xref: /linux-6.15/include/linux/sched.h (revision 4bedea94)
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3 
4 #include <asm/param.h>	/* for HZ */
5 
6 #include <linux/config.h>
7 #include <linux/capability.h>
8 #include <linux/threads.h>
9 #include <linux/kernel.h>
10 #include <linux/types.h>
11 #include <linux/timex.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/thread_info.h>
15 #include <linux/cpumask.h>
16 #include <linux/errno.h>
17 #include <linux/nodemask.h>
18 
19 #include <asm/system.h>
20 #include <asm/semaphore.h>
21 #include <asm/page.h>
22 #include <asm/ptrace.h>
23 #include <asm/mmu.h>
24 #include <asm/cputime.h>
25 
26 #include <linux/smp.h>
27 #include <linux/sem.h>
28 #include <linux/signal.h>
29 #include <linux/securebits.h>
30 #include <linux/fs_struct.h>
31 #include <linux/compiler.h>
32 #include <linux/completion.h>
33 #include <linux/pid.h>
34 #include <linux/percpu.h>
35 #include <linux/topology.h>
36 #include <linux/seccomp.h>
37 
38 struct exec_domain;
39 
40 /*
41  * cloning flags:
42  */
43 #define CSIGNAL		0x000000ff	/* signal mask to be sent at exit */
44 #define CLONE_VM	0x00000100	/* set if VM shared between processes */
45 #define CLONE_FS	0x00000200	/* set if fs info shared between processes */
46 #define CLONE_FILES	0x00000400	/* set if open files shared between processes */
47 #define CLONE_SIGHAND	0x00000800	/* set if signal handlers and blocked signals shared */
48 #define CLONE_PTRACE	0x00002000	/* set if we want to let tracing continue on the child too */
49 #define CLONE_VFORK	0x00004000	/* set if the parent wants the child to wake it up on mm_release */
50 #define CLONE_PARENT	0x00008000	/* set if we want to have the same parent as the cloner */
51 #define CLONE_THREAD	0x00010000	/* Same thread group? */
52 #define CLONE_NEWNS	0x00020000	/* New namespace group? */
53 #define CLONE_SYSVSEM	0x00040000	/* share system V SEM_UNDO semantics */
54 #define CLONE_SETTLS	0x00080000	/* create a new TLS for the child */
55 #define CLONE_PARENT_SETTID	0x00100000	/* set the TID in the parent */
56 #define CLONE_CHILD_CLEARTID	0x00200000	/* clear the TID in the child */
57 #define CLONE_DETACHED		0x00400000	/* Unused, ignored */
58 #define CLONE_UNTRACED		0x00800000	/* set if the tracing process can't force CLONE_PTRACE on this clone */
59 #define CLONE_CHILD_SETTID	0x01000000	/* set the TID in the child */
60 #define CLONE_STOPPED		0x02000000	/* Start in stopped state */
61 
62 /*
63  * List of flags we want to share for kernel threads,
64  * if only because they are not used by them anyway.
65  */
66 #define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
67 
68 /*
69  * These are the constant used to fake the fixed-point load-average
70  * counting. Some notes:
71  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
72  *    a load-average precision of 10 bits integer + 11 bits fractional
73  *  - if you want to count load-averages more often, you need more
74  *    precision, or rounding will get you. With 2-second counting freq,
75  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
76  *    11 bit fractions.
77  */
78 extern unsigned long avenrun[];		/* Load averages */
79 
80 #define FSHIFT		11		/* nr of bits of precision */
81 #define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
82 #define LOAD_FREQ	(5*HZ)		/* 5 sec intervals */
83 #define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
84 #define EXP_5		2014		/* 1/exp(5sec/5min) */
85 #define EXP_15		2037		/* 1/exp(5sec/15min) */
86 
87 #define CALC_LOAD(load,exp,n) \
88 	load *= exp; \
89 	load += n*(FIXED_1-exp); \
90 	load >>= FSHIFT;
91 
92 extern unsigned long total_forks;
93 extern int nr_threads;
94 extern int last_pid;
95 DECLARE_PER_CPU(unsigned long, process_counts);
96 extern int nr_processes(void);
97 extern unsigned long nr_running(void);
98 extern unsigned long nr_uninterruptible(void);
99 extern unsigned long nr_iowait(void);
100 
101 #include <linux/time.h>
102 #include <linux/param.h>
103 #include <linux/resource.h>
104 #include <linux/timer.h>
105 
106 #include <asm/processor.h>
107 
108 #define TASK_RUNNING		0
109 #define TASK_INTERRUPTIBLE	1
110 #define TASK_UNINTERRUPTIBLE	2
111 #define TASK_STOPPED		4
112 #define TASK_TRACED		8
113 #define EXIT_ZOMBIE		16
114 #define EXIT_DEAD		32
115 
116 #define __set_task_state(tsk, state_value)		\
117 	do { (tsk)->state = (state_value); } while (0)
118 #define set_task_state(tsk, state_value)		\
119 	set_mb((tsk)->state, (state_value))
120 
121 #define __set_current_state(state_value)			\
122 	do { current->state = (state_value); } while (0)
123 #define set_current_state(state_value)		\
124 	set_mb(current->state, (state_value))
125 
126 /* Task command name length */
127 #define TASK_COMM_LEN 16
128 
129 /*
130  * Scheduling policies
131  */
132 #define SCHED_NORMAL		0
133 #define SCHED_FIFO		1
134 #define SCHED_RR		2
135 
136 struct sched_param {
137 	int sched_priority;
138 };
139 
140 #ifdef __KERNEL__
141 
142 #include <linux/spinlock.h>
143 
144 /*
145  * This serializes "schedule()" and also protects
146  * the run-queue from deletions/modifications (but
147  * _adding_ to the beginning of the run-queue has
148  * a separate lock).
149  */
150 extern rwlock_t tasklist_lock;
151 extern spinlock_t mmlist_lock;
152 
153 typedef struct task_struct task_t;
154 
155 extern void sched_init(void);
156 extern void sched_init_smp(void);
157 extern void init_idle(task_t *idle, int cpu);
158 
159 extern cpumask_t nohz_cpu_mask;
160 
161 extern void show_state(void);
162 extern void show_regs(struct pt_regs *);
163 
164 /*
165  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
166  * task), SP is the stack pointer of the first frame that should be shown in the back
167  * trace (or NULL if the entire call-chain of the task should be shown).
168  */
169 extern void show_stack(struct task_struct *task, unsigned long *sp);
170 
171 void io_schedule(void);
172 long io_schedule_timeout(long timeout);
173 
174 extern void cpu_init (void);
175 extern void trap_init(void);
176 extern void update_process_times(int user);
177 extern void scheduler_tick(void);
178 
179 /* Attach to any functions which should be ignored in wchan output. */
180 #define __sched		__attribute__((__section__(".sched.text")))
181 /* Is this address in the __sched functions? */
182 extern int in_sched_functions(unsigned long addr);
183 
184 #define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
185 extern signed long FASTCALL(schedule_timeout(signed long timeout));
186 asmlinkage void schedule(void);
187 
188 struct namespace;
189 
190 /* Maximum number of active map areas.. This is a random (large) number */
191 #define DEFAULT_MAX_MAP_COUNT	65536
192 
193 extern int sysctl_max_map_count;
194 
195 #include <linux/aio.h>
196 
197 extern unsigned long
198 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
199 		       unsigned long, unsigned long);
200 extern unsigned long
201 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
202 			  unsigned long len, unsigned long pgoff,
203 			  unsigned long flags);
204 extern void arch_unmap_area(struct mm_struct *, unsigned long);
205 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
206 
207 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
208 #define get_mm_counter(mm, member) ((mm)->_##member)
209 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
210 #define inc_mm_counter(mm, member) (mm)->_##member++
211 #define dec_mm_counter(mm, member) (mm)->_##member--
212 typedef unsigned long mm_counter_t;
213 
214 struct mm_struct {
215 	struct vm_area_struct * mmap;		/* list of VMAs */
216 	struct rb_root mm_rb;
217 	struct vm_area_struct * mmap_cache;	/* last find_vma result */
218 	unsigned long (*get_unmapped_area) (struct file *filp,
219 				unsigned long addr, unsigned long len,
220 				unsigned long pgoff, unsigned long flags);
221 	void (*unmap_area) (struct mm_struct *mm, unsigned long addr);
222         unsigned long mmap_base;		/* base of mmap area */
223         unsigned long cached_hole_size;         /* if non-zero, the largest hole below free_area_cache */
224 	unsigned long free_area_cache;		/* first hole of size cached_hole_size or larger */
225 	pgd_t * pgd;
226 	atomic_t mm_users;			/* How many users with user space? */
227 	atomic_t mm_count;			/* How many references to "struct mm_struct" (users count as 1) */
228 	int map_count;				/* number of VMAs */
229 	struct rw_semaphore mmap_sem;
230 	spinlock_t page_table_lock;		/* Protects page tables and some counters */
231 
232 	struct list_head mmlist;		/* List of maybe swapped mm's.  These are globally strung
233 						 * together off init_mm.mmlist, and are protected
234 						 * by mmlist_lock
235 						 */
236 
237 	unsigned long start_code, end_code, start_data, end_data;
238 	unsigned long start_brk, brk, start_stack;
239 	unsigned long arg_start, arg_end, env_start, env_end;
240 	unsigned long total_vm, locked_vm, shared_vm;
241 	unsigned long exec_vm, stack_vm, reserved_vm, def_flags, nr_ptes;
242 
243 	/* Special counters protected by the page_table_lock */
244 	mm_counter_t _rss;
245 	mm_counter_t _anon_rss;
246 
247 	unsigned long saved_auxv[42]; /* for /proc/PID/auxv */
248 
249 	unsigned dumpable:2;
250 	cpumask_t cpu_vm_mask;
251 
252 	/* Architecture-specific MM context */
253 	mm_context_t context;
254 
255 	/* Token based thrashing protection. */
256 	unsigned long swap_token_time;
257 	char recent_pagein;
258 
259 	/* coredumping support */
260 	int core_waiters;
261 	struct completion *core_startup_done, core_done;
262 
263 	/* aio bits */
264 	rwlock_t		ioctx_list_lock;
265 	struct kioctx		*ioctx_list;
266 
267 	struct kioctx		default_kioctx;
268 
269 	unsigned long hiwater_rss;	/* High-water RSS usage */
270 	unsigned long hiwater_vm;	/* High-water virtual memory usage */
271 };
272 
273 struct sighand_struct {
274 	atomic_t		count;
275 	struct k_sigaction	action[_NSIG];
276 	spinlock_t		siglock;
277 };
278 
279 /*
280  * NOTE! "signal_struct" does not have it's own
281  * locking, because a shared signal_struct always
282  * implies a shared sighand_struct, so locking
283  * sighand_struct is always a proper superset of
284  * the locking of signal_struct.
285  */
286 struct signal_struct {
287 	atomic_t		count;
288 	atomic_t		live;
289 
290 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
291 
292 	/* current thread group signal load-balancing target: */
293 	task_t			*curr_target;
294 
295 	/* shared signal handling: */
296 	struct sigpending	shared_pending;
297 
298 	/* thread group exit support */
299 	int			group_exit_code;
300 	/* overloaded:
301 	 * - notify group_exit_task when ->count is equal to notify_count
302 	 * - everyone except group_exit_task is stopped during signal delivery
303 	 *   of fatal signals, group_exit_task processes the signal.
304 	 */
305 	struct task_struct	*group_exit_task;
306 	int			notify_count;
307 
308 	/* thread group stop support, overloads group_exit_code too */
309 	int			group_stop_count;
310 	unsigned int		flags; /* see SIGNAL_* flags below */
311 
312 	/* POSIX.1b Interval Timers */
313 	struct list_head posix_timers;
314 
315 	/* ITIMER_REAL timer for the process */
316 	struct timer_list real_timer;
317 	unsigned long it_real_value, it_real_incr;
318 
319 	/* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
320 	cputime_t it_prof_expires, it_virt_expires;
321 	cputime_t it_prof_incr, it_virt_incr;
322 
323 	/* job control IDs */
324 	pid_t pgrp;
325 	pid_t tty_old_pgrp;
326 	pid_t session;
327 	/* boolean value for session group leader */
328 	int leader;
329 
330 	struct tty_struct *tty; /* NULL if no tty */
331 
332 	/*
333 	 * Cumulative resource counters for dead threads in the group,
334 	 * and for reaped dead child processes forked by this group.
335 	 * Live threads maintain their own counters and add to these
336 	 * in __exit_signal, except for the group leader.
337 	 */
338 	cputime_t utime, stime, cutime, cstime;
339 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
340 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
341 
342 	/*
343 	 * Cumulative ns of scheduled CPU time for dead threads in the
344 	 * group, not including a zombie group leader.  (This only differs
345 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
346 	 * other than jiffies.)
347 	 */
348 	unsigned long long sched_time;
349 
350 	/*
351 	 * We don't bother to synchronize most readers of this at all,
352 	 * because there is no reader checking a limit that actually needs
353 	 * to get both rlim_cur and rlim_max atomically, and either one
354 	 * alone is a single word that can safely be read normally.
355 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
356 	 * protect this instead of the siglock, because they really
357 	 * have no need to disable irqs.
358 	 */
359 	struct rlimit rlim[RLIM_NLIMITS];
360 
361 	struct list_head cpu_timers[3];
362 
363 	/* keep the process-shared keyrings here so that they do the right
364 	 * thing in threads created with CLONE_THREAD */
365 #ifdef CONFIG_KEYS
366 	struct key *session_keyring;	/* keyring inherited over fork */
367 	struct key *process_keyring;	/* keyring private to this process */
368 #endif
369 };
370 
371 /*
372  * Bits in flags field of signal_struct.
373  */
374 #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
375 #define SIGNAL_STOP_DEQUEUED	0x00000002 /* stop signal dequeued */
376 #define SIGNAL_STOP_CONTINUED	0x00000004 /* SIGCONT since WCONTINUED reap */
377 #define SIGNAL_GROUP_EXIT	0x00000008 /* group exit in progress */
378 
379 
380 /*
381  * Priority of a process goes from 0..MAX_PRIO-1, valid RT
382  * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL tasks are
383  * in the range MAX_RT_PRIO..MAX_PRIO-1. Priority values
384  * are inverted: lower p->prio value means higher priority.
385  *
386  * The MAX_USER_RT_PRIO value allows the actual maximum
387  * RT priority to be separate from the value exported to
388  * user-space.  This allows kernel threads to set their
389  * priority to a value higher than any user task. Note:
390  * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
391  */
392 
393 #define MAX_USER_RT_PRIO	100
394 #define MAX_RT_PRIO		MAX_USER_RT_PRIO
395 
396 #define MAX_PRIO		(MAX_RT_PRIO + 40)
397 
398 #define rt_task(p)		(unlikely((p)->prio < MAX_RT_PRIO))
399 
400 /*
401  * Some day this will be a full-fledged user tracking system..
402  */
403 struct user_struct {
404 	atomic_t __count;	/* reference count */
405 	atomic_t processes;	/* How many processes does this user have? */
406 	atomic_t files;		/* How many open files does this user have? */
407 	atomic_t sigpending;	/* How many pending signals does this user have? */
408 	/* protected by mq_lock	*/
409 	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
410 	unsigned long locked_shm; /* How many pages of mlocked shm ? */
411 
412 #ifdef CONFIG_KEYS
413 	struct key *uid_keyring;	/* UID specific keyring */
414 	struct key *session_keyring;	/* UID's default session keyring */
415 #endif
416 
417 	/* Hash table maintenance information */
418 	struct list_head uidhash_list;
419 	uid_t uid;
420 };
421 
422 extern struct user_struct *find_user(uid_t);
423 
424 extern struct user_struct root_user;
425 #define INIT_USER (&root_user)
426 
427 typedef struct prio_array prio_array_t;
428 struct backing_dev_info;
429 struct reclaim_state;
430 
431 #ifdef CONFIG_SCHEDSTATS
432 struct sched_info {
433 	/* cumulative counters */
434 	unsigned long	cpu_time,	/* time spent on the cpu */
435 			run_delay,	/* time spent waiting on a runqueue */
436 			pcnt;		/* # of timeslices run on this cpu */
437 
438 	/* timestamps */
439 	unsigned long	last_arrival,	/* when we last ran on a cpu */
440 			last_queued;	/* when we were last queued to run */
441 };
442 
443 extern struct file_operations proc_schedstat_operations;
444 #endif
445 
446 enum idle_type
447 {
448 	SCHED_IDLE,
449 	NOT_IDLE,
450 	NEWLY_IDLE,
451 	MAX_IDLE_TYPES
452 };
453 
454 /*
455  * sched-domains (multiprocessor balancing) declarations:
456  */
457 #ifdef CONFIG_SMP
458 #define SCHED_LOAD_SCALE	128UL	/* increase resolution of load */
459 
460 #define SD_LOAD_BALANCE		1	/* Do load balancing on this domain. */
461 #define SD_BALANCE_NEWIDLE	2	/* Balance when about to become idle */
462 #define SD_BALANCE_EXEC		4	/* Balance on exec */
463 #define SD_WAKE_IDLE		8	/* Wake to idle CPU on task wakeup */
464 #define SD_WAKE_AFFINE		16	/* Wake task to waking CPU */
465 #define SD_WAKE_BALANCE		32	/* Perform balancing at task wakeup */
466 #define SD_SHARE_CPUPOWER	64	/* Domain members share cpu power */
467 
468 struct sched_group {
469 	struct sched_group *next;	/* Must be a circular list */
470 	cpumask_t cpumask;
471 
472 	/*
473 	 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
474 	 * single CPU. This is read only (except for setup, hotplug CPU).
475 	 */
476 	unsigned long cpu_power;
477 };
478 
479 struct sched_domain {
480 	/* These fields must be setup */
481 	struct sched_domain *parent;	/* top domain must be null terminated */
482 	struct sched_group *groups;	/* the balancing groups of the domain */
483 	cpumask_t span;			/* span of all CPUs in this domain */
484 	unsigned long min_interval;	/* Minimum balance interval ms */
485 	unsigned long max_interval;	/* Maximum balance interval ms */
486 	unsigned int busy_factor;	/* less balancing by factor if busy */
487 	unsigned int imbalance_pct;	/* No balance until over watermark */
488 	unsigned long long cache_hot_time; /* Task considered cache hot (ns) */
489 	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
490 	unsigned int per_cpu_gain;	/* CPU % gained by adding domain cpus */
491 	int flags;			/* See SD_* */
492 
493 	/* Runtime fields. */
494 	unsigned long last_balance;	/* init to jiffies. units in jiffies */
495 	unsigned int balance_interval;	/* initialise to 1. units in ms. */
496 	unsigned int nr_balance_failed; /* initialise to 0 */
497 
498 #ifdef CONFIG_SCHEDSTATS
499 	/* load_balance() stats */
500 	unsigned long lb_cnt[MAX_IDLE_TYPES];
501 	unsigned long lb_failed[MAX_IDLE_TYPES];
502 	unsigned long lb_balanced[MAX_IDLE_TYPES];
503 	unsigned long lb_imbalance[MAX_IDLE_TYPES];
504 	unsigned long lb_gained[MAX_IDLE_TYPES];
505 	unsigned long lb_hot_gained[MAX_IDLE_TYPES];
506 	unsigned long lb_nobusyg[MAX_IDLE_TYPES];
507 	unsigned long lb_nobusyq[MAX_IDLE_TYPES];
508 
509 	/* Active load balancing */
510 	unsigned long alb_cnt;
511 	unsigned long alb_failed;
512 	unsigned long alb_pushed;
513 
514 	/* sched_balance_exec() stats */
515 	unsigned long sbe_attempts;
516 	unsigned long sbe_pushed;
517 
518 	/* try_to_wake_up() stats */
519 	unsigned long ttwu_wake_remote;
520 	unsigned long ttwu_move_affine;
521 	unsigned long ttwu_move_balance;
522 #endif
523 };
524 
525 #ifdef ARCH_HAS_SCHED_DOMAIN
526 /* Useful helpers that arch setup code may use. Defined in kernel/sched.c */
527 extern cpumask_t cpu_isolated_map;
528 extern void init_sched_build_groups(struct sched_group groups[],
529 	                        cpumask_t span, int (*group_fn)(int cpu));
530 extern void cpu_attach_domain(struct sched_domain *sd, int cpu);
531 #endif /* ARCH_HAS_SCHED_DOMAIN */
532 #endif /* CONFIG_SMP */
533 
534 
535 struct io_context;			/* See blkdev.h */
536 void exit_io_context(void);
537 struct cpuset;
538 
539 #define NGROUPS_SMALL		32
540 #define NGROUPS_PER_BLOCK	((int)(PAGE_SIZE / sizeof(gid_t)))
541 struct group_info {
542 	int ngroups;
543 	atomic_t usage;
544 	gid_t small_block[NGROUPS_SMALL];
545 	int nblocks;
546 	gid_t *blocks[0];
547 };
548 
549 /*
550  * get_group_info() must be called with the owning task locked (via task_lock())
551  * when task != current.  The reason being that the vast majority of callers are
552  * looking at current->group_info, which can not be changed except by the
553  * current task.  Changing current->group_info requires the task lock, too.
554  */
555 #define get_group_info(group_info) do { \
556 	atomic_inc(&(group_info)->usage); \
557 } while (0)
558 
559 #define put_group_info(group_info) do { \
560 	if (atomic_dec_and_test(&(group_info)->usage)) \
561 		groups_free(group_info); \
562 } while (0)
563 
564 extern struct group_info *groups_alloc(int gidsetsize);
565 extern void groups_free(struct group_info *group_info);
566 extern int set_current_groups(struct group_info *group_info);
567 extern int groups_search(struct group_info *group_info, gid_t grp);
568 /* access the groups "array" with this macro */
569 #define GROUP_AT(gi, i) \
570     ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
571 
572 
573 struct audit_context;		/* See audit.c */
574 struct mempolicy;
575 
576 struct task_struct {
577 	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
578 	struct thread_info *thread_info;
579 	atomic_t usage;
580 	unsigned long flags;	/* per process flags, defined below */
581 	unsigned long ptrace;
582 
583 	int lock_depth;		/* BKL lock depth */
584 
585 	int prio, static_prio;
586 	struct list_head run_list;
587 	prio_array_t *array;
588 
589 	unsigned long sleep_avg;
590 	unsigned long long timestamp, last_ran;
591 	unsigned long long sched_time; /* sched_clock time spent running */
592 	int activated;
593 
594 	unsigned long policy;
595 	cpumask_t cpus_allowed;
596 	unsigned int time_slice, first_time_slice;
597 
598 #ifdef CONFIG_SCHEDSTATS
599 	struct sched_info sched_info;
600 #endif
601 
602 	struct list_head tasks;
603 	/*
604 	 * ptrace_list/ptrace_children forms the list of my children
605 	 * that were stolen by a ptracer.
606 	 */
607 	struct list_head ptrace_children;
608 	struct list_head ptrace_list;
609 
610 	struct mm_struct *mm, *active_mm;
611 
612 /* task state */
613 	struct linux_binfmt *binfmt;
614 	long exit_state;
615 	int exit_code, exit_signal;
616 	int pdeath_signal;  /*  The signal sent when the parent dies  */
617 	/* ??? */
618 	unsigned long personality;
619 	unsigned did_exec:1;
620 	pid_t pid;
621 	pid_t tgid;
622 	/*
623 	 * pointers to (original) parent process, youngest child, younger sibling,
624 	 * older sibling, respectively.  (p->father can be replaced with
625 	 * p->parent->pid)
626 	 */
627 	struct task_struct *real_parent; /* real parent process (when being debugged) */
628 	struct task_struct *parent;	/* parent process */
629 	/*
630 	 * children/sibling forms the list of my children plus the
631 	 * tasks I'm ptracing.
632 	 */
633 	struct list_head children;	/* list of my children */
634 	struct list_head sibling;	/* linkage in my parent's children list */
635 	struct task_struct *group_leader;	/* threadgroup leader */
636 
637 	/* PID/PID hash table linkage. */
638 	struct pid pids[PIDTYPE_MAX];
639 
640 	struct completion *vfork_done;		/* for vfork() */
641 	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
642 	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
643 
644 	unsigned long rt_priority;
645 	cputime_t utime, stime;
646 	unsigned long nvcsw, nivcsw; /* context switch counts */
647 	struct timespec start_time;
648 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
649 	unsigned long min_flt, maj_flt;
650 
651   	cputime_t it_prof_expires, it_virt_expires;
652 	unsigned long long it_sched_expires;
653 	struct list_head cpu_timers[3];
654 
655 /* process credentials */
656 	uid_t uid,euid,suid,fsuid;
657 	gid_t gid,egid,sgid,fsgid;
658 	struct group_info *group_info;
659 	kernel_cap_t   cap_effective, cap_inheritable, cap_permitted;
660 	unsigned keep_capabilities:1;
661 	struct user_struct *user;
662 #ifdef CONFIG_KEYS
663 	struct key *thread_keyring;	/* keyring private to this thread */
664 	unsigned char jit_keyring;	/* default keyring to attach requested keys to */
665 #endif
666 	int oomkilladj; /* OOM kill score adjustment (bit shift). */
667 	char comm[TASK_COMM_LEN]; /* executable name excluding path
668 				     - access with [gs]et_task_comm (which lock
669 				       it with task_lock())
670 				     - initialized normally by flush_old_exec */
671 /* file system info */
672 	int link_count, total_link_count;
673 /* ipc stuff */
674 	struct sysv_sem sysvsem;
675 /* CPU-specific state of this task */
676 	struct thread_struct thread;
677 /* filesystem information */
678 	struct fs_struct *fs;
679 /* open file information */
680 	struct files_struct *files;
681 /* namespace */
682 	struct namespace *namespace;
683 /* signal handlers */
684 	struct signal_struct *signal;
685 	struct sighand_struct *sighand;
686 
687 	sigset_t blocked, real_blocked;
688 	struct sigpending pending;
689 
690 	unsigned long sas_ss_sp;
691 	size_t sas_ss_size;
692 	int (*notifier)(void *priv);
693 	void *notifier_data;
694 	sigset_t *notifier_mask;
695 
696 	void *security;
697 	struct audit_context *audit_context;
698 	seccomp_t seccomp;
699 
700 /* Thread group tracking */
701    	u32 parent_exec_id;
702    	u32 self_exec_id;
703 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
704 	spinlock_t alloc_lock;
705 /* Protection of proc_dentry: nesting proc_lock, dcache_lock, write_lock_irq(&tasklist_lock); */
706 	spinlock_t proc_lock;
707 /* context-switch lock */
708 	spinlock_t switch_lock;
709 
710 /* journalling filesystem info */
711 	void *journal_info;
712 
713 /* VM state */
714 	struct reclaim_state *reclaim_state;
715 
716 	struct dentry *proc_dentry;
717 	struct backing_dev_info *backing_dev_info;
718 
719 	struct io_context *io_context;
720 
721 	unsigned long ptrace_message;
722 	siginfo_t *last_siginfo; /* For ptrace use.  */
723 /*
724  * current io wait handle: wait queue entry to use for io waits
725  * If this thread is processing aio, this points at the waitqueue
726  * inside the currently handled kiocb. It may be NULL (i.e. default
727  * to a stack based synchronous wait) if its doing sync IO.
728  */
729 	wait_queue_t *io_wait;
730 /* i/o counters(bytes read/written, #syscalls */
731 	u64 rchar, wchar, syscr, syscw;
732 #if defined(CONFIG_BSD_PROCESS_ACCT)
733 	u64 acct_rss_mem1;	/* accumulated rss usage */
734 	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
735 	clock_t acct_stimexpd;	/* clock_t-converted stime since last update */
736 #endif
737 #ifdef CONFIG_NUMA
738   	struct mempolicy *mempolicy;
739 	short il_next;
740 #endif
741 #ifdef CONFIG_CPUSETS
742 	struct cpuset *cpuset;
743 	nodemask_t mems_allowed;
744 	int cpuset_mems_generation;
745 #endif
746 };
747 
748 static inline pid_t process_group(struct task_struct *tsk)
749 {
750 	return tsk->signal->pgrp;
751 }
752 
753 /**
754  * pid_alive - check that a task structure is not stale
755  * @p: Task structure to be checked.
756  *
757  * Test if a process is not yet dead (at most zombie state)
758  * If pid_alive fails, then pointers within the task structure
759  * can be stale and must not be dereferenced.
760  */
761 static inline int pid_alive(struct task_struct *p)
762 {
763 	return p->pids[PIDTYPE_PID].nr != 0;
764 }
765 
766 extern void free_task(struct task_struct *tsk);
767 extern void __put_task_struct(struct task_struct *tsk);
768 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
769 #define put_task_struct(tsk) \
770 do { if (atomic_dec_and_test(&(tsk)->usage)) __put_task_struct(tsk); } while(0)
771 
772 /*
773  * Per process flags
774  */
775 #define PF_ALIGNWARN	0x00000001	/* Print alignment warning msgs */
776 					/* Not implemented yet, only for 486*/
777 #define PF_STARTING	0x00000002	/* being created */
778 #define PF_EXITING	0x00000004	/* getting shut down */
779 #define PF_DEAD		0x00000008	/* Dead */
780 #define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
781 #define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
782 #define PF_DUMPCORE	0x00000200	/* dumped core */
783 #define PF_SIGNALED	0x00000400	/* killed by a signal */
784 #define PF_MEMALLOC	0x00000800	/* Allocating memory */
785 #define PF_FLUSHER	0x00001000	/* responsible for disk writeback */
786 #define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
787 #define PF_FREEZE	0x00004000	/* this task is being frozen for suspend now */
788 #define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
789 #define PF_FROZEN	0x00010000	/* frozen for system suspend */
790 #define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
791 #define PF_KSWAPD	0x00040000	/* I am kswapd */
792 #define PF_SWAPOFF	0x00080000	/* I am in swapoff */
793 #define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
794 #define PF_SYNCWRITE	0x00200000	/* I am doing a sync write */
795 #define PF_BORROWED_MM	0x00400000	/* I am a kthread doing use_mm */
796 #define PF_RANDOMIZE	0x00800000	/* randomize virtual address space */
797 
798 /*
799  * Only the _current_ task can read/write to tsk->flags, but other
800  * tasks can access tsk->flags in readonly mode for example
801  * with tsk_used_math (like during threaded core dumping).
802  * There is however an exception to this rule during ptrace
803  * or during fork: the ptracer task is allowed to write to the
804  * child->flags of its traced child (same goes for fork, the parent
805  * can write to the child->flags), because we're guaranteed the
806  * child is not running and in turn not changing child->flags
807  * at the same time the parent does it.
808  */
809 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
810 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
811 #define clear_used_math() clear_stopped_child_used_math(current)
812 #define set_used_math() set_stopped_child_used_math(current)
813 #define conditional_stopped_child_used_math(condition, child) \
814 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
815 #define conditional_used_math(condition) \
816 	conditional_stopped_child_used_math(condition, current)
817 #define copy_to_stopped_child_used_math(child) \
818 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
819 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
820 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
821 #define used_math() tsk_used_math(current)
822 
823 #ifdef CONFIG_SMP
824 extern int set_cpus_allowed(task_t *p, cpumask_t new_mask);
825 #else
826 static inline int set_cpus_allowed(task_t *p, cpumask_t new_mask)
827 {
828 	if (!cpus_intersects(new_mask, cpu_online_map))
829 		return -EINVAL;
830 	return 0;
831 }
832 #endif
833 
834 extern unsigned long long sched_clock(void);
835 extern unsigned long long current_sched_time(const task_t *current_task);
836 
837 /* sched_exec is called by processes performing an exec */
838 #ifdef CONFIG_SMP
839 extern void sched_exec(void);
840 #else
841 #define sched_exec()   {}
842 #endif
843 
844 #ifdef CONFIG_HOTPLUG_CPU
845 extern void idle_task_exit(void);
846 #else
847 static inline void idle_task_exit(void) {}
848 #endif
849 
850 extern void sched_idle_next(void);
851 extern void set_user_nice(task_t *p, long nice);
852 extern int task_prio(const task_t *p);
853 extern int task_nice(const task_t *p);
854 extern int can_nice(const task_t *p, const int nice);
855 extern int task_curr(const task_t *p);
856 extern int idle_cpu(int cpu);
857 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
858 extern task_t *idle_task(int cpu);
859 
860 void yield(void);
861 
862 /*
863  * The default (Linux) execution domain.
864  */
865 extern struct exec_domain	default_exec_domain;
866 
867 union thread_union {
868 	struct thread_info thread_info;
869 	unsigned long stack[THREAD_SIZE/sizeof(long)];
870 };
871 
872 #ifndef __HAVE_ARCH_KSTACK_END
873 static inline int kstack_end(void *addr)
874 {
875 	/* Reliable end of stack detection:
876 	 * Some APM bios versions misalign the stack
877 	 */
878 	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
879 }
880 #endif
881 
882 extern union thread_union init_thread_union;
883 extern struct task_struct init_task;
884 
885 extern struct   mm_struct init_mm;
886 
887 #define find_task_by_pid(nr)	find_task_by_pid_type(PIDTYPE_PID, nr)
888 extern struct task_struct *find_task_by_pid_type(int type, int pid);
889 extern void set_special_pids(pid_t session, pid_t pgrp);
890 extern void __set_special_pids(pid_t session, pid_t pgrp);
891 
892 /* per-UID process charging. */
893 extern struct user_struct * alloc_uid(uid_t);
894 static inline struct user_struct *get_uid(struct user_struct *u)
895 {
896 	atomic_inc(&u->__count);
897 	return u;
898 }
899 extern void free_uid(struct user_struct *);
900 extern void switch_uid(struct user_struct *);
901 
902 #include <asm/current.h>
903 
904 extern void do_timer(struct pt_regs *);
905 
906 extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state));
907 extern int FASTCALL(wake_up_process(struct task_struct * tsk));
908 extern void FASTCALL(wake_up_new_task(struct task_struct * tsk,
909 						unsigned long clone_flags));
910 #ifdef CONFIG_SMP
911  extern void kick_process(struct task_struct *tsk);
912 #else
913  static inline void kick_process(struct task_struct *tsk) { }
914 #endif
915 extern void FASTCALL(sched_fork(task_t * p));
916 extern void FASTCALL(sched_exit(task_t * p));
917 
918 extern int in_group_p(gid_t);
919 extern int in_egroup_p(gid_t);
920 
921 extern void proc_caches_init(void);
922 extern void flush_signals(struct task_struct *);
923 extern void flush_signal_handlers(struct task_struct *, int force_default);
924 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
925 
926 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
927 {
928 	unsigned long flags;
929 	int ret;
930 
931 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
932 	ret = dequeue_signal(tsk, mask, info);
933 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
934 
935 	return ret;
936 }
937 
938 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
939 			      sigset_t *mask);
940 extern void unblock_all_signals(void);
941 extern void release_task(struct task_struct * p);
942 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
943 extern int send_group_sig_info(int, struct siginfo *, struct task_struct *);
944 extern int force_sigsegv(int, struct task_struct *);
945 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
946 extern int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp);
947 extern int kill_pg_info(int, struct siginfo *, pid_t);
948 extern int kill_proc_info(int, struct siginfo *, pid_t);
949 extern void do_notify_parent(struct task_struct *, int);
950 extern void force_sig(int, struct task_struct *);
951 extern void force_sig_specific(int, struct task_struct *);
952 extern int send_sig(int, struct task_struct *, int);
953 extern void zap_other_threads(struct task_struct *p);
954 extern int kill_pg(pid_t, int, int);
955 extern int kill_sl(pid_t, int, int);
956 extern int kill_proc(pid_t, int, int);
957 extern struct sigqueue *sigqueue_alloc(void);
958 extern void sigqueue_free(struct sigqueue *);
959 extern int send_sigqueue(int, struct sigqueue *,  struct task_struct *);
960 extern int send_group_sigqueue(int, struct sigqueue *,  struct task_struct *);
961 extern int do_sigaction(int, const struct k_sigaction *, struct k_sigaction *);
962 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
963 
964 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
965 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
966 #define SEND_SIG_PRIV	((struct siginfo *) 1)
967 #define SEND_SIG_FORCED	((struct siginfo *) 2)
968 
969 /* True if we are on the alternate signal stack.  */
970 
971 static inline int on_sig_stack(unsigned long sp)
972 {
973 	return (sp - current->sas_ss_sp < current->sas_ss_size);
974 }
975 
976 static inline int sas_ss_flags(unsigned long sp)
977 {
978 	return (current->sas_ss_size == 0 ? SS_DISABLE
979 		: on_sig_stack(sp) ? SS_ONSTACK : 0);
980 }
981 
982 
983 #ifdef CONFIG_SECURITY
984 /* code is in security.c */
985 extern int capable(int cap);
986 #else
987 static inline int capable(int cap)
988 {
989 	if (cap_raised(current->cap_effective, cap)) {
990 		current->flags |= PF_SUPERPRIV;
991 		return 1;
992 	}
993 	return 0;
994 }
995 #endif
996 
997 /*
998  * Routines for handling mm_structs
999  */
1000 extern struct mm_struct * mm_alloc(void);
1001 
1002 /* mmdrop drops the mm and the page tables */
1003 extern void FASTCALL(__mmdrop(struct mm_struct *));
1004 static inline void mmdrop(struct mm_struct * mm)
1005 {
1006 	if (atomic_dec_and_test(&mm->mm_count))
1007 		__mmdrop(mm);
1008 }
1009 
1010 /* mmput gets rid of the mappings and all user-space */
1011 extern void mmput(struct mm_struct *);
1012 /* Grab a reference to a task's mm, if it is not already going away */
1013 extern struct mm_struct *get_task_mm(struct task_struct *task);
1014 /* Remove the current tasks stale references to the old mm_struct */
1015 extern void mm_release(struct task_struct *, struct mm_struct *);
1016 
1017 extern int  copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1018 extern void flush_thread(void);
1019 extern void exit_thread(void);
1020 
1021 extern void exit_files(struct task_struct *);
1022 extern void exit_signal(struct task_struct *);
1023 extern void __exit_signal(struct task_struct *);
1024 extern void exit_sighand(struct task_struct *);
1025 extern void __exit_sighand(struct task_struct *);
1026 extern void exit_itimers(struct signal_struct *);
1027 
1028 extern NORET_TYPE void do_group_exit(int);
1029 
1030 extern void daemonize(const char *, ...);
1031 extern int allow_signal(int);
1032 extern int disallow_signal(int);
1033 extern task_t *child_reaper;
1034 
1035 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1036 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1037 task_t *fork_idle(int);
1038 
1039 extern void set_task_comm(struct task_struct *tsk, char *from);
1040 extern void get_task_comm(char *to, struct task_struct *tsk);
1041 
1042 #ifdef CONFIG_SMP
1043 extern void wait_task_inactive(task_t * p);
1044 #else
1045 #define wait_task_inactive(p)	do { } while (0)
1046 #endif
1047 
1048 #define remove_parent(p)	list_del_init(&(p)->sibling)
1049 #define add_parent(p, parent)	list_add_tail(&(p)->sibling,&(parent)->children)
1050 
1051 #define REMOVE_LINKS(p) do {					\
1052 	if (thread_group_leader(p))				\
1053 		list_del_init(&(p)->tasks);			\
1054 	remove_parent(p);					\
1055 	} while (0)
1056 
1057 #define SET_LINKS(p) do {					\
1058 	if (thread_group_leader(p))				\
1059 		list_add_tail(&(p)->tasks,&init_task.tasks);	\
1060 	add_parent(p, (p)->parent);				\
1061 	} while (0)
1062 
1063 #define next_task(p)	list_entry((p)->tasks.next, struct task_struct, tasks)
1064 #define prev_task(p)	list_entry((p)->tasks.prev, struct task_struct, tasks)
1065 
1066 #define for_each_process(p) \
1067 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1068 
1069 /*
1070  * Careful: do_each_thread/while_each_thread is a double loop so
1071  *          'break' will not work as expected - use goto instead.
1072  */
1073 #define do_each_thread(g, t) \
1074 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1075 
1076 #define while_each_thread(g, t) \
1077 	while ((t = next_thread(t)) != g)
1078 
1079 extern task_t * FASTCALL(next_thread(const task_t *p));
1080 
1081 #define thread_group_leader(p)	(p->pid == p->tgid)
1082 
1083 static inline int thread_group_empty(task_t *p)
1084 {
1085 	return list_empty(&p->pids[PIDTYPE_TGID].pid_list);
1086 }
1087 
1088 #define delay_group_leader(p) \
1089 		(thread_group_leader(p) && !thread_group_empty(p))
1090 
1091 extern void unhash_process(struct task_struct *p);
1092 
1093 /*
1094  * Protects ->fs, ->files, ->mm, ->ptrace, ->group_info, ->comm, keyring
1095  * subscriptions and synchronises with wait4().  Also used in procfs.
1096  *
1097  * Nests both inside and outside of read_lock(&tasklist_lock).
1098  * It must not be nested with write_lock_irq(&tasklist_lock),
1099  * neither inside nor outside.
1100  */
1101 static inline void task_lock(struct task_struct *p)
1102 {
1103 	spin_lock(&p->alloc_lock);
1104 }
1105 
1106 static inline void task_unlock(struct task_struct *p)
1107 {
1108 	spin_unlock(&p->alloc_lock);
1109 }
1110 
1111 /* set thread flags in other task's structures
1112  * - see asm/thread_info.h for TIF_xxxx flags available
1113  */
1114 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1115 {
1116 	set_ti_thread_flag(tsk->thread_info,flag);
1117 }
1118 
1119 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1120 {
1121 	clear_ti_thread_flag(tsk->thread_info,flag);
1122 }
1123 
1124 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1125 {
1126 	return test_and_set_ti_thread_flag(tsk->thread_info,flag);
1127 }
1128 
1129 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1130 {
1131 	return test_and_clear_ti_thread_flag(tsk->thread_info,flag);
1132 }
1133 
1134 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1135 {
1136 	return test_ti_thread_flag(tsk->thread_info,flag);
1137 }
1138 
1139 static inline void set_tsk_need_resched(struct task_struct *tsk)
1140 {
1141 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1142 }
1143 
1144 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1145 {
1146 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1147 }
1148 
1149 static inline int signal_pending(struct task_struct *p)
1150 {
1151 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1152 }
1153 
1154 static inline int need_resched(void)
1155 {
1156 	return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1157 }
1158 
1159 /*
1160  * cond_resched() and cond_resched_lock(): latency reduction via
1161  * explicit rescheduling in places that are safe. The return
1162  * value indicates whether a reschedule was done in fact.
1163  * cond_resched_lock() will drop the spinlock before scheduling,
1164  * cond_resched_softirq() will enable bhs before scheduling.
1165  */
1166 extern int cond_resched(void);
1167 extern int cond_resched_lock(spinlock_t * lock);
1168 extern int cond_resched_softirq(void);
1169 
1170 /*
1171  * Does a critical section need to be broken due to another
1172  * task waiting?:
1173  */
1174 #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP)
1175 # define need_lockbreak(lock) ((lock)->break_lock)
1176 #else
1177 # define need_lockbreak(lock) 0
1178 #endif
1179 
1180 /*
1181  * Does a critical section need to be broken due to another
1182  * task waiting or preemption being signalled:
1183  */
1184 static inline int lock_need_resched(spinlock_t *lock)
1185 {
1186 	if (need_lockbreak(lock) || need_resched())
1187 		return 1;
1188 	return 0;
1189 }
1190 
1191 /* Reevaluate whether the task has signals pending delivery.
1192    This is required every time the blocked sigset_t changes.
1193    callers must hold sighand->siglock.  */
1194 
1195 extern FASTCALL(void recalc_sigpending_tsk(struct task_struct *t));
1196 extern void recalc_sigpending(void);
1197 
1198 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
1199 
1200 /*
1201  * Wrappers for p->thread_info->cpu access. No-op on UP.
1202  */
1203 #ifdef CONFIG_SMP
1204 
1205 static inline unsigned int task_cpu(const struct task_struct *p)
1206 {
1207 	return p->thread_info->cpu;
1208 }
1209 
1210 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1211 {
1212 	p->thread_info->cpu = cpu;
1213 }
1214 
1215 #else
1216 
1217 static inline unsigned int task_cpu(const struct task_struct *p)
1218 {
1219 	return 0;
1220 }
1221 
1222 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1223 {
1224 }
1225 
1226 #endif /* CONFIG_SMP */
1227 
1228 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
1229 extern void arch_pick_mmap_layout(struct mm_struct *mm);
1230 #else
1231 static inline void arch_pick_mmap_layout(struct mm_struct *mm)
1232 {
1233 	mm->mmap_base = TASK_UNMAPPED_BASE;
1234 	mm->get_unmapped_area = arch_get_unmapped_area;
1235 	mm->unmap_area = arch_unmap_area;
1236 }
1237 #endif
1238 
1239 extern long sched_setaffinity(pid_t pid, cpumask_t new_mask);
1240 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
1241 
1242 #ifdef CONFIG_MAGIC_SYSRQ
1243 
1244 extern void normalize_rt_tasks(void);
1245 
1246 #endif
1247 
1248 /* try_to_freeze
1249  *
1250  * Checks whether we need to enter the refrigerator
1251  * and returns 1 if we did so.
1252  */
1253 #ifdef CONFIG_PM
1254 extern void refrigerator(unsigned long);
1255 extern int freeze_processes(void);
1256 extern void thaw_processes(void);
1257 
1258 static inline int try_to_freeze(unsigned long refrigerator_flags)
1259 {
1260 	if (unlikely(current->flags & PF_FREEZE)) {
1261 		refrigerator(refrigerator_flags);
1262 		return 1;
1263 	} else
1264 		return 0;
1265 }
1266 #else
1267 static inline void refrigerator(unsigned long flag) {}
1268 static inline int freeze_processes(void) { BUG(); return 0; }
1269 static inline void thaw_processes(void) {}
1270 
1271 static inline int try_to_freeze(unsigned long refrigerator_flags)
1272 {
1273 	return 0;
1274 }
1275 #endif /* CONFIG_PM */
1276 #endif /* __KERNEL__ */
1277 
1278 #endif
1279