stopped during signal delivery 543 * of fatal signals, group_exit_task processes the signal. 544 */ 545 int notify_count; 546 struct task_struct *group_exit_task; 547 548 /* thread group stop support, overloads group_exit_code too */ 549 int group_stop_count; 550 unsigned int flags; /* see SIGNAL_* flags below */ 551 552 /* POSIX.1b Interval Timers */ 553 struct list_head posix_timers; 554 555 /* ITIMER_REAL timer for the process */ 556 struct hrtimer real_timer; 557 struct pid *leader_pid; 558 ktime_t it_real_incr; 559 560 /* 561 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 562 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 563 * values are defined to 0 and 1 respectively 564 */ 565 struct cpu_itimer it[2]; 566 567 /* 568 * Thread group totals for process CPU timers. 569 * See thread_group_cputimer(), et al, for details. 570 */ 571 struct thread_group_cputimer cputimer; 572 573 /* Earliest-expiration cache. */ 574 struct task_cputime cputime_expires; 575 576 struct list_head cpu_timers[3]; 577 578 struct pid *tty_old_pgrp; 579 580 /* boolean value for session group leader */ 581 int leader; 582 583 struct tty_struct *tty; /* NULL if no tty */ 584 585 #ifdef CONFIG_SCHED_AUTOGROUP 586 struct autogroup *autogroup; 587 #endif 588 /* 589 * Cumulative resource counters for dead threads in the group, 590 * and for reaped dead child processes forked by this group. 591 * Live threads maintain their own counters and add to these 592 * in __exit_signal, except for the group leader. 593 */ 594 cputime_t utime, stime, cutime, cstime; 595 cputime_t gtime; 596 cputime_t cgtime; 597 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 598 cputime_t prev_utime, prev_stime; 599 #endif 600 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 601 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 602 unsigned long inblock, oublock, cinblock, coublock; 603 unsigned long maxrss, cmaxrss; 604 struct task_io_accounting ioac; 605 606 /* 607 * Cumulative ns of schedule CPU time fo dead threads in the 608 * group, not including a zombie group leader, (This only differs 609 * from jiffies_to_ns(utime + stime) if sched_clock uses something 610 * other than jiffies.) 611 */ 612 unsigned long long sum_sched_runtime; 613 614 /* 615 * We don't bother to synchronize most readers of this at all, 616 * because there is no reader checking a limit that actually needs 617 * to get both rlim_cur and rlim_max atomically, and either one 618 * alone is a single word that can safely be read normally. 619 * getrlimit/setrlimit use task_lock(current->group_leader) to 620 * protect this instead of the siglock, because they really 621 * have no need to disable irqs. 622 */ 623 struct rlimit rlim[RLIM_NLIMITS]; 624 625 #ifdef CONFIG_BSD_PROCESS_ACCT 626 struct pacct_struct pacct; /* per-process accounting information */ 627 #endif 628 #ifdef CONFIG_TASKSTATS 629 struct taskstats *stats; 630 #endif 631 #ifdef CONFIG_AUDIT 632 unsigned audit_tty; 633 struct tty_audit_buf *tty_audit_buf; 634 #endif 635 636 int oom_adj; /* OOM kill score adjustment (bit shift) */ 637 int oom_score_adj; /* OOM kill score adjustment */ 638 int oom_score_adj_min; /* OOM kill score adjustment minimum value. 639 * Only settable by CAP_SYS_RESOURCE. */ 640 641 struct mutex cred_guard_mutex; /* guard against foreign influences on 642 * credential calculations 643 * (notably. ptrace) */ 644 }; 645 646 /* Context switch must be unlocked if interrupts are to be enabled */ 647 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 648 # define __ARCH_WANT_UNLOCKED_CTXSW 649 #endif 650 651 /* 652 * Bits in flags field of signal_struct. 653 */ 654 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 655 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 656 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 657 /* 658 * Pending notifications to parent. 659 */ 660 #define SIGNAL_CLD_STOPPED 0x00000010 661 #define SIGNAL_CLD_CONTINUED 0x00000020 662 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 663 664 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 665 666 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 667 static inline int signal_group_exit(const struct signal_struct *sig) 668 { 669 return (sig->flags & SIGNAL_GROUP_EXIT) || 670 (sig->group_exit_task != NULL); 671 } 672 673 /* 674 * Some day this will be a full-fledged user tracking system.. 675 */ 676 struct user_struct { 677 atomic_t __count; /* reference count */ 678 atomic_t processes; /* How many processes does this user have? */ 679 atomic_t files; /* How many open files does this user have? */ 680 atomic_t sigpending; /* How many pending signals does this user have? */ 681 #ifdef CONFIG_INOTIFY_USER 682 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 683 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 684 #endif 685 #ifdef CONFIG_FANOTIFY 686 atomic_t fanotify_listeners; 687 #endif 688 #ifdef CONFIG_EPOLL 689 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 690 #endif 691 #ifdef CONFIG_POSIX_MQUEUE 692 /* protected by mq_lock */ 693 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 694 #endif 695 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 696 697 #ifdef CONFIG_KEYS 698 struct key *uid_keyring; /* UID specific keyring */ 699 struct key *session_keyring; /* UID's default session keyring */ 700 #endif 701 702 /* Hash table maintenance information */ 703 struct hlist_node uidhash_node; 704 uid_t uid; 705 struct user_namespace *user_ns; 706 707 #ifdef CONFIG_PERF_EVENTS 708 atomic_long_t locked_vm; 709 #endif 710 }; 711 712 extern int uids_sysfs_init(void); 713 714 extern struct user_struct *find_user(uid_t); 715 716 extern struct user_struct root_user; 717 #define INIT_USER (&root_user) 718 719 720 struct backing_dev_info; 721 struct reclaim_state; 722 723 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 724 struct sched_info { 725 /* cumulative counters */ 726 unsigned long pcount; /* # of times run on this cpu */ 727 unsigned long long run_delay; /* time spent waiting on a runqueue */ 728 729 /* timestamps */ 730 unsigned long long last_arrival,/* when we last ran on a cpu */ 731 last_queued; /* when we were last queued to run */ 732 }; 733 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 734 735 #ifdef CONFIG_TASK_DELAY_ACCT 736 struct task_delay_info { 737 spinlock_t lock; 738 unsigned int flags; /* Private per-task flags */ 739 740 /* For each stat XXX, add following, aligned appropriately 741 * 742 * struct timespec XXX_start, XXX_end; 743 * u64 XXX_delay; 744 * u32 XXX_count; 745 * 746 * Atomicity of updates to XXX_delay, XXX_count protected by 747 * single lock above (split into XXX_lock if contention is an issue). 748 */ 749 750 /* 751 * XXX_count is incremented on every XXX operation, the delay 752 * associated with the operation is added to XXX_delay. 753 * XXX_delay contains the accumulated delay time in nanoseconds. 754 */ 755 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 756 u64 blkio_delay; /* wait for sync block io completion */ 757 u64 swapin_delay; /* wait for swapin block io completion */ 758 u32 blkio_count; /* total count of the number of sync block */ 759 /* io operations performed */ 760 u32 swapin_count; /* total count of the number of swapin block */ 761 /* io operations performed */ 762 763 struct timespec freepages_start, freepages_end; 764 u64 freepages_delay; /* wait for memory reclaim */ 765 u32 freepages_count; /* total count of memory reclaim */ 766 }; 767 #endif /* CONFIG_TASK_DELAY_ACCT */ 768 769 static inline int sched_info_on(void) 770 { 771 #ifdef CONFIG_SCHEDSTATS 772 return 1; 773 #elif defined(CONFIG_TASK_DELAY_ACCT) 774 extern int delayacct_on; 775 return delayacct_on; 776 #else 777 return 0; 778 #endif 779 } 780 781 enum cpu_idle_type { 782 CPU_IDLE, 783 CPU_NOT_IDLE, 784 CPU_NEWLY_IDLE, 785 CPU_MAX_IDLE_TYPES 786 }; 787 788 /* 789 * Increase resolution of nice-level calculations for 64-bit architectures. 790 * The extra resolution improves shares distribution and load balancing of 791 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 792 * hierarchies, especially on larger systems. This is not a user-visible change 793 * and does not change the user-interface for setting shares/weights. 794 * 795 * We increase resolution only if we have enough bits to allow this increased 796 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution 797 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the 798 * increased costs. 799 */ 800 #if BITS_PER_LONG > 32 801 # define SCHED_LOAD_RESOLUTION 10 802 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION) 803 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION) 804 #else 805 # define SCHED_LOAD_RESOLUTION 0 806 # define scale_load(w) (w) 807 # define scale_load_down(w) (w) 808 #endif 809 810 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION) 811 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 812 813 /* 814 * Increase resolution of cpu_power calculations 815 */ 816 #define SCHED_POWER_SHIFT 10 817 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT) 818 819 /* 820 * sched-domains (multiprocessor balancing) declarations: 821 */ 822 #ifdef CONFIG_SMP 823 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 824 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 825 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 826 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 827 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 828 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 829 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */ 830 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 831 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */ 832 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 833 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 834 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 835 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 836 837 enum powersavings_balance_level { 838 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */ 839 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package 840 * first for long running threads 841 */ 842 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle 843 * cpu package for power savings 844 */ 845 MAX_POWERSAVINGS_BALANCE_LEVELS 846 }; 847 848 extern int sched_mc_power_savings, sched_smt_power_savings; 849 850 static inline int sd_balance_for_mc_power(void) 851 { 852 if (sched_smt_power_savings) 853 return SD_POWERSAVINGS_BALANCE; 854 855 if (!sched_mc_power_savings) 856 return SD_PREFER_SIBLING; 857 858 return 0; 859 } 860 861 static inline int sd_balance_for_package_power(void) 862 { 863 if (sched_mc_power_savings | sched_smt_power_savings) 864 return SD_POWERSAVINGS_BALANCE; 865 866 return SD_PREFER_SIBLING; 867 } 868 869 extern int __weak arch_sd_sibiling_asym_packing(void); 870 871 /* 872 * Optimise SD flags for power savings: 873 * SD_BALANCE_NEWIDLE helps aggressive task consolidation and power savings. 874 * Keep default SD flags if sched_{smt,mc}_power_saving=0 875 */ 876 877 static inline int sd_power_saving_flags(void) 878 { 879 if (sched_mc_power_savings | sched_smt_power_savings) 880 return SD_BALANCE_NEWIDLE; 881 882 return 0; 883 } 884 885 struct sched_group { 886 struct sched_group *next; /* Must be a circular list */ 887 atomic_t ref; 888 889 /* 890 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 891 * single CPU. 892 */ 893 unsigned int cpu_power, cpu_power_orig; 894 unsigned int group_weight; 895 896 /* 897 * The CPUs this group covers. 898 * 899 * NOTE: this field is variable length. (Allocated dynamically 900 * by attaching extra space to the end of the structure, 901 * depending on how many CPUs the kernel has booted up with) 902 */ 903 unsigned long cpumask[0]; 904 }; 905 906 static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 907 { 908 return to_cpumask(sg->cpumask); 909 } 910 911 struct sched_domain_attr { 912 int relax_domain_level; 913 }; 914 915 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 916 .relax_domain_level = -1, \ 917 } 918 919 extern int sched_domain_level_max; 920 921 struct sched_domain { 922 /* These fields must be setup */ 923 struct sched_domain *parent; /* top domain must be null terminated */ 924 struct sched_domain *child; /* bottom domain must be null terminated */ 925 struct sched_group *groups; /* the balancing groups of the domain */ 926 unsigned long min_interval; /* Minimum balance interval ms */ 927 unsigned long max_interval; /* Maximum balance interval ms */ 928 unsigned int busy_factor; /* less balancing by factor if busy */ 929 unsigned int imbalance_pct; /* No balance until over watermark */ 930 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 931 unsigned int busy_idx; 932 unsigned int idle_idx; 933 unsigned int newidle_idx; 934 unsigned int wake_idx; 935 unsigned int forkexec_idx; 936 unsigned int smt_gain; 937 int flags; /* See SD_* */ 938 int level; 939 940 /* Runtime fields. */ 941 unsigned long last_balance; /* init to jiffies. units in jiffies */ 942 unsigned int balance_interval; /* initialise to 1. units in ms. */ 943 unsigned int nr_balance_failed; /* initialise to 0 */ 944 945 u64 last_update; 946 947 #ifdef CONFIG_SCHEDSTATS 948 /* load_balance() stats */ 949 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 950 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 951 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 952 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 953 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 954 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 955 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 956 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 957 958 /* Active load balancing */ 959 unsigned int alb_count; 960 unsigned int alb_failed; 961 unsigned int alb_pushed; 962 963 /* SD_BALANCE_EXEC stats */ 964 unsigned int sbe_count; 965 unsigned int sbe_balanced; 966 unsigned int sbe_pushed; 967 968 /* SD_BALANCE_FORK stats */ 969 unsigned int sbf_count; 970 unsigned int sbf_balanced; 971 unsigned int sbf_pushed; 972 973 /* try_to_wake_up() stats */ 974 unsigned int ttwu_wake_remote; 975 unsigned int ttwu_move_affine; 976 unsigned int ttwu_move_balance; 977 #endif 978 #ifdef CONFIG_SCHED_DEBUG 979 char *name; 980 #endif 981 union { 982 void *private; /* used during construction */ 983 struct rcu_head rcu; /* used during destruction */ 984 }; 985 986 unsigned int span_weight; 987 /* 988 * Span of all CPUs in this domain. 989 * 990 * NOTE: this field is variable length. (Allocated dynamically 991 * by attaching extra space to the end of the structure, 992 * depending on how many CPUs the kernel has booted up with) 993 */ 994 unsigned long span[0]; 995 }; 996 997 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 998 { 999 return to_cpumask(sd->span); 1000 } 1001 1002 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1003 struct sched_domain_attr *dattr_new); 1004 1005 /* Allocate an array of sched domains, for partition_sched_domains(). */ 1006 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1007 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1008 1009 /* Test a flag in parent sched domain */ 1010 static inline int test_sd_parent(struct sched_domain *sd, int flag) 1011 { 1012 if (sd->parent && (sd->parent->flags & flag)) 1013 return 1; 1014 1015 return 0; 1016 } 1017 1018 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu); 1019 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu); 1020 1021 #else /* CONFIG_SMP */ 1022 1023 struct sched_domain_attr; 1024 1025 static inline void 1026 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1027 struct sched_domain_attr *dattr_new) 1028 { 1029 } 1030 #endif /* !CONFIG_SMP */ 1031 1032 1033 struct io_context; /* See blkdev.h */ 1034 1035 1036 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1037 extern void prefetch_stack(struct task_struct *t); 1038 #else 1039 static inline void prefetch_stack(struct task_struct *t) { } 1040 #endif 1041 1042 struct audit_context; /* See audit.c */ 1043 struct mempolicy; 1044 struct pipe_inode_info; 1045 struct uts_namespace; 1046 1047 struct rq; 1048 struct sched_domain; 1049 1050 /* 1051 * wake flags 1052 */ 1053 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */ 1054 #define WF_FORK 0x02 /* child wakeup after fork */ 1055 1056 #define ENQUEUE_WAKEUP 1 1057 #define ENQUEUE_HEAD 2 1058 #ifdef CONFIG_SMP 1059 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */ 1060 #else 1061 #define ENQUEUE_WAKING 0 1062 #endif 1063 1064 #define DEQUEUE_SLEEP 1 1065 1066 struct sched_class { 1067 const struct sched_class *next; 1068 1069 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1070 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1071 void (*yield_task) (struct rq *rq); 1072 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); 1073 1074 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1075 1076 struct task_struct * (*pick_next_task) (struct rq *rq); 1077 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1078 1079 #ifdef CONFIG_SMP 1080 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags); 1081 1082 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 1083 void (*post_schedule) (struct rq *this_rq); 1084 void (*task_waking) (struct task_struct *task); 1085 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1086 1087 void (*set_cpus_allowed)(struct task_struct *p, 1088 const struct cpumask *newmask); 1089 1090 void (*rq_online)(struct rq *rq); 1091 void (*rq_offline)(struct rq *rq); 1092 #endif 1093 1094 void (*set_curr_task) (struct rq *rq); 1095 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1096 void (*task_fork) (struct task_struct *p); 1097 1098 void (*switched_from) (struct rq *this_rq, struct task_struct *task); 1099 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1100 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1101 int oldprio); 1102 1103 unsigned int (*get_rr_interval) (struct rq *rq, 1104 struct task_struct *task); 1105 1106 #ifdef CONFIG_FAIR_GROUP_SCHED 1107 void (*task_move_group) (struct task_struct *p, int on_rq); 1108 #endif 1109 }; 1110 1111 struct load_weight { 1112 unsigned long weight, inv_weight; 1113 }; 1114 1115 #ifdef CONFIG_SCHEDSTATS 1116 struct sched_statistics { 1117 u64 wait_start; 1118 u64 wait_max; 1119 u64 wait_count; 1120 u64 wait_sum; 1121 u64 iowait_count; 1122 u64 iowait_sum; 1123 1124 u64 sleep_start; 1125 u64 sleep_max; 1126 s64 sum_sleep_runtime; 1127 1128 u64 block_start; 1129 u64 block_max; 1130 u64 exec_max; 1131 u64 slice_max; 1132 1133 u64 nr_migrations_cold; 1134 u64 nr_failed_migrations_affine; 1135 u64 nr_failed_migrations_running; 1136 u64 nr_failed_migrations_hot; 1137 u64 nr_forced_migrations; 1138 1139 u64 nr_wakeups; 1140 u64 nr_wakeups_sync; 1141 u64 nr_wakeups_migrate; 1142 u64 nr_wakeups_local; 1143 u64 nr_wakeups_remote; 1144 u64 nr_wakeups_affine; 1145 u64 nr_wakeups_affine_attempts; 1146 u64 nr_wakeups_passive; 1147 u64 nr_wakeups_idle; 1148 }; 1149 #endif 1150 1151 struct sched_entity { 1152 struct load_weight load; /* for load-balancing */ 1153 struct rb_node run_node; 1154 struct list_head group_node; 1155 unsigned int on_rq; 1156 1157 u64 exec_start; 1158 u64 sum_exec_runtime; 1159 u64 vruntime; 1160 u64 prev_sum_exec_runtime; 1161 1162 u64 nr_migrations; 1163 1164 #ifdef CONFIG_SCHEDSTATS 1165 struct sched_statistics statistics; 1166 #endif 1167 1168 #ifdef CONFIG_FAIR_GROUP_SCHED 1169 struct sched_entity *parent; 1170 /* rq on which this entity is (to be) queued: */ 1171 struct cfs_rq *cfs_rq; 1172 /* rq "owned" by this entity/group: */ 1173 struct cfs_rq *my_q; 1174 #endif 1175 }; 1176 1177 struct sched_rt_entity { 1178 struct list_head run_list; 1179 unsigned long timeout; 1180 unsigned int time_slice; 1181 int nr_cpus_allowed; 1182 1183 struct sched_rt_entity *back; 1184 #ifdef CONFIG_RT_GROUP_SCHED 1185 struct sched_rt_entity *parent; 1186 /* rq on which this entity is (to be) queued: */ 1187 struct rt_rq *rt_rq; 1188 /* rq "owned" by this entity/group: */ 1189 struct rt_rq *my_q; 1190 #endif 1191 }; 1192 1193 struct rcu_node; 1194 1195 enum perf_event_task_context { 1196 perf_invalid_context = -1, 1197 perf_hw_context = 0, 1198 perf_sw_context, 1199 perf_nr_task_contexts, 1200 }; 1201 1202 struct task_struct { 1203 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1204 void *stack; 1205 atomic_t usage; 1206 unsigned int flags; /* per process flags, defined below */ 1207 unsigned int ptrace; 1208 1209 #ifdef CONFIG_SMP 1210 struct task_struct *wake_entry; 1211 int on_cpu; 1212 #endif 1213 int on_rq; 1214 1215 int prio, static_prio, normal_prio; 1216 unsigned int rt_priority; 1217 const struct sched_class *sched_class; 1218 struct sched_entity se; 1219 struct sched_rt_entity rt; 1220 1221 #ifdef CONFIG_PREEMPT_NOTIFIERS 1222 /* list of struct preempt_notifier: */ 1223 struct hlist_head preempt_notifiers; 1224 #endif 1225 1226 /* 1227 * fpu_counter contains the number of consecutive context switches 1228 * that the FPU is used. If this is over a threshold, the lazy fpu 1229 * saving becomes unlazy to save the trap. This is an unsigned char 1230 * so that after 256 times the counter wraps and the behavior turns 1231 * lazy again; this to deal with bursty apps that only use FPU for 1232 * a short time 1233 */ 1234 unsigned char fpu_counter; 1235 #ifdef CONFIG_BLK_DEV_IO_TRACE 1236 unsigned int btrace_seq; 1237 #endif 1238 1239 unsigned int policy; 1240 cpumask_t cpus_allowed; 1241 1242 #ifdef CONFIG_PREEMPT_RCU 1243 int rcu_read_lock_nesting; 1244 char rcu_read_unlock_special; 1245 struct list_head rcu_node_entry; 1246 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1247 #ifdef CONFIG_TREE_PREEMPT_RCU 1248 struct rcu_node *rcu_blocked_node; 1249 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1250 #ifdef CONFIG_RCU_BOOST 1251 struct rt_mutex *rcu_boost_mutex; 1252 #endif /* #ifdef CONFIG_RCU_BOOST */ 1253 1254 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1255 struct sched_info sched_info; 1256 #endif 1257 1258 struct list_head tasks; 1259 #ifdef CONFIG_SMP 1260 struct plist_node pushable_tasks; 1261 #endif 1262 1263 struct mm_struct *mm, *active_mm; 1264 #ifdef CONFIG_COMPAT_BRK 1265 unsigned brk_randomized:1; 1266 #endif 1267 #if defined(SPLIT_RSS_COUNTING) 1268 struct task_rss_stat rss_stat; 1269 #endif 1270 /* task state */ 1271 int exit_state; 1272 int exit_code, exit_signal; 1273 int pdeath_signal; /* The signal sent when the parent dies */ 1274 unsigned int group_stop; /* GROUP_STOP_*, siglock protected */ 1275 /* ??? */ 1276 unsigned int personality; 1277 unsigned did_exec:1; 1278 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1279 * execve */ 1280 unsigned in_iowait:1; 1281 1282 1283 /* Revert to default priority/policy when forking */ 1284 unsigned sched_reset_on_fork:1; 1285 unsigned sched_contributes_to_load:1; 1286 1287 pid_t pid; 1288 pid_t tgid; 1289 1290 #ifdef CONFIG_CC_STACKPROTECTOR 1291 /* Canary value for the -fstack-protector gcc feature */ 1292 unsigned long stack_canary; 1293 #endif 1294 1295 /* 1296 * pointers to (original) parent process, youngest child, younger sibling, 1297 * older sibling, respectively. (p->father can be replaced with 1298 * p->real_parent->pid) 1299 */ 1300 struct task_struct *real_parent; /* real parent process */ 1301 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */ 1302 /* 1303 * children/sibling forms the list of my natural children 1304 */ 1305 struct list_head children; /* list of my children */ 1306 struct list_head sibling; /* linkage in my parent's children list */ 1307 struct task_struct *group_leader; /* threadgroup leader */ 1308 1309 /* 1310 * ptraced is the list of tasks this task is using ptrace on. 1311 * This includes both natural children and PTRACE_ATTACH targets. 1312 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1313 */ 1314 struct list_head ptraced; 1315 struct list_head ptrace_entry; 1316 1317 /* PID/PID hash table linkage. */ 1318 struct pid_link pids[PIDTYPE_MAX]; 1319 struct list_head thread_group; 1320 1321 struct completion *vfork_done; /* for vfork() */ 1322 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1323 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1324 1325 cputime_t utime, stime, utimescaled, stimescaled; 1326 cputime_t gtime; 1327 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 1328 cputime_t prev_utime, prev_stime; 1329 #endif 1330 unsigned long nvcsw, nivcsw; /* context switch counts */ 1331 struct timespec start_time; /* monotonic time */ 1332 struct timespec real_start_time; /* boot based time */ 1333 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1334 unsigned long min_flt, maj_flt; 1335 1336 struct task_cputime cputime_expires; 1337 struct list_head cpu_timers[3]; 1338 1339 /* process credentials */ 1340 const struct cred __rcu *real_cred; /* objective and real subjective task 1341 * credentials (COW) */ 1342 const struct cred __rcu *cred; /* effective (overridable) subjective task 1343 * credentials (COW) */ 1344 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */ 1345 1346 char comm[TASK_COMM_LEN]; /* executable name excluding path 1347 - access with [gs]et_task_comm (which lock 1348 it with task_lock()) 1349 - initialized normally by setup_new_exec */ 1350 /* file system info */ 1351 int link_count, total_link_count; 1352 #ifdef CONFIG_SYSVIPC 1353 /* ipc stuff */ 1354 struct sysv_sem sysvsem; 1355 #endif 1356 #ifdef CONFIG_DETECT_HUNG_TASK 1357 /* hung task detection */ 1358 unsigned long last_switch_count; 1359 #endif 1360 /* CPU-specific state of this task */ 1361 struct thread_struct thread; 1362 /* filesystem information */ 1363 struct fs_struct *fs; 1364 /* open file information */ 1365 struct files_struct *files; 1366 /* namespaces */ 1367 struct nsproxy *nsproxy; 1368 /* signal handlers */ 1369 struct signal_struct *signal; 1370 struct sighand_struct *sighand; 1371 1372 sigset_t blocked, real_blocked; 1373 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1374 struct sigpending pending; 1375 1376 unsigned long sas_ss_sp; 1377 size_t sas_ss_size; 1378 int (*notifier)(void *priv); 1379 void *notifier_data; 1380 sigset_t *notifier_mask; 1381 struct audit_context *audit_context; 1382 #ifdef CONFIG_AUDITSYSCALL 1383 uid_t loginuid; 1384 unsigned int sessionid; 1385 #endif 1386 seccomp_t seccomp; 1387 1388 /* Thread group tracking */ 1389 u32 parent_exec_id; 1390 u32 self_exec_id; 1391 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1392 * mempolicy */ 1393 spinlock_t alloc_lock; 1394 1395 #ifdef CONFIG_GENERIC_HARDIRQS 1396 /* IRQ handler threads */ 1397 struct irqaction *irqaction; 1398 #endif 1399 1400 /* Protection of the PI data structures: */ 1401 raw_spinlock_t pi_lock; 1402 1403 #ifdef CONFIG_RT_MUTEXES 1404 /* PI waiters blocked on a rt_mutex held by this task */ 1405 struct plist_head pi_waiters; 1406 /* Deadlock detection and priority inheritance handling */ 1407 struct rt_mutex_waiter *pi_blocked_on; 1408 #endif 1409 1410 #ifdef CONFIG_DEBUG_MUTEXES 1411 /* mutex deadlock detection */ 1412 struct mutex_waiter *blocked_on; 1413 #endif 1414 #ifdef CONFIG_TRACE_IRQFLAGS 1415 unsigned int irq_events; 1416 unsigned long hardirq_enable_ip; 1417 unsigned long hardirq_disable_ip; 1418 unsigned int hardirq_enable_event; 1419 unsigned int hardirq_disable_event; 1420 int hardirqs_enabled; 1421 int hardirq_context; 1422 unsigned long softirq_disable_ip; 1423 unsigned long softirq_enable_ip; 1424 unsigned int softirq_disable_event; 1425 unsigned int softirq_enable_event; 1426 int softirqs_enabled; 1427 int softirq_context; 1428 #endif 1429 #ifdef CONFIG_LOCKDEP 1430 # define MAX_LOCK_DEPTH 48UL 1431 u64 curr_chain_key; 1432 int lockdep_depth; 1433 unsigned int lockdep_recursion; 1434 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1435 gfp_t lockdep_reclaim_gfp; 1436 #endif 1437 1438 /* journalling filesystem info */ 1439 void *journal_info; 1440 1441 /* stacked block device info */ 1442 struct bio_list *bio_list; 1443 1444 #ifdef CONFIG_BLOCK 1445 /* stack plugging */ 1446 struct blk_plug *plug; 1447 #endif 1448 1449 /* VM state */ 1450 struct reclaim_state *reclaim_state; 1451 1452 struct backing_dev_info *backing_dev_info; 1453 1454 struct io_context *io_context; 1455 1456 unsigned long ptrace_message; 1457 siginfo_t *last_siginfo; /* For ptrace use. */ 1458 struct task_io_accounting ioac; 1459 #if defined(CONFIG_TASK_XACCT) 1460 u64 acct_rss_mem1; /* accumulated rss usage */ 1461 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1462 cputime_t acct_timexpd; /* stime + utime since last update */ 1463 #endif 1464 #ifdef CONFIG_CPUSETS 1465 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1466 int mems_allowed_change_disable; 1467 int cpuset_mem_spread_rotor; 1468 int cpuset_slab_spread_rotor; 1469 #endif 1470 #ifdef CONFIG_CGROUPS 1471 /* Control Group info protected by css_set_lock */ 1472 struct css_set __rcu *cgroups; 1473 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1474 struct list_head cg_list; 1475 #endif 1476 #ifdef CONFIG_FUTEX 1477 struct robust_list_head __user *robust_list; 1478 #ifdef CONFIG_COMPAT 1479 struct compat_robust_list_head __user *compat_robust_list; 1480 #endif 1481 struct list_head pi_state_list; 1482 struct futex_pi_state *pi_state_cache; 1483 #endif 1484 #ifdef CONFIG_PERF_EVENTS 1485 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1486 struct mutex perf_event_mutex; 1487 struct list_head perf_event_list; 1488 #endif 1489 #ifdef CONFIG_NUMA 1490 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1491 short il_next; 1492 short pref_node_fork; 1493 #endif 1494 atomic_t fs_excl; /* holding fs exclusive resources */ 1495 struct rcu_head rcu; 1496 1497 /* 1498 * cache last used pipe for splice 1499 */ 1500 struct pipe_inode_info *splice_pipe; 1501 #ifdef CONFIG_TASK_DELAY_ACCT 1502 struct task_delay_info *delays; 1503 #endif 1504 #ifdef CONFIG_FAULT_INJECTION 1505 int make_it_fail; 1506 #endif 1507 struct prop_local_single dirties; 1508 #ifdef CONFIG_LATENCYTOP 1509 int latency_record_count; 1510 struct latency_record latency_record[LT_SAVECOUNT]; 1511 #endif 1512 /* 1513 * time slack values; these are used to round up poll() and 1514 * select() etc timeout values. These are in nanoseconds. 1515 */ 1516 unsigned long timer_slack_ns; 1517 unsigned long default_timer_slack_ns; 1518 1519 struct list_head *scm_work_list; 1520 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1521 /* Index of current stored address in ret_stack */ 1522 int curr_ret_stack; 1523 /* Stack of return addresses for return function tracing */ 1524 struct ftrace_ret_stack *ret_stack; 1525 /* time stamp for last schedule */ 1526 unsigned long long ftrace_timestamp; 1527 /* 1528 * Number of functions that haven't been traced 1529 * because of depth overrun. 1530 */ 1531 atomic_t trace_overrun; 1532 /* Pause for the tracing */ 1533 atomic_t tracing_graph_pause; 1534 #endif 1535 #ifdef CONFIG_TRACING 1536 /* state flags for use by tracers */ 1537 unsigned long trace; 1538 /* bitmask of trace recursion */ 1539 unsigned long trace_recursion; 1540 #endif /* CONFIG_TRACING */ 1541 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */ 1542 struct memcg_batch_info { 1543 int do_batch; /* incremented when batch uncharge started */ 1544 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1545 unsigned long nr_pages; /* uncharged usage */ 1546 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */ 1547 } memcg_batch; 1548 #endif 1549 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1550 atomic_t ptrace_bp_refcnt; 1551 #endif 1552 }; 1553 1554 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1555 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1556 1557 /* 1558 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1559 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1560 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1561 * values are inverted: lower p->prio value means higher priority. 1562 * 1563 * The MAX_USER_RT_PRIO value allows the actual maximum 1564 * RT priority to be separate from the value exported to 1565 * user-space. This allows kernel threads to set their 1566 * priority to a value higher than any user task. Note: 1567 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1568 */ 1569 1570 #define MAX_USER_RT_PRIO 100 1571 #define MAX_RT_PRIO MAX_USER_RT_PRIO 1572 1573 #define MAX_PRIO (MAX_RT_PRIO + 40) 1574 #define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1575 1576 static inline int rt_prio(int prio) 1577 { 1578 if (unlikely(prio < MAX_RT_PRIO)) 1579 return 1; 1580 return 0; 1581 } 1582 1583 static inline int rt_task(struct task_struct *p) 1584 { 1585 return rt_prio(p->prio); 1586 } 1587 1588 static inline struct pid *task_pid(struct task_struct *task) 1589 { 1590 return task->pids[PIDTYPE_PID].pid; 1591 } 1592 1593 static inline struct pid *task_tgid(struct task_struct *task) 1594 { 1595 return task->group_leader->pids[PIDTYPE_PID].pid; 1596 } 1597 1598 /* 1599 * Without tasklist or rcu lock it is not safe to dereference 1600 * the result of task_pgrp/task_session even if task == current, 1601 * we can race with another thread doing sys_setsid/sys_setpgid. 1602 */ 1603 static inline struct pid *task_pgrp(struct task_struct *task) 1604 { 1605 return task->group_leader->pids[PIDTYPE_PGID].pid; 1606 } 1607 1608 static inline struct pid *task_session(struct task_struct *task) 1609 { 1610 return task->group_leader->pids[PIDTYPE_SID].pid; 1611 } 1612 1613 struct pid_namespace; 1614 1615 /* 1616 * the helpers to get the task's different pids as they are seen 1617 * from various namespaces 1618 * 1619 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1620 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1621 * current. 1622 * task_xid_nr_ns() : id seen from the ns specified; 1623 * 1624 * set_task_vxid() : assigns a virtual id to a task; 1625 * 1626 * see also pid_nr() etc in include/linux/pid.h 1627 */ 1628 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1629 struct pid_namespace *ns); 1630 1631 static inline pid_t task_pid_nr(struct task_struct *tsk) 1632 { 1633 return tsk->pid; 1634 } 1635 1636 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1637 struct pid_namespace *ns) 1638 { 1639 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1640 } 1641 1642 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1643 { 1644 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1645 } 1646 1647 1648 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1649 { 1650 return tsk->tgid; 1651 } 1652 1653 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1654 1655 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1656 { 1657 return pid_vnr(task_tgid(tsk)); 1658 } 1659 1660 1661 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1662 struct pid_namespace *ns) 1663 { 1664 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1665 } 1666 1667 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1668 { 1669 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1670 } 1671 1672 1673 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1674 struct pid_namespace *ns) 1675 { 1676 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1677 } 1678 1679 static inline pid_t task_session_vnr(struct task_struct *tsk) 1680 { 1681 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1682 } 1683 1684 /* obsolete, do not use */ 1685 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1686 { 1687 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1688 } 1689 1690 /** 1691 * pid_alive - check that a task structure is not stale 1692 * @p: Task structure to be checked. 1693 * 1694 * Test if a process is not yet dead (at most zombie state) 1695 * If pid_alive fails, then pointers within the task structure 1696 * can be stale and must not be dereferenced. 1697 */ 1698 static inline int pid_alive(struct task_struct *p) 1699 { 1700 return p->pids[PIDTYPE_PID].pid != NULL; 1701 } 1702 1703 /** 1704 * is_global_init - check if a task structure is init 1705 * @tsk: Task structure to be checked. 1706 * 1707 * Check if a task structure is the first user space task the kernel created. 1708 */ 1709 static inline int is_global_init(struct task_struct *tsk) 1710 { 1711 return tsk->pid == 1; 1712 } 1713 1714 /* 1715 * is_container_init: 1716 * check whether in the task is init in its own pid namespace. 1717 */ 1718 extern int is_container_init(struct task_struct *tsk); 1719 1720 extern struct pid *cad_pid; 1721 1722 extern void free_task(struct task_struct *tsk); 1723 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1724 1725 extern void __put_task_struct(struct task_struct *t); 1726 1727 static inline void put_task_struct(struct task_struct *t) 1728 { 1729 if (atomic_dec_and_test(&t->usage)) 1730 __put_task_struct(t); 1731 } 1732 1733 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1734 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1735 1736 /* 1737 * Per process flags 1738 */ 1739 #define PF_STARTING 0x00000002 /* being created */ 1740 #define PF_EXITING 0x00000004 /* getting shut down */ 1741 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1742 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1743 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1744 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1745 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1746 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1747 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1748 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1749 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1750 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1751 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */ 1752 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1753 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1754 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1755 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1756 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */ 1757 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1758 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1759 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1760 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1761 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1762 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1763 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1764 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1765 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1766 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1767 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1768 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */ 1769 1770 /* 1771 * Only the _current_ task can read/write to tsk->flags, but other 1772 * tasks can access tsk->flags in readonly mode for example 1773 * with tsk_used_math (like during threaded core dumping). 1774 * There is however an exception to this rule during ptrace 1775 * or during fork: the ptracer task is allowed to write to the 1776 * child->flags of its traced child (same goes for fork, the parent 1777 * can write to the child->flags), because we're guaranteed the 1778 * child is not running and in turn not changing child->flags 1779 * at the same time the parent does it. 1780 */ 1781 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1782 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1783 #define clear_used_math() clear_stopped_child_used_math(current) 1784 #define set_used_math() set_stopped_child_used_math(current) 1785 #define conditional_stopped_child_used_math(condition, child) \ 1786 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1787 #define conditional_used_math(condition) \ 1788 conditional_stopped_child_used_math(condition, current) 1789 #define copy_to_stopped_child_used_math(child) \ 1790 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1791 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1792 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1793 #define used_math() tsk_used_math(current) 1794 1795 /* 1796 * task->group_stop flags 1797 */ 1798 #define GROUP_STOP_SIGMASK 0xffff /* signr of the last group stop */ 1799 #define GROUP_STOP_PENDING (1 << 16) /* task should stop for group stop */ 1800 #define GROUP_STOP_CONSUME (1 << 17) /* consume group stop count */ 1801 #define GROUP_STOP_TRAPPING (1 << 18) /* switching from STOPPED to TRACED */ 1802 #define GROUP_STOP_DEQUEUED (1 << 19) /* stop signal dequeued */ 1803 1804 extern void task_clear_group_stop_pending(struct task_struct *task); 1805 1806 #ifdef CONFIG_PREEMPT_RCU 1807 1808 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1809 #define RCU_READ_UNLOCK_BOOSTED (1 << 1) /* boosted while in RCU read-side. */ 1810 #define RCU_READ_UNLOCK_NEED_QS (1 << 2) /* RCU core needs CPU response. */ 1811 1812 static inline void rcu_copy_process(struct task_struct *p) 1813 { 1814 p->rcu_read_lock_nesting = 0; 1815 p->rcu_read_unlock_special = 0; 1816 #ifdef CONFIG_TREE_PREEMPT_RCU 1817 p->rcu_blocked_node = NULL; 1818 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1819 #ifdef CONFIG_RCU_BOOST 1820 p->rcu_boost_mutex = NULL; 1821 #endif /* #ifdef CONFIG_RCU_BOOST */ 1822 INIT_LIST_HEAD(&p->rcu_node_entry); 1823 } 1824 1825 #else 1826 1827 static inline void rcu_copy_process(struct task_struct *p) 1828 { 1829 } 1830 1831 #endif 1832 1833 #ifdef CONFIG_SMP 1834 extern int set_cpus_allowed_ptr(struct task_struct *p, 1835 const struct cpumask *new_mask); 1836 #else 1837 static inline int set_cpus_allowed_ptr(struct task_struct *p, 1838 const struct cpumask *new_mask) 1839 { 1840 if (!cpumask_test_cpu(0, new_mask)) 1841 return -EINVAL; 1842 return 0; 1843 } 1844 #endif 1845 1846 #ifndef CONFIG_CPUMASK_OFFSTACK 1847 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1848 { 1849 return set_cpus_allowed_ptr(p, &new_mask); 1850 } 1851 #endif 1852 1853 /* 1854 * Do not use outside of architecture code which knows its limitations. 1855 * 1856 * sched_clock() has no promise of monotonicity or bounded drift between 1857 * CPUs, use (which you should not) requires disabling IRQs. 1858 * 1859 * Please use one of the three interfaces below. 1860 */ 1861 extern unsigned long long notrace sched_clock(void); 1862 /* 1863 * See the comment in kernel/sched_clock.c 1864 */ 1865 extern u64 cpu_clock(int cpu); 1866 extern u64 local_clock(void); 1867 extern u64 sched_clock_cpu(int cpu); 1868 1869 1870 extern void sched_clock_init(void); 1871 1872 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1873 static inline void sched_clock_tick(void) 1874 { 1875 } 1876 1877 static inline void sched_clock_idle_sleep_event(void) 1878 { 1879 } 1880 1881 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1882 { 1883 } 1884 #else 1885 /* 1886 * Architectures can set this to 1 if they have specified 1887 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1888 * but then during bootup it turns out that sched_clock() 1889 * is reliable after all: 1890 */ 1891 extern int sched_clock_stable; 1892 1893 extern void sched_clock_tick(void); 1894 extern void sched_clock_idle_sleep_event(void); 1895 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1896 #endif 1897 1898 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1899 /* 1900 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 1901 * The reason for this explicit opt-in is not to have perf penalty with 1902 * slow sched_clocks. 1903 */ 1904 extern void enable_sched_clock_irqtime(void); 1905 extern void disable_sched_clock_irqtime(void); 1906 #else 1907 static inline void enable_sched_clock_irqtime(void) {} 1908 static inline void disable_sched_clock_irqtime(void) {} 1909 #endif 1910 1911 extern unsigned long long 1912 task_sched_runtime(struct task_struct *task); 1913 extern unsigned long long thread_group_sched_runtime(struct task_struct *task); 1914 1915 /* sched_exec is called by processes performing an exec */ 1916 #ifdef CONFIG_SMP 1917 extern void sched_exec(void); 1918 #else 1919 #define sched_exec() {} 1920 #endif 1921 1922 extern void sched_clock_idle_sleep_event(void); 1923 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1924 1925 #ifdef CONFIG_HOTPLUG_CPU 1926 extern void idle_task_exit(void); 1927 #else 1928 static inline void idle_task_exit(void) {} 1929 #endif 1930 1931 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 1932 extern void wake_up_idle_cpu(int cpu); 1933 #else 1934 static inline void wake_up_idle_cpu(int cpu) { } 1935 #endif 1936 1937 extern unsigned int sysctl_sched_latency; 1938 extern unsigned int sysctl_sched_min_granularity; 1939 extern unsigned int sysctl_sched_wakeup_granularity; 1940 extern unsigned int sysctl_sched_child_runs_first; 1941 1942 enum sched_tunable_scaling { 1943 SCHED_TUNABLESCALING_NONE, 1944 SCHED_TUNABLESCALING_LOG, 1945 SCHED_TUNABLESCALING_LINEAR, 1946 SCHED_TUNABLESCALING_END, 1947 }; 1948 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling; 1949 1950 #ifdef CONFIG_SCHED_DEBUG 1951 extern unsigned int sysctl_sched_migration_cost; 1952 extern unsigned int sysctl_sched_nr_migrate; 1953 extern unsigned int sysctl_sched_time_avg; 1954 extern unsigned int sysctl_timer_migration; 1955 extern unsigned int sysctl_sched_shares_window; 1956 1957 int sched_proc_update_handler(struct ctl_table *table, int write, 1958 void __user *buffer, size_t *length, 1959 loff_t *ppos); 1960 #endif 1961 #ifdef CONFIG_SCHED_DEBUG 1962 static inline unsigned int get_sysctl_timer_migration(void) 1963 { 1964 return sysctl_timer_migration; 1965 } 1966 #else 1967 static inline unsigned int get_sysctl_timer_migration(void) 1968 { 1969 return 1; 1970 } 1971 #endif 1972 extern unsigned int sysctl_sched_rt_period; 1973 extern int sysctl_sched_rt_runtime; 1974 1975 int sched_rt_handler(struct ctl_table *table, int write, 1976 void __user *buffer, size_t *lenp, 1977 loff_t *ppos); 1978 1979 #ifdef CONFIG_SCHED_AUTOGROUP 1980 extern unsigned int sysctl_sched_autogroup_enabled; 1981 1982 extern void sched_autogroup_create_attach(struct task_struct *p); 1983 extern void sched_autogroup_detach(struct task_struct *p); 1984 extern void sched_autogroup_fork(struct signal_struct *sig); 1985 extern void sched_autogroup_exit(struct signal_struct *sig); 1986 #ifdef CONFIG_PROC_FS 1987 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 1988 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice); 1989 #endif 1990 #else 1991 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 1992 static inline void sched_autogroup_detach(struct task_struct *p) { } 1993 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 1994 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 1995 #endif 1996 1997 #ifdef CONFIG_RT_MUTEXES 1998 extern int rt_mutex_getprio(struct task_struct *p); 1999 extern void rt_mutex_setprio(struct task_struct *p, int prio); 2000 extern void rt_mutex_adjust_pi(struct task_struct *p); 2001 #else 2002 static inline int rt_mutex_getprio(struct task_struct *p) 2003 { 2004 return p->normal_prio; 2005 } 2006 # define rt_mutex_adjust_pi(p) do { } while (0) 2007 #endif 2008 2009 extern bool yield_to(struct task_struct *p, bool preempt); 2010 extern void set_user_nice(struct task_struct *p, long nice); 2011 extern int task_prio(const struct task_struct *p); 2012 extern int task_nice(const struct task_struct *p); 2013 extern int can_nice(const struct task_struct *p, const int nice); 2014 extern int task_curr(const struct task_struct *p); 2015 extern int idle_cpu(int cpu); 2016 extern int sched_setscheduler(struct task_struct *, int, 2017 const struct sched_param *); 2018 extern int sched_setscheduler_nocheck(struct task_struct *, int, 2019 const struct sched_param *); 2020 extern struct task_struct *idle_task(int cpu); 2021 extern struct task_struct *curr_task(int cpu); 2022 extern void set_curr_task(int cpu, struct task_struct *p); 2023 2024 void yield(void); 2025 2026 /* 2027 * The default (Linux) execution domain. 2028 */ 2029 extern struct exec_domain default_exec_domain; 2030 2031 union thread_union { 2032 struct thread_info thread_info; 2033 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2034 }; 2035 2036 #ifndef __HAVE_ARCH_KSTACK_END 2037 static inline int kstack_end(void *addr) 2038 { 2039 /* Reliable end of stack detection: 2040 * Some APM bios versions misalign the stack 2041 */ 2042 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2043 } 2044 #endif 2045 2046 extern union thread_union init_thread_union; 2047 extern struct task_struct init_task; 2048 2049 extern struct mm_struct init_mm; 2050 2051 extern struct pid_namespace init_pid_ns; 2052 2053 /* 2054 * find a task by one of its numerical ids 2055 * 2056 * find_task_by_pid_ns(): 2057 * finds a task by its pid in the specified namespace 2058 * find_task_by_vpid(): 2059 * finds a task by its virtual pid 2060 * 2061 * see also find_vpid() etc in include/linux/pid.h 2062 */ 2063 2064 extern struct task_struct *find_task_by_vpid(pid_t nr); 2065 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2066 struct pid_namespace *ns); 2067 2068 extern void __set_special_pids(struct pid *pid); 2069 2070 /* per-UID process charging. */ 2071 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t); 2072 static inline struct user_struct *get_uid(struct user_struct *u) 2073 { 2074 atomic_inc(&u->__count); 2075 return u; 2076 } 2077 extern void free_uid(struct user_struct *); 2078 extern void release_uids(struct user_namespace *ns); 2079 2080 #include <asm/current.h> 2081 2082 extern void xtime_update(unsigned long ticks); 2083 2084 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2085 extern int wake_up_process(struct task_struct *tsk); 2086 extern void wake_up_new_task(struct task_struct *tsk); 2087 #ifdef CONFIG_SMP 2088 extern void kick_process(struct task_struct *tsk); 2089 #else 2090 static inline void kick_process(struct task_struct *tsk) { } 2091 #endif 2092 extern void sched_fork(struct task_struct *p); 2093 extern void sched_dead(struct task_struct *p); 2094 2095 extern void proc_caches_init(void); 2096 extern void flush_signals(struct task_struct *); 2097 extern void __flush_signals(struct task_struct *); 2098 extern void ignore_signals(struct task_struct *); 2099 extern void flush_signal_handlers(struct task_struct *, int force_default); 2100 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2101 2102 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2103 { 2104 unsigned long flags; 2105 int ret; 2106 2107 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2108 ret = dequeue_signal(tsk, mask, info); 2109 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2110 2111 return ret; 2112 } 2113 2114 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2115 sigset_t *mask); 2116 extern void unblock_all_signals(void); 2117 extern void release_task(struct task_struct * p); 2118 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2119 extern int force_sigsegv(int, struct task_struct *); 2120 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2121 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2122 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2123 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 2124 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2125 extern int kill_pid(struct pid *pid, int sig, int priv); 2126 extern int kill_proc_info(int, struct siginfo *, pid_t); 2127 extern int do_notify_parent(struct task_struct *, int); 2128 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2129 extern void force_sig(int, struct task_struct *); 2130 extern int send_sig(int, struct task_struct *, int); 2131 extern int zap_other_threads(struct task_struct *p); 2132 extern struct sigqueue *sigqueue_alloc(void); 2133 extern void sigqueue_free(struct sigqueue *); 2134 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2135 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2136 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 2137 2138 static inline int kill_cad_pid(int sig, int priv) 2139 { 2140 return kill_pid(cad_pid, sig, priv); 2141 } 2142 2143 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2144 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2145 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2146 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2147 2148 /* 2149 * True if we are on the alternate signal stack. 2150 */ 2151 static inline int on_sig_stack(unsigned long sp) 2152 { 2153 #ifdef CONFIG_STACK_GROWSUP 2154 return sp >= current->sas_ss_sp && 2155 sp - current->sas_ss_sp < current->sas_ss_size; 2156 #else 2157 return sp > current->sas_ss_sp && 2158 sp - current->sas_ss_sp <= current->sas_ss_size; 2159 #endif 2160 } 2161 2162 static inline int sas_ss_flags(unsigned long sp) 2163 { 2164 return (current->sas_ss_size == 0 ? SS_DISABLE 2165 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2166 } 2167 2168 /* 2169 * Routines for handling mm_structs 2170 */ 2171 extern struct mm_struct * mm_alloc(void); 2172 2173 /* mmdrop drops the mm and the page tables */ 2174 extern void __mmdrop(struct mm_struct *); 2175 static inline void mmdrop(struct mm_struct * mm) 2176 { 2177 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2178 __mmdrop(mm); 2179 } 2180 2181 /* mmput gets rid of the mappings and all user-space */ 2182 extern void mmput(struct mm_struct *); 2183 /* Grab a reference to a task's mm, if it is not already going away */ 2184 extern struct mm_struct *get_task_mm(struct task_struct *task); 2185 /* Remove the current tasks stale references to the old mm_struct */ 2186 extern void mm_release(struct task_struct *, struct mm_struct *); 2187 /* Allocate a new mm structure and copy contents from tsk->mm */ 2188 extern struct mm_struct *dup_mm(struct task_struct *tsk); 2189 2190 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2191 struct task_struct *, struct pt_regs *); 2192 extern void flush_thread(void); 2193 extern void exit_thread(void); 2194 2195 extern void exit_files(struct task_struct *); 2196 extern void __cleanup_sighand(struct sighand_struct *); 2197 2198 extern void exit_itimers(struct signal_struct *); 2199 extern void flush_itimer_signals(void); 2200 2201 extern NORET_TYPE void do_group_exit(int); 2202 2203 extern void daemonize(const char *, ...); 2204 extern int allow_signal(int); 2205 extern int disallow_signal(int); 2206 2207 extern int do_execve(const char *, 2208 const char __user * const __user *, 2209 const char __user * const __user *, struct pt_regs *); 2210 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 2211 struct task_struct *fork_idle(int); 2212 2213 extern void set_task_comm(struct task_struct *tsk, char *from); 2214 extern char *get_task_comm(char *to, struct task_struct *tsk); 2215 2216 #ifdef CONFIG_SMP 2217 void scheduler_ipi(void); 2218 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2219 #else 2220 static inline void scheduler_ipi(void) { } 2221 static inline unsigned long wait_task_inactive(struct task_struct *p, 2222 long match_state) 2223 { 2224 return 1; 2225 } 2226 #endif 2227 2228 #define next_task(p) \ 2229 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2230 2231 #define for_each_process(p) \ 2232 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2233 2234 extern bool current_is_single_threaded(void); 2235 2236 /* 2237 * Careful: do_each_thread/while_each_thread is a double loop so 2238 * 'break' will not work as expected - use goto instead. 2239 */ 2240 #define do_each_thread(g, t) \ 2241 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2242 2243 #define while_each_thread(g, t) \ 2244 while ((t = next_thread(t)) != g) 2245 2246 static inline int get_nr_threads(struct task_struct *tsk) 2247 { 2248 return tsk->signal->nr_threads; 2249 } 2250 2251 /* de_thread depends on thread_group_leader not being a pid based check */ 2252 #define thread_group_leader(p) (p == p->group_leader) 2253 2254 /* Do to the insanities of de_thread it is possible for a process 2255 * to have the pid of the thread group leader without actually being 2256 * the thread group leader. For iteration through the pids in proc 2257 * all we care about is that we have a task with the appropriate 2258 * pid, we don't actually care if we have the right task. 2259 */ 2260 static inline int has_group_leader_pid(struct task_struct *p) 2261 { 2262 return p->pid == p->tgid; 2263 } 2264 2265 static inline 2266 int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2267 { 2268 return p1->tgid == p2->tgid; 2269 } 2270 2271 static inline struct task_struct *next_thread(const struct task_struct *p) 2272 { 2273 return list_entry_rcu(p->thread_group.next, 2274 struct task_struct, thread_group); 2275 } 2276 2277 static inline int thread_group_empty(struct task_struct *p) 2278 { 2279 return list_empty(&p->thread_group); 2280 } 2281 2282 #define delay_group_leader(p) \ 2283 (thread_group_leader(p) && !thread_group_empty(p)) 2284 2285 static inline int task_detached(struct task_struct *p) 2286 { 2287 return p->exit_signal == -1; 2288 } 2289 2290 /* 2291 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2292 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2293 * pins the final release of task.io_context. Also protects ->cpuset and 2294 * ->cgroup.subsys[]. 2295 * 2296 * Nests both inside and outside of read_lock(&tasklist_lock). 2297 * It must not be nested with write_lock_irq(&tasklist_lock), 2298 * neither inside nor outside. 2299 */ 2300 static inline void task_lock(struct task_struct *p) 2301 { 2302 spin_lock(&p->alloc_lock); 2303 } 2304 2305 static inline void task_unlock(struct task_struct *p) 2306 { 2307 spin_unlock(&p->alloc_lock); 2308 } 2309 2310 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2311 unsigned long *flags); 2312 2313 #define lock_task_sighand(tsk, flags) \ 2314 ({ struct sighand_struct *__ss; \ 2315 __cond_lock(&(tsk)->sighand->siglock, \ 2316 (__ss = __lock_task_sighand(tsk, flags))); \ 2317 __ss; \ 2318 }) \ 2319 2320 static inline void unlock_task_sighand(struct task_struct *tsk, 2321 unsigned long *flags) 2322 { 2323 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2324 } 2325 2326 #ifndef __HAVE_THREAD_FUNCTIONS 2327 2328 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2329 #define task_stack_page(task) ((task)->stack) 2330 2331 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2332 { 2333 *task_thread_info(p) = *task_thread_info(org); 2334 task_thread_info(p)->task = p; 2335 } 2336 2337 static inline unsigned long *end_of_stack(struct task_struct *p) 2338 { 2339 return (unsigned long *)(task_thread_info(p) + 1); 2340 } 2341 2342 #endif 2343 2344 static inline int object_is_on_stack(void *obj) 2345 { 2346 void *stack = task_stack_page(current); 2347 2348 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2349 } 2350 2351 extern void thread_info_cache_init(void); 2352 2353 #ifdef CONFIG_DEBUG_STACK_USAGE 2354 static inline unsigned long stack_not_used(struct task_struct *p) 2355 { 2356 unsigned long *n = end_of_stack(p); 2357 2358 do { /* Skip over canary */ 2359 n++; 2360 } while (!*n); 2361 2362 return (unsigned long)n - (unsigned long)end_of_stack(p); 2363 } 2364 #endif 2365 2366 /* set thread flags in other task's structures 2367 * - see asm/thread_info.h for TIF_xxxx flags available 2368 */ 2369 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2370 { 2371 set_ti_thread_flag(task_thread_info(tsk), flag); 2372 } 2373 2374 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2375 { 2376 clear_ti_thread_flag(task_thread_info(tsk), flag); 2377 } 2378 2379 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2380 { 2381 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2382 } 2383 2384 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2385 { 2386 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2387 } 2388 2389 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2390 { 2391 return test_ti_thread_flag(task_thread_info(tsk), flag); 2392 } 2393 2394 static inline void set_tsk_need_resched(struct task_struct *tsk) 2395 { 2396 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2397 } 2398 2399 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2400 { 2401 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2402 } 2403 2404 static inline int test_tsk_need_resched(struct task_struct *tsk) 2405 { 2406 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2407 } 2408 2409 static inline int restart_syscall(void) 2410 { 2411 set_tsk_thread_flag(current, TIF_SIGPENDING); 2412 return -ERESTARTNOINTR; 2413 } 2414 2415 static inline int signal_pending(struct task_struct *p) 2416 { 2417 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2418 } 2419 2420 static inline int __fatal_signal_pending(struct task_struct *p) 2421 { 2422 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2423 } 2424 2425 static inline int fatal_signal_pending(struct task_struct *p) 2426 { 2427 return signal_pending(p) && __fatal_signal_pending(p); 2428 } 2429 2430 static inline int signal_pending_state(long state, struct task_struct *p) 2431 { 2432 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2433 return 0; 2434 if (!signal_pending(p)) 2435 return 0; 2436 2437 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2438 } 2439 2440 static inline int need_resched(void) 2441 { 2442 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2443 } 2444 2445 /* 2446 * cond_resched() and cond_resched_lock(): latency reduction via 2447 * explicit rescheduling in places that are safe. The return 2448 * value indicates whether a reschedule was done in fact. 2449 * cond_resched_lock() will drop the spinlock before scheduling, 2450 * cond_resched_softirq() will enable bhs before scheduling. 2451 */ 2452 extern int _cond_resched(void); 2453 2454 #define cond_resched() ({ \ 2455 __might_sleep(__FILE__, __LINE__, 0); \ 2456 _cond_resched(); \ 2457 }) 2458 2459 extern int __cond_resched_lock(spinlock_t *lock); 2460 2461 #ifdef CONFIG_PREEMPT 2462 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2463 #else 2464 #define PREEMPT_LOCK_OFFSET 0 2465 #endif 2466 2467 #define cond_resched_lock(lock) ({ \ 2468 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2469 __cond_resched_lock(lock); \ 2470 }) 2471 2472 extern int __cond_resched_softirq(void); 2473 2474 #define cond_resched_softirq() ({ \ 2475 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2476 __cond_resched_softirq(); \ 2477 }) 2478 2479 /* 2480 * Does a critical section need to be broken due to another 2481 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2482 * but a general need for low latency) 2483 */ 2484 static inline int spin_needbreak(spinlock_t *lock) 2485 { 2486 #ifdef CONFIG_PREEMPT 2487 return spin_is_contended(lock); 2488 #else 2489 return 0; 2490 #endif 2491 } 2492 2493 /* 2494 * Thread group CPU time accounting. 2495 */ 2496 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2497 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2498 2499 static inline void thread_group_cputime_init(struct signal_struct *sig) 2500 { 2501 spin_lock_init(&sig->cputimer.lock); 2502 } 2503 2504 /* 2505 * Reevaluate whether the task has signals pending delivery. 2506 * Wake the task if so. 2507 * This is required every time the blocked sigset_t changes. 2508 * callers must hold sighand->siglock. 2509 */ 2510 extern void recalc_sigpending_and_wake(struct task_struct *t); 2511 extern void recalc_sigpending(void); 2512 2513 extern void signal_wake_up(struct task_struct *t, int resume_stopped); 2514 2515 /* 2516 * Wrappers for p->thread_info->cpu access. No-op on UP. 2517 */ 2518 #ifdef CONFIG_SMP 2519 2520 static inline unsigned int task_cpu(const struct task_struct *p) 2521 { 2522 return task_thread_info(p)->cpu; 2523 } 2524 2525 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2526 2527 #else 2528 2529 static inline unsigned int task_cpu(const struct task_struct *p) 2530 { 2531 return 0; 2532 } 2533 2534 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2535 { 2536 } 2537 2538 #endif /* CONFIG_SMP */ 2539 2540 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2541 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2542 2543 extern void normalize_rt_tasks(void); 2544 2545 #ifdef CONFIG_CGROUP_SCHED 2546 2547 extern struct task_group root_task_group; 2548 2549 extern struct task_group *sched_create_group(struct task_group *parent); 2550 extern void sched_destroy_group(struct task_group *tg); 2551 extern void sched_move_task(struct task_struct *tsk); 2552 #ifdef CONFIG_FAIR_GROUP_SCHED 2553 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2554 extern unsigned long sched_group_shares(struct task_group *tg); 2555 #endif 2556 #ifdef CONFIG_RT_GROUP_SCHED 2557 extern int sched_group_set_rt_runtime(struct task_group *tg, 2558 long rt_runtime_us); 2559 extern long sched_group_rt_runtime(struct task_group *tg); 2560 extern int sched_group_set_rt_period(struct task_group *tg, 2561 long rt_period_us); 2562 extern long sched_group_rt_period(struct task_group *tg); 2563 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 2564 #endif 2565 #endif 2566 2567 extern int task_can_switch_user(struct user_struct *up, 2568 struct task_struct *tsk); 2569 2570 #ifdef CONFIG_TASK_XACCT 2571 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2572 { 2573 tsk->ioac.rchar += amt; 2574 } 2575 2576 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2577 { 2578 tsk->ioac.wchar += amt; 2579 } 2580 2581 static inline void inc_syscr(struct task_struct *tsk) 2582 { 2583 tsk->ioac.syscr++; 2584 } 2585 2586 static inline void inc_syscw(struct task_struct *tsk) 2587 { 2588 tsk->ioac.syscw++; 2589 } 2590 #else 2591 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2592 { 2593 } 2594 2595 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2596 { 2597 } 2598 2599 static inline void inc_syscr(struct task_struct *tsk) 2600 { 2601 } 2602 2603 static inline void inc_syscw(struct task_struct *tsk) 2604 { 2605 } 2606 #endif 2607 2608 #ifndef TASK_SIZE_OF 2609 #define TASK_SIZE_OF(tsk) TASK_SIZE 2610 #endif 2611 2612 #ifdef CONFIG_MM_OWNER 2613 extern void mm_update_next_owner(struct mm_struct *mm); 2614 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2615 #else 2616 static inline void mm_update_next_owner(struct mm_struct *mm) 2617 { 2618 } 2619 2620 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2621 { 2622 } 2623 #endif /* CONFIG_MM_OWNER */ 2624 2625 static inline unsigned long task_rlimit(const struct task_struct *tsk, 2626 unsigned int limit) 2627 { 2628 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2629 } 2630 2631 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2632 unsigned int limit) 2633 { 2634 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2635 } 2636 2637 static inline unsigned long rlimit(unsigned int limit) 2638 { 2639 return task_rlimit(current, limit); 2640 } 2641 2642 static inline unsigned long rlimit_max(unsigned int limit) 2643 { 2644 return task_rlimit_max(current, limit); 2645 } 2646 2647 #endif /* __KERNEL__ */ 2648 2649 #endif 2650