1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 /* 5 * cloning flags: 6 */ 7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15 #define CLONE_THREAD 0x00010000 /* Same thread group? */ 16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24 /* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state) 25 and is now available for re-use. */ 26 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 27 #define CLONE_NEWIPC 0x08000000 /* New ipcs */ 28 #define CLONE_NEWUSER 0x10000000 /* New user namespace */ 29 #define CLONE_NEWPID 0x20000000 /* New pid namespace */ 30 #define CLONE_NEWNET 0x40000000 /* New network namespace */ 31 #define CLONE_IO 0x80000000 /* Clone io context */ 32 33 /* 34 * Scheduling policies 35 */ 36 #define SCHED_NORMAL 0 37 #define SCHED_FIFO 1 38 #define SCHED_RR 2 39 #define SCHED_BATCH 3 40 /* SCHED_ISO: reserved but not implemented yet */ 41 #define SCHED_IDLE 5 42 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */ 43 #define SCHED_RESET_ON_FORK 0x40000000 44 45 #ifdef __KERNEL__ 46 47 struct sched_param { 48 int sched_priority; 49 }; 50 51 #include <asm/param.h> /* for HZ */ 52 53 #include <linux/capability.h> 54 #include <linux/threads.h> 55 #include <linux/kernel.h> 56 #include <linux/types.h> 57 #include <linux/timex.h> 58 #include <linux/jiffies.h> 59 #include <linux/rbtree.h> 60 #include <linux/thread_info.h> 61 #include <linux/cpumask.h> 62 #include <linux/errno.h> 63 #include <linux/nodemask.h> 64 #include <linux/mm_types.h> 65 66 #include <asm/system.h> 67 #include <asm/page.h> 68 #include <asm/ptrace.h> 69 #include <asm/cputime.h> 70 71 #include <linux/smp.h> 72 #include <linux/sem.h> 73 #include <linux/signal.h> 74 #include <linux/compiler.h> 75 #include <linux/completion.h> 76 #include <linux/pid.h> 77 #include <linux/percpu.h> 78 #include <linux/topology.h> 79 #include <linux/proportions.h> 80 #include <linux/seccomp.h> 81 #include <linux/rcupdate.h> 82 #include <linux/rculist.h> 83 #include <linux/rtmutex.h> 84 85 #include <linux/time.h> 86 #include <linux/param.h> 87 #include <linux/resource.h> 88 #include <linux/timer.h> 89 #include <linux/hrtimer.h> 90 #include <linux/task_io_accounting.h> 91 #include <linux/latencytop.h> 92 #include <linux/cred.h> 93 94 #include <asm/processor.h> 95 96 struct exec_domain; 97 struct futex_pi_state; 98 struct robust_list_head; 99 struct bio_list; 100 struct fs_struct; 101 struct perf_event_context; 102 struct blk_plug; 103 104 /* 105 * List of flags we want to share for kernel threads, 106 * if only because they are not used by them anyway. 107 */ 108 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 109 110 /* 111 * These are the constant used to fake the fixed-point load-average 112 * counting. Some notes: 113 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 114 * a load-average precision of 10 bits integer + 11 bits fractional 115 * - if you want to count load-averages more often, you need more 116 * precision, or rounding will get you. With 2-second counting freq, 117 * the EXP_n values would be 1981, 2034 and 2043 if still using only 118 * 11 bit fractions. 119 */ 120 extern unsigned long avenrun[]; /* Load averages */ 121 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 122 123 #define FSHIFT 11 /* nr of bits of precision */ 124 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 125 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 126 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 127 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 128 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 129 130 #define CALC_LOAD(load,exp,n) \ 131 load *= exp; \ 132 load += n*(FIXED_1-exp); \ 133 load >>= FSHIFT; 134 135 extern unsigned long total_forks; 136 extern int nr_threads; 137 DECLARE_PER_CPU(unsigned long, process_counts); 138 extern int nr_processes(void); 139 extern unsigned long nr_running(void); 140 extern unsigned long nr_uninterruptible(void); 141 extern unsigned long nr_iowait(void); 142 extern unsigned long nr_iowait_cpu(int cpu); 143 extern unsigned long this_cpu_load(void); 144 145 146 extern void calc_global_load(unsigned long ticks); 147 148 extern unsigned long get_parent_ip(unsigned long addr); 149 150 struct seq_file; 151 struct cfs_rq; 152 struct task_group; 153 #ifdef CONFIG_SCHED_DEBUG 154 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 155 extern void proc_sched_set_task(struct task_struct *p); 156 extern void 157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 158 #else 159 static inline void 160 proc_sched_show_task(struct task_struct *p, struct seq_file *m) 161 { 162 } 163 static inline void proc_sched_set_task(struct task_struct *p) 164 { 165 } 166 static inline void 167 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 168 { 169 } 170 #endif 171 172 /* 173 * Task state bitmask. NOTE! These bits are also 174 * encoded in fs/proc/array.c: get_task_state(). 175 * 176 * We have two separate sets of flags: task->state 177 * is about runnability, while task->exit_state are 178 * about the task exiting. Confusing, but this way 179 * modifying one set can't modify the other one by 180 * mistake. 181 */ 182 #define TASK_RUNNING 0 183 #define TASK_INTERRUPTIBLE 1 184 #define TASK_UNINTERRUPTIBLE 2 185 #define __TASK_STOPPED 4 186 #define __TASK_TRACED 8 187 /* in tsk->exit_state */ 188 #define EXIT_ZOMBIE 16 189 #define EXIT_DEAD 32 190 /* in tsk->state again */ 191 #define TASK_DEAD 64 192 #define TASK_WAKEKILL 128 193 #define TASK_WAKING 256 194 #define TASK_STATE_MAX 512 195 196 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW" 197 198 extern char ___assert_task_state[1 - 2*!!( 199 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 200 201 /* Convenience macros for the sake of set_task_state */ 202 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 203 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 204 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 205 206 /* Convenience macros for the sake of wake_up */ 207 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 208 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 209 210 /* get_task_state() */ 211 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 212 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 213 __TASK_TRACED) 214 215 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 216 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 217 #define task_is_dead(task) ((task)->exit_state != 0) 218 #define task_is_stopped_or_traced(task) \ 219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 220 #define task_contributes_to_load(task) \ 221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 222 (task->flags & PF_FREEZING) == 0) 223 224 #define __set_task_state(tsk, state_value) \ 225 do { (tsk)->state = (state_value); } while (0) 226 #define set_task_state(tsk, state_value) \ 227 set_mb((tsk)->state, (state_value)) 228 229 /* 230 * set_current_state() includes a barrier so that the write of current->state 231 * is correctly serialised wrt the caller's subsequent test of whether to 232 * actually sleep: 233 * 234 * set_current_state(TASK_UNINTERRUPTIBLE); 235 * if (do_i_need_to_sleep()) 236 * schedule(); 237 * 238 * If the caller does not need such serialisation then use __set_current_state() 239 */ 240 #define __set_current_state(state_value) \ 241 do { current->state = (state_value); } while (0) 242 #define set_current_state(state_value) \ 243 set_mb(current->state, (state_value)) 244 245 /* Task command name length */ 246 #define TASK_COMM_LEN 16 247 248 #include <linux/spinlock.h> 249 250 /* 251 * This serializes "schedule()" and also protects 252 * the run-queue from deletions/modifications (but 253 * _adding_ to the beginning of the run-queue has 254 * a separate lock). 255 */ 256 extern rwlock_t tasklist_lock; 257 extern spinlock_t mmlist_lock; 258 259 struct task_struct; 260 261 #ifdef CONFIG_PROVE_RCU 262 extern int lockdep_tasklist_lock_is_held(void); 263 #endif /* #ifdef CONFIG_PROVE_RCU */ 264 265 extern void sched_init(void); 266 extern void sched_init_smp(void); 267 extern asmlinkage void schedule_tail(struct task_struct *prev); 268 extern void init_idle(struct task_struct *idle, int cpu); 269 extern void init_idle_bootup_task(struct task_struct *idle); 270 271 extern int runqueue_is_locked(int cpu); 272 273 extern cpumask_var_t nohz_cpu_mask; 274 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 275 extern void select_nohz_load_balancer(int stop_tick); 276 extern int get_nohz_timer_target(void); 277 #else 278 static inline void select_nohz_load_balancer(int stop_tick) { } 279 #endif 280 281 /* 282 * Only dump TASK_* tasks. (0 for all tasks) 283 */ 284 extern void show_state_filter(unsigned long state_filter); 285 286 static inline void show_state(void) 287 { 288 show_state_filter(0); 289 } 290 291 extern void show_regs(struct pt_regs *); 292 293 /* 294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 295 * task), SP is the stack pointer of the first frame that should be shown in the back 296 * trace (or NULL if the entire call-chain of the task should be shown). 297 */ 298 extern void show_stack(struct task_struct *task, unsigned long *sp); 299 300 void io_schedule(void); 301 long io_schedule_timeout(long timeout); 302 303 extern void cpu_init (void); 304 extern void trap_init(void); 305 extern void update_process_times(int user); 306 extern void scheduler_tick(void); 307 308 extern void sched_show_task(struct task_struct *p); 309 310 #ifdef CONFIG_LOCKUP_DETECTOR 311 extern void touch_softlockup_watchdog(void); 312 extern void touch_softlockup_watchdog_sync(void); 313 extern void touch_all_softlockup_watchdogs(void); 314 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 315 void __user *buffer, 316 size_t *lenp, loff_t *ppos); 317 extern unsigned int softlockup_panic; 318 extern int softlockup_thresh; 319 void lockup_detector_init(void); 320 #else 321 static inline void touch_softlockup_watchdog(void) 322 { 323 } 324 static inline void touch_softlockup_watchdog_sync(void) 325 { 326 } 327 static inline void touch_all_softlockup_watchdogs(void) 328 { 329 } 330 static inline void lockup_detector_init(void) 331 { 332 } 333 #endif 334 335 #ifdef CONFIG_DETECT_HUNG_TASK 336 extern unsigned int sysctl_hung_task_panic; 337 extern unsigned long sysctl_hung_task_check_count; 338 extern unsigned long sysctl_hung_task_timeout_secs; 339 extern unsigned long sysctl_hung_task_warnings; 340 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, 341 void __user *buffer, 342 size_t *lenp, loff_t *ppos); 343 #else 344 /* Avoid need for ifdefs elsewhere in the code */ 345 enum { sysctl_hung_task_timeout_secs = 0 }; 346 #endif 347 348 /* Attach to any functions which should be ignored in wchan output. */ 349 #define __sched __attribute__((__section__(".sched.text"))) 350 351 /* Linker adds these: start and end of __sched functions */ 352 extern char __sched_text_start[], __sched_text_end[]; 353 354 /* Is this address in the __sched functions? */ 355 extern int in_sched_functions(unsigned long addr); 356 357 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 358 extern signed long schedule_timeout(signed long timeout); 359 extern signed long schedule_timeout_interruptible(signed long timeout); 360 extern signed long schedule_timeout_killable(signed long timeout); 361 extern signed long schedule_timeout_uninterruptible(signed long timeout); 362 asmlinkage void schedule(void); 363 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner); 364 365 struct nsproxy; 366 struct user_namespace; 367 368 /* 369 * Default maximum number of active map areas, this limits the number of vmas 370 * per mm struct. Users can overwrite this number by sysctl but there is a 371 * problem. 372 * 373 * When a program's coredump is generated as ELF format, a section is created 374 * per a vma. In ELF, the number of sections is represented in unsigned short. 375 * This means the number of sections should be smaller than 65535 at coredump. 376 * Because the kernel adds some informative sections to a image of program at 377 * generating coredump, we need some margin. The number of extra sections is 378 * 1-3 now and depends on arch. We use "5" as safe margin, here. 379 */ 380 #define MAPCOUNT_ELF_CORE_MARGIN (5) 381 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 382 383 extern int sysctl_max_map_count; 384 385 #include <linux/aio.h> 386 387 #ifdef CONFIG_MMU 388 extern void arch_pick_mmap_layout(struct mm_struct *mm); 389 extern unsigned long 390 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 391 unsigned long, unsigned long); 392 extern unsigned long 393 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 394 unsigned long len, unsigned long pgoff, 395 unsigned long flags); 396 extern void arch_unmap_area(struct mm_struct *, unsigned long); 397 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 398 #else 399 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 400 #endif 401 402 403 extern void set_dumpable(struct mm_struct *mm, int value); 404 extern int get_dumpable(struct mm_struct *mm); 405 406 /* mm flags */ 407 /* dumpable bits */ 408 #define MMF_DUMPABLE 0 /* core dump is permitted */ 409 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 410 411 #define MMF_DUMPABLE_BITS 2 412 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 413 414 /* coredump filter bits */ 415 #define MMF_DUMP_ANON_PRIVATE 2 416 #define MMF_DUMP_ANON_SHARED 3 417 #define MMF_DUMP_MAPPED_PRIVATE 4 418 #define MMF_DUMP_MAPPED_SHARED 5 419 #define MMF_DUMP_ELF_HEADERS 6 420 #define MMF_DUMP_HUGETLB_PRIVATE 7 421 #define MMF_DUMP_HUGETLB_SHARED 8 422 423 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 424 #define MMF_DUMP_FILTER_BITS 7 425 #define MMF_DUMP_FILTER_MASK \ 426 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 427 #define MMF_DUMP_FILTER_DEFAULT \ 428 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 429 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 430 431 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 432 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 433 #else 434 # define MMF_DUMP_MASK_DEFAULT_ELF 0 435 #endif 436 /* leave room for more dump flags */ 437 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 438 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 439 440 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 441 442 struct sighand_struct { 443 atomic_t count; 444 struct k_sigaction action[_NSIG]; 445 spinlock_t siglock; 446 wait_queue_head_t signalfd_wqh; 447 }; 448 449 struct pacct_struct { 450 int ac_flag; 451 long ac_exitcode; 452 unsigned long ac_mem; 453 cputime_t ac_utime, ac_stime; 454 unsigned long ac_minflt, ac_majflt; 455 }; 456 457 struct cpu_itimer { 458 cputime_t expires; 459 cputime_t incr; 460 u32 error; 461 u32 incr_error; 462 }; 463 464 /** 465 * struct task_cputime - collected CPU time counts 466 * @utime: time spent in user mode, in &cputime_t units 467 * @stime: time spent in kernel mode, in &cputime_t units 468 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 469 * 470 * This structure groups together three kinds of CPU time that are 471 * tracked for threads and thread groups. Most things considering 472 * CPU time want to group these counts together and treat all three 473 * of them in parallel. 474 */ 475 struct task_cputime { 476 cputime_t utime; 477 cputime_t stime; 478 unsigned long long sum_exec_runtime; 479 }; 480 /* Alternate field names when used to cache expirations. */ 481 #define prof_exp stime 482 #define virt_exp utime 483 #define sched_exp sum_exec_runtime 484 485 #define INIT_CPUTIME \ 486 (struct task_cputime) { \ 487 .utime = cputime_zero, \ 488 .stime = cputime_zero, \ 489 .sum_exec_runtime = 0, \ 490 } 491 492 /* 493 * Disable preemption until the scheduler is running. 494 * Reset by start_kernel()->sched_init()->init_idle(). 495 * 496 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 497 * before the scheduler is active -- see should_resched(). 498 */ 499 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 500 501 /** 502 * struct thread_group_cputimer - thread group interval timer counts 503 * @cputime: thread group interval timers. 504 * @running: non-zero when there are timers running and 505 * @cputime receives updates. 506 * @lock: lock for fields in this struct. 507 * 508 * This structure contains the version of task_cputime, above, that is 509 * used for thread group CPU timer calculations. 510 */ 511 struct thread_group_cputimer { 512 struct task_cputime cputime; 513 int running; 514 spinlock_t lock; 515 }; 516 517 struct autogroup; 518 519 /* 520 * NOTE! "signal_struct" does not have its own 521 * locking, because a shared signal_struct always 522 * implies a shared sighand_struct, so locking 523 * sighand_struct is always a proper superset of 524 * the locking of signal_struct. 525 */ 526 struct signal_struct { 527 atomic_t sigcnt; 528 atomic_t live; 529 int nr_threads; 530 531 wait_queue_head_t wait_chldexit; /* for wait4() */ 532 533 /* current thread group signal load-balancing target: */ 534 struct task_struct *curr_target; 535 536 /* shared signal handling: */ 537 struct sigpending shared_pending; 538 539 /* thread group exit support */ 540 int group_exit_code; 541 /* overloaded: 542 * - notify group_exit_task when ->count is equal to notify_count 543 * - everyone except group_exit_task is stopped during signal delivery 544 * of fatal signals, group_exit_task processes the signal. 545 */ 546 int notify_count; 547 struct task_struct *group_exit_task; 548 549 /* thread group stop support, overloads group_exit_code too */ 550 int group_stop_count; 551 unsigned int flags; /* see SIGNAL_* flags below */ 552 553 /* POSIX.1b Interval Timers */ 554 struct list_head posix_timers; 555 556 /* ITIMER_REAL timer for the process */ 557 struct hrtimer real_timer; 558 struct pid *leader_pid; 559 ktime_t it_real_incr; 560 561 /* 562 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 563 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 564 * values are defined to 0 and 1 respectively 565 */ 566 struct cpu_itimer it[2]; 567 568 /* 569 * Thread group totals for process CPU timers. 570 * See thread_group_cputimer(), et al, for details. 571 */ 572 struct thread_group_cputimer cputimer; 573 574 /* Earliest-expiration cache. */ 575 struct task_cputime cputime_expires; 576 577 struct list_head cpu_timers[3]; 578 579 struct pid *tty_old_pgrp; 580 581 /* boolean value for session group leader */ 582 int leader; 583 584 struct tty_struct *tty; /* NULL if no tty */ 585 586 #ifdef CONFIG_SCHED_AUTOGROUP 587 struct autogroup *autogroup; 588 #endif 589 /* 590 * Cumulative resource counters for dead threads in the group, 591 * and for reaped dead child processes forked by this group. 592 * Live threads maintain their own counters and add to these 593 * in __exit_signal, except for the group leader. 594 */ 595 cputime_t utime, stime, cutime, cstime; 596 cputime_t gtime; 597 cputime_t cgtime; 598 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 599 cputime_t prev_utime, prev_stime; 600 #endif 601 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 602 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 603 unsigned long inblock, oublock, cinblock, coublock; 604 unsigned long maxrss, cmaxrss; 605 struct task_io_accounting ioac; 606 607 /* 608 * Cumulative ns of schedule CPU time fo dead threads in the 609 * group, not including a zombie group leader, (This only differs 610 * from jiffies_to_ns(utime + stime) if sched_clock uses something 611 * other than jiffies.) 612 */ 613 unsigned long long sum_sched_runtime; 614 615 /* 616 * We don't bother to synchronize most readers of this at all, 617 * because there is no reader checking a limit that actually needs 618 * to get both rlim_cur and rlim_max atomically, and either one 619 * alone is a single word that can safely be read normally. 620 * getrlimit/setrlimit use task_lock(current->group_leader) to 621 * protect this instead of the siglock, because they really 622 * have no need to disable irqs. 623 */ 624 struct rlimit rlim[RLIM_NLIMITS]; 625 626 #ifdef CONFIG_BSD_PROCESS_ACCT 627 struct pacct_struct pacct; /* per-process accounting information */ 628 #endif 629 #ifdef CONFIG_TASKSTATS 630 struct taskstats *stats; 631 #endif 632 #ifdef CONFIG_AUDIT 633 unsigned audit_tty; 634 struct tty_audit_buf *tty_audit_buf; 635 #endif 636 637 int oom_adj; /* OOM kill score adjustment (bit shift) */ 638 int oom_score_adj; /* OOM kill score adjustment */ 639 int oom_score_adj_min; /* OOM kill score adjustment minimum value. 640 * Only settable by CAP_SYS_RESOURCE. */ 641 642 struct mutex cred_guard_mutex; /* guard against foreign influences on 643 * credential calculations 644 * (notably. ptrace) */ 645 }; 646 647 /* Context switch must be unlocked if interrupts are to be enabled */ 648 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 649 # define __ARCH_WANT_UNLOCKED_CTXSW 650 #endif 651 652 /* 653 * Bits in flags field of signal_struct. 654 */ 655 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 656 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 657 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 658 /* 659 * Pending notifications to parent. 660 */ 661 #define SIGNAL_CLD_STOPPED 0x00000010 662 #define SIGNAL_CLD_CONTINUED 0x00000020 663 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 664 665 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 666 667 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 668 static inline int signal_group_exit(const struct signal_struct *sig) 669 { 670 return (sig->flags & SIGNAL_GROUP_EXIT) || 671 (sig->group_exit_task != NULL); 672 } 673 674 /* 675 * Some day this will be a full-fledged user tracking system.. 676 */ 677 struct user_struct { 678 atomic_t __count; /* reference count */ 679 atomic_t processes; /* How many processes does this user have? */ 680 atomic_t files; /* How many open files does this user have? */ 681 atomic_t sigpending; /* How many pending signals does this user have? */ 682 #ifdef CONFIG_INOTIFY_USER 683 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 684 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 685 #endif 686 #ifdef CONFIG_FANOTIFY 687 atomic_t fanotify_listeners; 688 #endif 689 #ifdef CONFIG_EPOLL 690 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 691 #endif 692 #ifdef CONFIG_POSIX_MQUEUE 693 /* protected by mq_lock */ 694 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 695 #endif 696 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 697 698 #ifdef CONFIG_KEYS 699 struct key *uid_keyring; /* UID specific keyring */ 700 struct key *session_keyring; /* UID's default session keyring */ 701 #endif 702 703 /* Hash table maintenance information */ 704 struct hlist_node uidhash_node; 705 uid_t uid; 706 struct user_namespace *user_ns; 707 708 #ifdef CONFIG_PERF_EVENTS 709 atomic_long_t locked_vm; 710 #endif 711 }; 712 713 extern int uids_sysfs_init(void); 714 715 extern struct user_struct *find_user(uid_t); 716 717 extern struct user_struct root_user; 718 #define INIT_USER (&root_user) 719 720 721 struct backing_dev_info; 722 struct reclaim_state; 723 724 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 725 struct sched_info { 726 /* cumulative counters */ 727 unsigned long pcount; /* # of times run on this cpu */ 728 unsigned long long run_delay; /* time spent waiting on a runqueue */ 729 730 /* timestamps */ 731 unsigned long long last_arrival,/* when we last ran on a cpu */ 732 last_queued; /* when we were last queued to run */ 733 }; 734 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 735 736 #ifdef CONFIG_TASK_DELAY_ACCT 737 struct task_delay_info { 738 spinlock_t lock; 739 unsigned int flags; /* Private per-task flags */ 740 741 /* For each stat XXX, add following, aligned appropriately 742 * 743 * struct timespec XXX_start, XXX_end; 744 * u64 XXX_delay; 745 * u32 XXX_count; 746 * 747 * Atomicity of updates to XXX_delay, XXX_count protected by 748 * single lock above (split into XXX_lock if contention is an issue). 749 */ 750 751 /* 752 * XXX_count is incremented on every XXX operation, the delay 753 * associated with the operation is added to XXX_delay. 754 * XXX_delay contains the accumulated delay time in nanoseconds. 755 */ 756 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 757 u64 blkio_delay; /* wait for sync block io completion */ 758 u64 swapin_delay; /* wait for swapin block io completion */ 759 u32 blkio_count; /* total count of the number of sync block */ 760 /* io operations performed */ 761 u32 swapin_count; /* total count of the number of swapin block */ 762 /* io operations performed */ 763 764 struct timespec freepages_start, freepages_end; 765 u64 freepages_delay; /* wait for memory reclaim */ 766 u32 freepages_count; /* total count of memory reclaim */ 767 }; 768 #endif /* CONFIG_TASK_DELAY_ACCT */ 769 770 static inline int sched_info_on(void) 771 { 772 #ifdef CONFIG_SCHEDSTATS 773 return 1; 774 #elif defined(CONFIG_TASK_DELAY_ACCT) 775 extern int delayacct_on; 776 return delayacct_on; 777 #else 778 return 0; 779 #endif 780 } 781 782 enum cpu_idle_type { 783 CPU_IDLE, 784 CPU_NOT_IDLE, 785 CPU_NEWLY_IDLE, 786 CPU_MAX_IDLE_TYPES 787 }; 788 789 /* 790 * sched-domains (multiprocessor balancing) declarations: 791 */ 792 793 /* 794 * Increase resolution of nice-level calculations: 795 */ 796 #define SCHED_LOAD_SHIFT 10 797 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 798 799 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE 800 801 #ifdef CONFIG_SMP 802 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 803 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 804 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 805 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 806 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 807 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 808 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */ 809 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 810 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */ 811 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 812 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 813 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 814 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 815 816 enum powersavings_balance_level { 817 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */ 818 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package 819 * first for long running threads 820 */ 821 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle 822 * cpu package for power savings 823 */ 824 MAX_POWERSAVINGS_BALANCE_LEVELS 825 }; 826 827 extern int sched_mc_power_savings, sched_smt_power_savings; 828 829 static inline int sd_balance_for_mc_power(void) 830 { 831 if (sched_smt_power_savings) 832 return SD_POWERSAVINGS_BALANCE; 833 834 if (!sched_mc_power_savings) 835 return SD_PREFER_SIBLING; 836 837 return 0; 838 } 839 840 static inline int sd_balance_for_package_power(void) 841 { 842 if (sched_mc_power_savings | sched_smt_power_savings) 843 return SD_POWERSAVINGS_BALANCE; 844 845 return SD_PREFER_SIBLING; 846 } 847 848 extern int __weak arch_sd_sibiling_asym_packing(void); 849 850 /* 851 * Optimise SD flags for power savings: 852 * SD_BALANCE_NEWIDLE helps aggressive task consolidation and power savings. 853 * Keep default SD flags if sched_{smt,mc}_power_saving=0 854 */ 855 856 static inline int sd_power_saving_flags(void) 857 { 858 if (sched_mc_power_savings | sched_smt_power_savings) 859 return SD_BALANCE_NEWIDLE; 860 861 return 0; 862 } 863 864 struct sched_group { 865 struct sched_group *next; /* Must be a circular list */ 866 atomic_t ref; 867 868 /* 869 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 870 * single CPU. 871 */ 872 unsigned int cpu_power, cpu_power_orig; 873 unsigned int group_weight; 874 875 /* 876 * The CPUs this group covers. 877 * 878 * NOTE: this field is variable length. (Allocated dynamically 879 * by attaching extra space to the end of the structure, 880 * depending on how many CPUs the kernel has booted up with) 881 */ 882 unsigned long cpumask[0]; 883 }; 884 885 static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 886 { 887 return to_cpumask(sg->cpumask); 888 } 889 890 struct sched_domain_attr { 891 int relax_domain_level; 892 }; 893 894 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 895 .relax_domain_level = -1, \ 896 } 897 898 extern int sched_domain_level_max; 899 900 struct sched_domain { 901 /* These fields must be setup */ 902 struct sched_domain *parent; /* top domain must be null terminated */ 903 struct sched_domain *child; /* bottom domain must be null terminated */ 904 struct sched_group *groups; /* the balancing groups of the domain */ 905 unsigned long min_interval; /* Minimum balance interval ms */ 906 unsigned long max_interval; /* Maximum balance interval ms */ 907 unsigned int busy_factor; /* less balancing by factor if busy */ 908 unsigned int imbalance_pct; /* No balance until over watermark */ 909 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 910 unsigned int busy_idx; 911 unsigned int idle_idx; 912 unsigned int newidle_idx; 913 unsigned int wake_idx; 914 unsigned int forkexec_idx; 915 unsigned int smt_gain; 916 int flags; /* See SD_* */ 917 int level; 918 919 /* Runtime fields. */ 920 unsigned long last_balance; /* init to jiffies. units in jiffies */ 921 unsigned int balance_interval; /* initialise to 1. units in ms. */ 922 unsigned int nr_balance_failed; /* initialise to 0 */ 923 924 u64 last_update; 925 926 #ifdef CONFIG_SCHEDSTATS 927 /* load_balance() stats */ 928 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 929 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 930 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 931 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 932 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 933 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 934 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 935 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 936 937 /* Active load balancing */ 938 unsigned int alb_count; 939 unsigned int alb_failed; 940 unsigned int alb_pushed; 941 942 /* SD_BALANCE_EXEC stats */ 943 unsigned int sbe_count; 944 unsigned int sbe_balanced; 945 unsigned int sbe_pushed; 946 947 /* SD_BALANCE_FORK stats */ 948 unsigned int sbf_count; 949 unsigned int sbf_balanced; 950 unsigned int sbf_pushed; 951 952 /* try_to_wake_up() stats */ 953 unsigned int ttwu_wake_remote; 954 unsigned int ttwu_move_affine; 955 unsigned int ttwu_move_balance; 956 #endif 957 #ifdef CONFIG_SCHED_DEBUG 958 char *name; 959 #endif 960 union { 961 void *private; /* used during construction */ 962 struct rcu_head rcu; /* used during destruction */ 963 }; 964 965 unsigned int span_weight; 966 /* 967 * Span of all CPUs in this domain. 968 * 969 * NOTE: this field is variable length. (Allocated dynamically 970 * by attaching extra space to the end of the structure, 971 * depending on how many CPUs the kernel has booted up with) 972 */ 973 unsigned long span[0]; 974 }; 975 976 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 977 { 978 return to_cpumask(sd->span); 979 } 980 981 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 982 struct sched_domain_attr *dattr_new); 983 984 /* Allocate an array of sched domains, for partition_sched_domains(). */ 985 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 986 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 987 988 /* Test a flag in parent sched domain */ 989 static inline int test_sd_parent(struct sched_domain *sd, int flag) 990 { 991 if (sd->parent && (sd->parent->flags & flag)) 992 return 1; 993 994 return 0; 995 } 996 997 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu); 998 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu); 999 1000 #else /* CONFIG_SMP */ 1001 1002 struct sched_domain_attr; 1003 1004 static inline void 1005 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1006 struct sched_domain_attr *dattr_new) 1007 { 1008 } 1009 #endif /* !CONFIG_SMP */ 1010 1011 1012 struct io_context; /* See blkdev.h */ 1013 1014 1015 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1016 extern void prefetch_stack(struct task_struct *t); 1017 #else 1018 static inline void prefetch_stack(struct task_struct *t) { } 1019 #endif 1020 1021 struct audit_context; /* See audit.c */ 1022 struct mempolicy; 1023 struct pipe_inode_info; 1024 struct uts_namespace; 1025 1026 struct rq; 1027 struct sched_domain; 1028 1029 /* 1030 * wake flags 1031 */ 1032 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */ 1033 #define WF_FORK 0x02 /* child wakeup after fork */ 1034 1035 #define ENQUEUE_WAKEUP 1 1036 #define ENQUEUE_HEAD 2 1037 #ifdef CONFIG_SMP 1038 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */ 1039 #else 1040 #define ENQUEUE_WAKING 0 1041 #endif 1042 1043 #define DEQUEUE_SLEEP 1 1044 1045 struct sched_class { 1046 const struct sched_class *next; 1047 1048 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1049 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1050 void (*yield_task) (struct rq *rq); 1051 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); 1052 1053 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1054 1055 struct task_struct * (*pick_next_task) (struct rq *rq); 1056 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1057 1058 #ifdef CONFIG_SMP 1059 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags); 1060 1061 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 1062 void (*post_schedule) (struct rq *this_rq); 1063 void (*task_waking) (struct task_struct *task); 1064 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1065 1066 void (*set_cpus_allowed)(struct task_struct *p, 1067 const struct cpumask *newmask); 1068 1069 void (*rq_online)(struct rq *rq); 1070 void (*rq_offline)(struct rq *rq); 1071 #endif 1072 1073 void (*set_curr_task) (struct rq *rq); 1074 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1075 void (*task_fork) (struct task_struct *p); 1076 1077 void (*switched_from) (struct rq *this_rq, struct task_struct *task); 1078 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1079 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1080 int oldprio); 1081 1082 unsigned int (*get_rr_interval) (struct rq *rq, 1083 struct task_struct *task); 1084 1085 #ifdef CONFIG_FAIR_GROUP_SCHED 1086 void (*task_move_group) (struct task_struct *p, int on_rq); 1087 #endif 1088 }; 1089 1090 struct load_weight { 1091 unsigned long weight, inv_weight; 1092 }; 1093 1094 #ifdef CONFIG_SCHEDSTATS 1095 struct sched_statistics { 1096 u64 wait_start; 1097 u64 wait_max; 1098 u64 wait_count; 1099 u64 wait_sum; 1100 u64 iowait_count; 1101 u64 iowait_sum; 1102 1103 u64 sleep_start; 1104 u64 sleep_max; 1105 s64 sum_sleep_runtime; 1106 1107 u64 block_start; 1108 u64 block_max; 1109 u64 exec_max; 1110 u64 slice_max; 1111 1112 u64 nr_migrations_cold; 1113 u64 nr_failed_migrations_affine; 1114 u64 nr_failed_migrations_running; 1115 u64 nr_failed_migrations_hot; 1116 u64 nr_forced_migrations; 1117 1118 u64 nr_wakeups; 1119 u64 nr_wakeups_sync; 1120 u64 nr_wakeups_migrate; 1121 u64 nr_wakeups_local; 1122 u64 nr_wakeups_remote; 1123 u64 nr_wakeups_affine; 1124 u64 nr_wakeups_affine_attempts; 1125 u64 nr_wakeups_passive; 1126 u64 nr_wakeups_idle; 1127 }; 1128 #endif 1129 1130 struct sched_entity { 1131 struct load_weight load; /* for load-balancing */ 1132 struct rb_node run_node; 1133 struct list_head group_node; 1134 unsigned int on_rq; 1135 1136 u64 exec_start; 1137 u64 sum_exec_runtime; 1138 u64 vruntime; 1139 u64 prev_sum_exec_runtime; 1140 1141 u64 nr_migrations; 1142 1143 #ifdef CONFIG_SCHEDSTATS 1144 struct sched_statistics statistics; 1145 #endif 1146 1147 #ifdef CONFIG_FAIR_GROUP_SCHED 1148 struct sched_entity *parent; 1149 /* rq on which this entity is (to be) queued: */ 1150 struct cfs_rq *cfs_rq; 1151 /* rq "owned" by this entity/group: */ 1152 struct cfs_rq *my_q; 1153 #endif 1154 }; 1155 1156 struct sched_rt_entity { 1157 struct list_head run_list; 1158 unsigned long timeout; 1159 unsigned int time_slice; 1160 int nr_cpus_allowed; 1161 1162 struct sched_rt_entity *back; 1163 #ifdef CONFIG_RT_GROUP_SCHED 1164 struct sched_rt_entity *parent; 1165 /* rq on which this entity is (to be) queued: */ 1166 struct rt_rq *rt_rq; 1167 /* rq "owned" by this entity/group: */ 1168 struct rt_rq *my_q; 1169 #endif 1170 }; 1171 1172 struct rcu_node; 1173 1174 enum perf_event_task_context { 1175 perf_invalid_context = -1, 1176 perf_hw_context = 0, 1177 perf_sw_context, 1178 perf_nr_task_contexts, 1179 }; 1180 1181 struct task_struct { 1182 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1183 void *stack; 1184 atomic_t usage; 1185 unsigned int flags; /* per process flags, defined below */ 1186 unsigned int ptrace; 1187 1188 #ifdef CONFIG_SMP 1189 struct task_struct *wake_entry; 1190 int on_cpu; 1191 #endif 1192 int on_rq; 1193 1194 int prio, static_prio, normal_prio; 1195 unsigned int rt_priority; 1196 const struct sched_class *sched_class; 1197 struct sched_entity se; 1198 struct sched_rt_entity rt; 1199 1200 #ifdef CONFIG_PREEMPT_NOTIFIERS 1201 /* list of struct preempt_notifier: */ 1202 struct hlist_head preempt_notifiers; 1203 #endif 1204 1205 /* 1206 * fpu_counter contains the number of consecutive context switches 1207 * that the FPU is used. If this is over a threshold, the lazy fpu 1208 * saving becomes unlazy to save the trap. This is an unsigned char 1209 * so that after 256 times the counter wraps and the behavior turns 1210 * lazy again; this to deal with bursty apps that only use FPU for 1211 * a short time 1212 */ 1213 unsigned char fpu_counter; 1214 #ifdef CONFIG_BLK_DEV_IO_TRACE 1215 unsigned int btrace_seq; 1216 #endif 1217 1218 unsigned int policy; 1219 cpumask_t cpus_allowed; 1220 1221 #ifdef CONFIG_PREEMPT_RCU 1222 int rcu_read_lock_nesting; 1223 char rcu_read_unlock_special; 1224 struct list_head rcu_node_entry; 1225 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1226 #ifdef CONFIG_TREE_PREEMPT_RCU 1227 struct rcu_node *rcu_blocked_node; 1228 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1229 #ifdef CONFIG_RCU_BOOST 1230 struct rt_mutex *rcu_boost_mutex; 1231 #endif /* #ifdef CONFIG_RCU_BOOST */ 1232 1233 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1234 struct sched_info sched_info; 1235 #endif 1236 1237 struct list_head tasks; 1238 #ifdef CONFIG_SMP 1239 struct plist_node pushable_tasks; 1240 #endif 1241 1242 struct mm_struct *mm, *active_mm; 1243 #ifdef CONFIG_COMPAT_BRK 1244 unsigned brk_randomized:1; 1245 #endif 1246 #if defined(SPLIT_RSS_COUNTING) 1247 struct task_rss_stat rss_stat; 1248 #endif 1249 /* task state */ 1250 int exit_state; 1251 int exit_code, exit_signal; 1252 int pdeath_signal; /* The signal sent when the parent dies */ 1253 unsigned int group_stop; /* GROUP_STOP_*, siglock protected */ 1254 /* ??? */ 1255 unsigned int personality; 1256 unsigned did_exec:1; 1257 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1258 * execve */ 1259 unsigned in_iowait:1; 1260 1261 1262 /* Revert to default priority/policy when forking */ 1263 unsigned sched_reset_on_fork:1; 1264 unsigned sched_contributes_to_load:1; 1265 1266 pid_t pid; 1267 pid_t tgid; 1268 1269 #ifdef CONFIG_CC_STACKPROTECTOR 1270 /* Canary value for the -fstack-protector gcc feature */ 1271 unsigned long stack_canary; 1272 #endif 1273 1274 /* 1275 * pointers to (original) parent process, youngest child, younger sibling, 1276 * older sibling, respectively. (p->father can be replaced with 1277 * p->real_parent->pid) 1278 */ 1279 struct task_struct *real_parent; /* real parent process */ 1280 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */ 1281 /* 1282 * children/sibling forms the list of my natural children 1283 */ 1284 struct list_head children; /* list of my children */ 1285 struct list_head sibling; /* linkage in my parent's children list */ 1286 struct task_struct *group_leader; /* threadgroup leader */ 1287 1288 /* 1289 * ptraced is the list of tasks this task is using ptrace on. 1290 * This includes both natural children and PTRACE_ATTACH targets. 1291 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1292 */ 1293 struct list_head ptraced; 1294 struct list_head ptrace_entry; 1295 1296 /* PID/PID hash table linkage. */ 1297 struct pid_link pids[PIDTYPE_MAX]; 1298 struct list_head thread_group; 1299 1300 struct completion *vfork_done; /* for vfork() */ 1301 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1302 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1303 1304 cputime_t utime, stime, utimescaled, stimescaled; 1305 cputime_t gtime; 1306 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 1307 cputime_t prev_utime, prev_stime; 1308 #endif 1309 unsigned long nvcsw, nivcsw; /* context switch counts */ 1310 struct timespec start_time; /* monotonic time */ 1311 struct timespec real_start_time; /* boot based time */ 1312 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1313 unsigned long min_flt, maj_flt; 1314 1315 struct task_cputime cputime_expires; 1316 struct list_head cpu_timers[3]; 1317 1318 /* process credentials */ 1319 const struct cred __rcu *real_cred; /* objective and real subjective task 1320 * credentials (COW) */ 1321 const struct cred __rcu *cred; /* effective (overridable) subjective task 1322 * credentials (COW) */ 1323 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */ 1324 1325 char comm[TASK_COMM_LEN]; /* executable name excluding path 1326 - access with [gs]et_task_comm (which lock 1327 it with task_lock()) 1328 - initialized normally by setup_new_exec */ 1329 /* file system info */ 1330 int link_count, total_link_count; 1331 #ifdef CONFIG_SYSVIPC 1332 /* ipc stuff */ 1333 struct sysv_sem sysvsem; 1334 #endif 1335 #ifdef CONFIG_DETECT_HUNG_TASK 1336 /* hung task detection */ 1337 unsigned long last_switch_count; 1338 #endif 1339 /* CPU-specific state of this task */ 1340 struct thread_struct thread; 1341 /* filesystem information */ 1342 struct fs_struct *fs; 1343 /* open file information */ 1344 struct files_struct *files; 1345 /* namespaces */ 1346 struct nsproxy *nsproxy; 1347 /* signal handlers */ 1348 struct signal_struct *signal; 1349 struct sighand_struct *sighand; 1350 1351 sigset_t blocked, real_blocked; 1352 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1353 struct sigpending pending; 1354 1355 unsigned long sas_ss_sp; 1356 size_t sas_ss_size; 1357 int (*notifier)(void *priv); 1358 void *notifier_data; 1359 sigset_t *notifier_mask; 1360 struct audit_context *audit_context; 1361 #ifdef CONFIG_AUDITSYSCALL 1362 uid_t loginuid; 1363 unsigned int sessionid; 1364 #endif 1365 seccomp_t seccomp; 1366 1367 /* Thread group tracking */ 1368 u32 parent_exec_id; 1369 u32 self_exec_id; 1370 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1371 * mempolicy */ 1372 spinlock_t alloc_lock; 1373 1374 #ifdef CONFIG_GENERIC_HARDIRQS 1375 /* IRQ handler threads */ 1376 struct irqaction *irqaction; 1377 #endif 1378 1379 /* Protection of the PI data structures: */ 1380 raw_spinlock_t pi_lock; 1381 1382 #ifdef CONFIG_RT_MUTEXES 1383 /* PI waiters blocked on a rt_mutex held by this task */ 1384 struct plist_head pi_waiters; 1385 /* Deadlock detection and priority inheritance handling */ 1386 struct rt_mutex_waiter *pi_blocked_on; 1387 #endif 1388 1389 #ifdef CONFIG_DEBUG_MUTEXES 1390 /* mutex deadlock detection */ 1391 struct mutex_waiter *blocked_on; 1392 #endif 1393 #ifdef CONFIG_TRACE_IRQFLAGS 1394 unsigned int irq_events; 1395 unsigned long hardirq_enable_ip; 1396 unsigned long hardirq_disable_ip; 1397 unsigned int hardirq_enable_event; 1398 unsigned int hardirq_disable_event; 1399 int hardirqs_enabled; 1400 int hardirq_context; 1401 unsigned long softirq_disable_ip; 1402 unsigned long softirq_enable_ip; 1403 unsigned int softirq_disable_event; 1404 unsigned int softirq_enable_event; 1405 int softirqs_enabled; 1406 int softirq_context; 1407 #endif 1408 #ifdef CONFIG_LOCKDEP 1409 # define MAX_LOCK_DEPTH 48UL 1410 u64 curr_chain_key; 1411 int lockdep_depth; 1412 unsigned int lockdep_recursion; 1413 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1414 gfp_t lockdep_reclaim_gfp; 1415 #endif 1416 1417 /* journalling filesystem info */ 1418 void *journal_info; 1419 1420 /* stacked block device info */ 1421 struct bio_list *bio_list; 1422 1423 #ifdef CONFIG_BLOCK 1424 /* stack plugging */ 1425 struct blk_plug *plug; 1426 #endif 1427 1428 /* VM state */ 1429 struct reclaim_state *reclaim_state; 1430 1431 struct backing_dev_info *backing_dev_info; 1432 1433 struct io_context *io_context; 1434 1435 unsigned long ptrace_message; 1436 siginfo_t *last_siginfo; /* For ptrace use. */ 1437 struct task_io_accounting ioac; 1438 #if defined(CONFIG_TASK_XACCT) 1439 u64 acct_rss_mem1; /* accumulated rss usage */ 1440 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1441 cputime_t acct_timexpd; /* stime + utime since last update */ 1442 #endif 1443 #ifdef CONFIG_CPUSETS 1444 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1445 int mems_allowed_change_disable; 1446 int cpuset_mem_spread_rotor; 1447 int cpuset_slab_spread_rotor; 1448 #endif 1449 #ifdef CONFIG_CGROUPS 1450 /* Control Group info protected by css_set_lock */ 1451 struct css_set __rcu *cgroups; 1452 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1453 struct list_head cg_list; 1454 #endif 1455 #ifdef CONFIG_FUTEX 1456 struct robust_list_head __user *robust_list; 1457 #ifdef CONFIG_COMPAT 1458 struct compat_robust_list_head __user *compat_robust_list; 1459 #endif 1460 struct list_head pi_state_list; 1461 struct futex_pi_state *pi_state_cache; 1462 #endif 1463 #ifdef CONFIG_PERF_EVENTS 1464 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1465 struct mutex perf_event_mutex; 1466 struct list_head perf_event_list; 1467 #endif 1468 #ifdef CONFIG_NUMA 1469 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1470 short il_next; 1471 short pref_node_fork; 1472 #endif 1473 atomic_t fs_excl; /* holding fs exclusive resources */ 1474 struct rcu_head rcu; 1475 1476 /* 1477 * cache last used pipe for splice 1478 */ 1479 struct pipe_inode_info *splice_pipe; 1480 #ifdef CONFIG_TASK_DELAY_ACCT 1481 struct task_delay_info *delays; 1482 #endif 1483 #ifdef CONFIG_FAULT_INJECTION 1484 int make_it_fail; 1485 #endif 1486 struct prop_local_single dirties; 1487 #ifdef CONFIG_LATENCYTOP 1488 int latency_record_count; 1489 struct latency_record latency_record[LT_SAVECOUNT]; 1490 #endif 1491 /* 1492 * time slack values; these are used to round up poll() and 1493 * select() etc timeout values. These are in nanoseconds. 1494 */ 1495 unsigned long timer_slack_ns; 1496 unsigned long default_timer_slack_ns; 1497 1498 struct list_head *scm_work_list; 1499 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1500 /* Index of current stored address in ret_stack */ 1501 int curr_ret_stack; 1502 /* Stack of return addresses for return function tracing */ 1503 struct ftrace_ret_stack *ret_stack; 1504 /* time stamp for last schedule */ 1505 unsigned long long ftrace_timestamp; 1506 /* 1507 * Number of functions that haven't been traced 1508 * because of depth overrun. 1509 */ 1510 atomic_t trace_overrun; 1511 /* Pause for the tracing */ 1512 atomic_t tracing_graph_pause; 1513 #endif 1514 #ifdef CONFIG_TRACING 1515 /* state flags for use by tracers */ 1516 unsigned long trace; 1517 /* bitmask of trace recursion */ 1518 unsigned long trace_recursion; 1519 #endif /* CONFIG_TRACING */ 1520 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */ 1521 struct memcg_batch_info { 1522 int do_batch; /* incremented when batch uncharge started */ 1523 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1524 unsigned long nr_pages; /* uncharged usage */ 1525 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */ 1526 } memcg_batch; 1527 #endif 1528 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1529 atomic_t ptrace_bp_refcnt; 1530 #endif 1531 }; 1532 1533 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1534 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1535 1536 /* 1537 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1538 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1539 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1540 * values are inverted: lower p->prio value means higher priority. 1541 * 1542 * The MAX_USER_RT_PRIO value allows the actual maximum 1543 * RT priority to be separate from the value exported to 1544 * user-space. This allows kernel threads to set their 1545 * priority to a value higher than any user task. Note: 1546 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1547 */ 1548 1549 #define MAX_USER_RT_PRIO 100 1550 #define MAX_RT_PRIO MAX_USER_RT_PRIO 1551 1552 #define MAX_PRIO (MAX_RT_PRIO + 40) 1553 #define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1554 1555 static inline int rt_prio(int prio) 1556 { 1557 if (unlikely(prio < MAX_RT_PRIO)) 1558 return 1; 1559 return 0; 1560 } 1561 1562 static inline int rt_task(struct task_struct *p) 1563 { 1564 return rt_prio(p->prio); 1565 } 1566 1567 static inline struct pid *task_pid(struct task_struct *task) 1568 { 1569 return task->pids[PIDTYPE_PID].pid; 1570 } 1571 1572 static inline struct pid *task_tgid(struct task_struct *task) 1573 { 1574 return task->group_leader->pids[PIDTYPE_PID].pid; 1575 } 1576 1577 /* 1578 * Without tasklist or rcu lock it is not safe to dereference 1579 * the result of task_pgrp/task_session even if task == current, 1580 * we can race with another thread doing sys_setsid/sys_setpgid. 1581 */ 1582 static inline struct pid *task_pgrp(struct task_struct *task) 1583 { 1584 return task->group_leader->pids[PIDTYPE_PGID].pid; 1585 } 1586 1587 static inline struct pid *task_session(struct task_struct *task) 1588 { 1589 return task->group_leader->pids[PIDTYPE_SID].pid; 1590 } 1591 1592 struct pid_namespace; 1593 1594 /* 1595 * the helpers to get the task's different pids as they are seen 1596 * from various namespaces 1597 * 1598 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1599 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1600 * current. 1601 * task_xid_nr_ns() : id seen from the ns specified; 1602 * 1603 * set_task_vxid() : assigns a virtual id to a task; 1604 * 1605 * see also pid_nr() etc in include/linux/pid.h 1606 */ 1607 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1608 struct pid_namespace *ns); 1609 1610 static inline pid_t task_pid_nr(struct task_struct *tsk) 1611 { 1612 return tsk->pid; 1613 } 1614 1615 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1616 struct pid_namespace *ns) 1617 { 1618 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1619 } 1620 1621 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1622 { 1623 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1624 } 1625 1626 1627 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1628 { 1629 return tsk->tgid; 1630 } 1631 1632 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1633 1634 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1635 { 1636 return pid_vnr(task_tgid(tsk)); 1637 } 1638 1639 1640 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1641 struct pid_namespace *ns) 1642 { 1643 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1644 } 1645 1646 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1647 { 1648 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1649 } 1650 1651 1652 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1653 struct pid_namespace *ns) 1654 { 1655 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1656 } 1657 1658 static inline pid_t task_session_vnr(struct task_struct *tsk) 1659 { 1660 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1661 } 1662 1663 /* obsolete, do not use */ 1664 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1665 { 1666 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1667 } 1668 1669 /** 1670 * pid_alive - check that a task structure is not stale 1671 * @p: Task structure to be checked. 1672 * 1673 * Test if a process is not yet dead (at most zombie state) 1674 * If pid_alive fails, then pointers within the task structure 1675 * can be stale and must not be dereferenced. 1676 */ 1677 static inline int pid_alive(struct task_struct *p) 1678 { 1679 return p->pids[PIDTYPE_PID].pid != NULL; 1680 } 1681 1682 /** 1683 * is_global_init - check if a task structure is init 1684 * @tsk: Task structure to be checked. 1685 * 1686 * Check if a task structure is the first user space task the kernel created. 1687 */ 1688 static inline int is_global_init(struct task_struct *tsk) 1689 { 1690 return tsk->pid == 1; 1691 } 1692 1693 /* 1694 * is_container_init: 1695 * check whether in the task is init in its own pid namespace. 1696 */ 1697 extern int is_container_init(struct task_struct *tsk); 1698 1699 extern struct pid *cad_pid; 1700 1701 extern void free_task(struct task_struct *tsk); 1702 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1703 1704 extern void __put_task_struct(struct task_struct *t); 1705 1706 static inline void put_task_struct(struct task_struct *t) 1707 { 1708 if (atomic_dec_and_test(&t->usage)) 1709 __put_task_struct(t); 1710 } 1711 1712 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1713 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1714 1715 /* 1716 * Per process flags 1717 */ 1718 #define PF_STARTING 0x00000002 /* being created */ 1719 #define PF_EXITING 0x00000004 /* getting shut down */ 1720 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1721 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1722 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1723 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1724 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1725 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1726 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1727 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1728 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1729 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1730 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */ 1731 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1732 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1733 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1734 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1735 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */ 1736 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1737 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1738 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1739 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1740 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1741 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1742 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1743 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1744 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1745 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1746 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1747 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */ 1748 1749 /* 1750 * Only the _current_ task can read/write to tsk->flags, but other 1751 * tasks can access tsk->flags in readonly mode for example 1752 * with tsk_used_math (like during threaded core dumping). 1753 * There is however an exception to this rule during ptrace 1754 * or during fork: the ptracer task is allowed to write to the 1755 * child->flags of its traced child (same goes for fork, the parent 1756 * can write to the child->flags), because we're guaranteed the 1757 * child is not running and in turn not changing child->flags 1758 * at the same time the parent does it. 1759 */ 1760 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1761 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1762 #define clear_used_math() clear_stopped_child_used_math(current) 1763 #define set_used_math() set_stopped_child_used_math(current) 1764 #define conditional_stopped_child_used_math(condition, child) \ 1765 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1766 #define conditional_used_math(condition) \ 1767 conditional_stopped_child_used_math(condition, current) 1768 #define copy_to_stopped_child_used_math(child) \ 1769 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1770 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1771 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1772 #define used_math() tsk_used_math(current) 1773 1774 /* 1775 * task->group_stop flags 1776 */ 1777 #define GROUP_STOP_SIGMASK 0xffff /* signr of the last group stop */ 1778 #define GROUP_STOP_PENDING (1 << 16) /* task should stop for group stop */ 1779 #define GROUP_STOP_CONSUME (1 << 17) /* consume group stop count */ 1780 #define GROUP_STOP_TRAPPING (1 << 18) /* switching from STOPPED to TRACED */ 1781 #define GROUP_STOP_DEQUEUED (1 << 19) /* stop signal dequeued */ 1782 1783 extern void task_clear_group_stop_pending(struct task_struct *task); 1784 1785 #ifdef CONFIG_PREEMPT_RCU 1786 1787 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1788 #define RCU_READ_UNLOCK_BOOSTED (1 << 1) /* boosted while in RCU read-side. */ 1789 #define RCU_READ_UNLOCK_NEED_QS (1 << 2) /* RCU core needs CPU response. */ 1790 1791 static inline void rcu_copy_process(struct task_struct *p) 1792 { 1793 p->rcu_read_lock_nesting = 0; 1794 p->rcu_read_unlock_special = 0; 1795 #ifdef CONFIG_TREE_PREEMPT_RCU 1796 p->rcu_blocked_node = NULL; 1797 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1798 #ifdef CONFIG_RCU_BOOST 1799 p->rcu_boost_mutex = NULL; 1800 #endif /* #ifdef CONFIG_RCU_BOOST */ 1801 INIT_LIST_HEAD(&p->rcu_node_entry); 1802 } 1803 1804 #else 1805 1806 static inline void rcu_copy_process(struct task_struct *p) 1807 { 1808 } 1809 1810 #endif 1811 1812 #ifdef CONFIG_SMP 1813 extern int set_cpus_allowed_ptr(struct task_struct *p, 1814 const struct cpumask *new_mask); 1815 #else 1816 static inline int set_cpus_allowed_ptr(struct task_struct *p, 1817 const struct cpumask *new_mask) 1818 { 1819 if (!cpumask_test_cpu(0, new_mask)) 1820 return -EINVAL; 1821 return 0; 1822 } 1823 #endif 1824 1825 #ifndef CONFIG_CPUMASK_OFFSTACK 1826 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1827 { 1828 return set_cpus_allowed_ptr(p, &new_mask); 1829 } 1830 #endif 1831 1832 /* 1833 * Do not use outside of architecture code which knows its limitations. 1834 * 1835 * sched_clock() has no promise of monotonicity or bounded drift between 1836 * CPUs, use (which you should not) requires disabling IRQs. 1837 * 1838 * Please use one of the three interfaces below. 1839 */ 1840 extern unsigned long long notrace sched_clock(void); 1841 /* 1842 * See the comment in kernel/sched_clock.c 1843 */ 1844 extern u64 cpu_clock(int cpu); 1845 extern u64 local_clock(void); 1846 extern u64 sched_clock_cpu(int cpu); 1847 1848 1849 extern void sched_clock_init(void); 1850 1851 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1852 static inline void sched_clock_tick(void) 1853 { 1854 } 1855 1856 static inline void sched_clock_idle_sleep_event(void) 1857 { 1858 } 1859 1860 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1861 { 1862 } 1863 #else 1864 /* 1865 * Architectures can set this to 1 if they have specified 1866 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1867 * but then during bootup it turns out that sched_clock() 1868 * is reliable after all: 1869 */ 1870 extern int sched_clock_stable; 1871 1872 extern void sched_clock_tick(void); 1873 extern void sched_clock_idle_sleep_event(void); 1874 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1875 #endif 1876 1877 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1878 /* 1879 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 1880 * The reason for this explicit opt-in is not to have perf penalty with 1881 * slow sched_clocks. 1882 */ 1883 extern void enable_sched_clock_irqtime(void); 1884 extern void disable_sched_clock_irqtime(void); 1885 #else 1886 static inline void enable_sched_clock_irqtime(void) {} 1887 static inline void disable_sched_clock_irqtime(void) {} 1888 #endif 1889 1890 extern unsigned long long 1891 task_sched_runtime(struct task_struct *task); 1892 extern unsigned long long thread_group_sched_runtime(struct task_struct *task); 1893 1894 /* sched_exec is called by processes performing an exec */ 1895 #ifdef CONFIG_SMP 1896 extern void sched_exec(void); 1897 #else 1898 #define sched_exec() {} 1899 #endif 1900 1901 extern void sched_clock_idle_sleep_event(void); 1902 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1903 1904 #ifdef CONFIG_HOTPLUG_CPU 1905 extern void idle_task_exit(void); 1906 #else 1907 static inline void idle_task_exit(void) {} 1908 #endif 1909 1910 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 1911 extern void wake_up_idle_cpu(int cpu); 1912 #else 1913 static inline void wake_up_idle_cpu(int cpu) { } 1914 #endif 1915 1916 extern unsigned int sysctl_sched_latency; 1917 extern unsigned int sysctl_sched_min_granularity; 1918 extern unsigned int sysctl_sched_wakeup_granularity; 1919 extern unsigned int sysctl_sched_child_runs_first; 1920 1921 enum sched_tunable_scaling { 1922 SCHED_TUNABLESCALING_NONE, 1923 SCHED_TUNABLESCALING_LOG, 1924 SCHED_TUNABLESCALING_LINEAR, 1925 SCHED_TUNABLESCALING_END, 1926 }; 1927 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling; 1928 1929 #ifdef CONFIG_SCHED_DEBUG 1930 extern unsigned int sysctl_sched_migration_cost; 1931 extern unsigned int sysctl_sched_nr_migrate; 1932 extern unsigned int sysctl_sched_time_avg; 1933 extern unsigned int sysctl_timer_migration; 1934 extern unsigned int sysctl_sched_shares_window; 1935 1936 int sched_proc_update_handler(struct ctl_table *table, int write, 1937 void __user *buffer, size_t *length, 1938 loff_t *ppos); 1939 #endif 1940 #ifdef CONFIG_SCHED_DEBUG 1941 static inline unsigned int get_sysctl_timer_migration(void) 1942 { 1943 return sysctl_timer_migration; 1944 } 1945 #else 1946 static inline unsigned int get_sysctl_timer_migration(void) 1947 { 1948 return 1; 1949 } 1950 #endif 1951 extern unsigned int sysctl_sched_rt_period; 1952 extern int sysctl_sched_rt_runtime; 1953 1954 int sched_rt_handler(struct ctl_table *table, int write, 1955 void __user *buffer, size_t *lenp, 1956 loff_t *ppos); 1957 1958 #ifdef CONFIG_SCHED_AUTOGROUP 1959 extern unsigned int sysctl_sched_autogroup_enabled; 1960 1961 extern void sched_autogroup_create_attach(struct task_struct *p); 1962 extern void sched_autogroup_detach(struct task_struct *p); 1963 extern void sched_autogroup_fork(struct signal_struct *sig); 1964 extern void sched_autogroup_exit(struct signal_struct *sig); 1965 #ifdef CONFIG_PROC_FS 1966 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 1967 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice); 1968 #endif 1969 #else 1970 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 1971 static inline void sched_autogroup_detach(struct task_struct *p) { } 1972 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 1973 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 1974 #endif 1975 1976 #ifdef CONFIG_RT_MUTEXES 1977 extern int rt_mutex_getprio(struct task_struct *p); 1978 extern void rt_mutex_setprio(struct task_struct *p, int prio); 1979 extern void rt_mutex_adjust_pi(struct task_struct *p); 1980 #else 1981 static inline int rt_mutex_getprio(struct task_struct *p) 1982 { 1983 return p->normal_prio; 1984 } 1985 # define rt_mutex_adjust_pi(p) do { } while (0) 1986 #endif 1987 1988 extern bool yield_to(struct task_struct *p, bool preempt); 1989 extern void set_user_nice(struct task_struct *p, long nice); 1990 extern int task_prio(const struct task_struct *p); 1991 extern int task_nice(const struct task_struct *p); 1992 extern int can_nice(const struct task_struct *p, const int nice); 1993 extern int task_curr(const struct task_struct *p); 1994 extern int idle_cpu(int cpu); 1995 extern int sched_setscheduler(struct task_struct *, int, 1996 const struct sched_param *); 1997 extern int sched_setscheduler_nocheck(struct task_struct *, int, 1998 const struct sched_param *); 1999 extern struct task_struct *idle_task(int cpu); 2000 extern struct task_struct *curr_task(int cpu); 2001 extern void set_curr_task(int cpu, struct task_struct *p); 2002 2003 void yield(void); 2004 2005 /* 2006 * The default (Linux) execution domain. 2007 */ 2008 extern struct exec_domain default_exec_domain; 2009 2010 union thread_union { 2011 struct thread_info thread_info; 2012 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2013 }; 2014 2015 #ifndef __HAVE_ARCH_KSTACK_END 2016 static inline int kstack_end(void *addr) 2017 { 2018 /* Reliable end of stack detection: 2019 * Some APM bios versions misalign the stack 2020 */ 2021 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2022 } 2023 #endif 2024 2025 extern union thread_union init_thread_union; 2026 extern struct task_struct init_task; 2027 2028 extern struct mm_struct init_mm; 2029 2030 extern struct pid_namespace init_pid_ns; 2031 2032 /* 2033 * find a task by one of its numerical ids 2034 * 2035 * find_task_by_pid_ns(): 2036 * finds a task by its pid in the specified namespace 2037 * find_task_by_vpid(): 2038 * finds a task by its virtual pid 2039 * 2040 * see also find_vpid() etc in include/linux/pid.h 2041 */ 2042 2043 extern struct task_struct *find_task_by_vpid(pid_t nr); 2044 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2045 struct pid_namespace *ns); 2046 2047 extern void __set_special_pids(struct pid *pid); 2048 2049 /* per-UID process charging. */ 2050 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t); 2051 static inline struct user_struct *get_uid(struct user_struct *u) 2052 { 2053 atomic_inc(&u->__count); 2054 return u; 2055 } 2056 extern void free_uid(struct user_struct *); 2057 extern void release_uids(struct user_namespace *ns); 2058 2059 #include <asm/current.h> 2060 2061 extern void xtime_update(unsigned long ticks); 2062 2063 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2064 extern int wake_up_process(struct task_struct *tsk); 2065 extern void wake_up_new_task(struct task_struct *tsk); 2066 #ifdef CONFIG_SMP 2067 extern void kick_process(struct task_struct *tsk); 2068 #else 2069 static inline void kick_process(struct task_struct *tsk) { } 2070 #endif 2071 extern void sched_fork(struct task_struct *p); 2072 extern void sched_dead(struct task_struct *p); 2073 2074 extern void proc_caches_init(void); 2075 extern void flush_signals(struct task_struct *); 2076 extern void __flush_signals(struct task_struct *); 2077 extern void ignore_signals(struct task_struct *); 2078 extern void flush_signal_handlers(struct task_struct *, int force_default); 2079 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2080 2081 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2082 { 2083 unsigned long flags; 2084 int ret; 2085 2086 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2087 ret = dequeue_signal(tsk, mask, info); 2088 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2089 2090 return ret; 2091 } 2092 2093 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2094 sigset_t *mask); 2095 extern void unblock_all_signals(void); 2096 extern void release_task(struct task_struct * p); 2097 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2098 extern int force_sigsegv(int, struct task_struct *); 2099 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2100 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2101 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2102 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 2103 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2104 extern int kill_pid(struct pid *pid, int sig, int priv); 2105 extern int kill_proc_info(int, struct siginfo *, pid_t); 2106 extern int do_notify_parent(struct task_struct *, int); 2107 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2108 extern void force_sig(int, struct task_struct *); 2109 extern int send_sig(int, struct task_struct *, int); 2110 extern int zap_other_threads(struct task_struct *p); 2111 extern struct sigqueue *sigqueue_alloc(void); 2112 extern void sigqueue_free(struct sigqueue *); 2113 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2114 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2115 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 2116 2117 static inline int kill_cad_pid(int sig, int priv) 2118 { 2119 return kill_pid(cad_pid, sig, priv); 2120 } 2121 2122 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2123 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2124 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2125 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2126 2127 /* 2128 * True if we are on the alternate signal stack. 2129 */ 2130 static inline int on_sig_stack(unsigned long sp) 2131 { 2132 #ifdef CONFIG_STACK_GROWSUP 2133 return sp >= current->sas_ss_sp && 2134 sp - current->sas_ss_sp < current->sas_ss_size; 2135 #else 2136 return sp > current->sas_ss_sp && 2137 sp - current->sas_ss_sp <= current->sas_ss_size; 2138 #endif 2139 } 2140 2141 static inline int sas_ss_flags(unsigned long sp) 2142 { 2143 return (current->sas_ss_size == 0 ? SS_DISABLE 2144 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2145 } 2146 2147 /* 2148 * Routines for handling mm_structs 2149 */ 2150 extern struct mm_struct * mm_alloc(void); 2151 2152 /* mmdrop drops the mm and the page tables */ 2153 extern void __mmdrop(struct mm_struct *); 2154 static inline void mmdrop(struct mm_struct * mm) 2155 { 2156 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2157 __mmdrop(mm); 2158 } 2159 2160 /* mmput gets rid of the mappings and all user-space */ 2161 extern void mmput(struct mm_struct *); 2162 /* Grab a reference to a task's mm, if it is not already going away */ 2163 extern struct mm_struct *get_task_mm(struct task_struct *task); 2164 /* Remove the current tasks stale references to the old mm_struct */ 2165 extern void mm_release(struct task_struct *, struct mm_struct *); 2166 /* Allocate a new mm structure and copy contents from tsk->mm */ 2167 extern struct mm_struct *dup_mm(struct task_struct *tsk); 2168 2169 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2170 struct task_struct *, struct pt_regs *); 2171 extern void flush_thread(void); 2172 extern void exit_thread(void); 2173 2174 extern void exit_files(struct task_struct *); 2175 extern void __cleanup_sighand(struct sighand_struct *); 2176 2177 extern void exit_itimers(struct signal_struct *); 2178 extern void flush_itimer_signals(void); 2179 2180 extern NORET_TYPE void do_group_exit(int); 2181 2182 extern void daemonize(const char *, ...); 2183 extern int allow_signal(int); 2184 extern int disallow_signal(int); 2185 2186 extern int do_execve(const char *, 2187 const char __user * const __user *, 2188 const char __user * const __user *, struct pt_regs *); 2189 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 2190 struct task_struct *fork_idle(int); 2191 2192 extern void set_task_comm(struct task_struct *tsk, char *from); 2193 extern char *get_task_comm(char *to, struct task_struct *tsk); 2194 2195 #ifdef CONFIG_SMP 2196 void scheduler_ipi(void); 2197 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2198 #else 2199 static inline void scheduler_ipi(void) { } 2200 static inline unsigned long wait_task_inactive(struct task_struct *p, 2201 long match_state) 2202 { 2203 return 1; 2204 } 2205 #endif 2206 2207 #define next_task(p) \ 2208 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2209 2210 #define for_each_process(p) \ 2211 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2212 2213 extern bool current_is_single_threaded(void); 2214 2215 /* 2216 * Careful: do_each_thread/while_each_thread is a double loop so 2217 * 'break' will not work as expected - use goto instead. 2218 */ 2219 #define do_each_thread(g, t) \ 2220 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2221 2222 #define while_each_thread(g, t) \ 2223 while ((t = next_thread(t)) != g) 2224 2225 static inline int get_nr_threads(struct task_struct *tsk) 2226 { 2227 return tsk->signal->nr_threads; 2228 } 2229 2230 /* de_thread depends on thread_group_leader not being a pid based check */ 2231 #define thread_group_leader(p) (p == p->group_leader) 2232 2233 /* Do to the insanities of de_thread it is possible for a process 2234 * to have the pid of the thread group leader without actually being 2235 * the thread group leader. For iteration through the pids in proc 2236 * all we care about is that we have a task with the appropriate 2237 * pid, we don't actually care if we have the right task. 2238 */ 2239 static inline int has_group_leader_pid(struct task_struct *p) 2240 { 2241 return p->pid == p->tgid; 2242 } 2243 2244 static inline 2245 int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2246 { 2247 return p1->tgid == p2->tgid; 2248 } 2249 2250 static inline struct task_struct *next_thread(const struct task_struct *p) 2251 { 2252 return list_entry_rcu(p->thread_group.next, 2253 struct task_struct, thread_group); 2254 } 2255 2256 static inline int thread_group_empty(struct task_struct *p) 2257 { 2258 return list_empty(&p->thread_group); 2259 } 2260 2261 #define delay_group_leader(p) \ 2262 (thread_group_leader(p) && !thread_group_empty(p)) 2263 2264 static inline int task_detached(struct task_struct *p) 2265 { 2266 return p->exit_signal == -1; 2267 } 2268 2269 /* 2270 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2271 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2272 * pins the final release of task.io_context. Also protects ->cpuset and 2273 * ->cgroup.subsys[]. 2274 * 2275 * Nests both inside and outside of read_lock(&tasklist_lock). 2276 * It must not be nested with write_lock_irq(&tasklist_lock), 2277 * neither inside nor outside. 2278 */ 2279 static inline void task_lock(struct task_struct *p) 2280 { 2281 spin_lock(&p->alloc_lock); 2282 } 2283 2284 static inline void task_unlock(struct task_struct *p) 2285 { 2286 spin_unlock(&p->alloc_lock); 2287 } 2288 2289 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2290 unsigned long *flags); 2291 2292 #define lock_task_sighand(tsk, flags) \ 2293 ({ struct sighand_struct *__ss; \ 2294 __cond_lock(&(tsk)->sighand->siglock, \ 2295 (__ss = __lock_task_sighand(tsk, flags))); \ 2296 __ss; \ 2297 }) \ 2298 2299 static inline void unlock_task_sighand(struct task_struct *tsk, 2300 unsigned long *flags) 2301 { 2302 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2303 } 2304 2305 #ifndef __HAVE_THREAD_FUNCTIONS 2306 2307 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2308 #define task_stack_page(task) ((task)->stack) 2309 2310 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2311 { 2312 *task_thread_info(p) = *task_thread_info(org); 2313 task_thread_info(p)->task = p; 2314 } 2315 2316 static inline unsigned long *end_of_stack(struct task_struct *p) 2317 { 2318 return (unsigned long *)(task_thread_info(p) + 1); 2319 } 2320 2321 #endif 2322 2323 static inline int object_is_on_stack(void *obj) 2324 { 2325 void *stack = task_stack_page(current); 2326 2327 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2328 } 2329 2330 extern void thread_info_cache_init(void); 2331 2332 #ifdef CONFIG_DEBUG_STACK_USAGE 2333 static inline unsigned long stack_not_used(struct task_struct *p) 2334 { 2335 unsigned long *n = end_of_stack(p); 2336 2337 do { /* Skip over canary */ 2338 n++; 2339 } while (!*n); 2340 2341 return (unsigned long)n - (unsigned long)end_of_stack(p); 2342 } 2343 #endif 2344 2345 /* set thread flags in other task's structures 2346 * - see asm/thread_info.h for TIF_xxxx flags available 2347 */ 2348 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2349 { 2350 set_ti_thread_flag(task_thread_info(tsk), flag); 2351 } 2352 2353 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2354 { 2355 clear_ti_thread_flag(task_thread_info(tsk), flag); 2356 } 2357 2358 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2359 { 2360 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2361 } 2362 2363 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2364 { 2365 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2366 } 2367 2368 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2369 { 2370 return test_ti_thread_flag(task_thread_info(tsk), flag); 2371 } 2372 2373 static inline void set_tsk_need_resched(struct task_struct *tsk) 2374 { 2375 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2376 } 2377 2378 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2379 { 2380 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2381 } 2382 2383 static inline int test_tsk_need_resched(struct task_struct *tsk) 2384 { 2385 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2386 } 2387 2388 static inline int restart_syscall(void) 2389 { 2390 set_tsk_thread_flag(current, TIF_SIGPENDING); 2391 return -ERESTARTNOINTR; 2392 } 2393 2394 static inline int signal_pending(struct task_struct *p) 2395 { 2396 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2397 } 2398 2399 static inline int __fatal_signal_pending(struct task_struct *p) 2400 { 2401 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2402 } 2403 2404 static inline int fatal_signal_pending(struct task_struct *p) 2405 { 2406 return signal_pending(p) && __fatal_signal_pending(p); 2407 } 2408 2409 static inline int signal_pending_state(long state, struct task_struct *p) 2410 { 2411 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2412 return 0; 2413 if (!signal_pending(p)) 2414 return 0; 2415 2416 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2417 } 2418 2419 static inline int need_resched(void) 2420 { 2421 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2422 } 2423 2424 /* 2425 * cond_resched() and cond_resched_lock(): latency reduction via 2426 * explicit rescheduling in places that are safe. The return 2427 * value indicates whether a reschedule was done in fact. 2428 * cond_resched_lock() will drop the spinlock before scheduling, 2429 * cond_resched_softirq() will enable bhs before scheduling. 2430 */ 2431 extern int _cond_resched(void); 2432 2433 #define cond_resched() ({ \ 2434 __might_sleep(__FILE__, __LINE__, 0); \ 2435 _cond_resched(); \ 2436 }) 2437 2438 extern int __cond_resched_lock(spinlock_t *lock); 2439 2440 #ifdef CONFIG_PREEMPT 2441 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2442 #else 2443 #define PREEMPT_LOCK_OFFSET 0 2444 #endif 2445 2446 #define cond_resched_lock(lock) ({ \ 2447 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2448 __cond_resched_lock(lock); \ 2449 }) 2450 2451 extern int __cond_resched_softirq(void); 2452 2453 #define cond_resched_softirq() ({ \ 2454 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2455 __cond_resched_softirq(); \ 2456 }) 2457 2458 /* 2459 * Does a critical section need to be broken due to another 2460 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2461 * but a general need for low latency) 2462 */ 2463 static inline int spin_needbreak(spinlock_t *lock) 2464 { 2465 #ifdef CONFIG_PREEMPT 2466 return spin_is_contended(lock); 2467 #else 2468 return 0; 2469 #endif 2470 } 2471 2472 /* 2473 * Thread group CPU time accounting. 2474 */ 2475 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2476 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2477 2478 static inline void thread_group_cputime_init(struct signal_struct *sig) 2479 { 2480 spin_lock_init(&sig->cputimer.lock); 2481 } 2482 2483 /* 2484 * Reevaluate whether the task has signals pending delivery. 2485 * Wake the task if so. 2486 * This is required every time the blocked sigset_t changes. 2487 * callers must hold sighand->siglock. 2488 */ 2489 extern void recalc_sigpending_and_wake(struct task_struct *t); 2490 extern void recalc_sigpending(void); 2491 2492 extern void signal_wake_up(struct task_struct *t, int resume_stopped); 2493 2494 /* 2495 * Wrappers for p->thread_info->cpu access. No-op on UP. 2496 */ 2497 #ifdef CONFIG_SMP 2498 2499 static inline unsigned int task_cpu(const struct task_struct *p) 2500 { 2501 return task_thread_info(p)->cpu; 2502 } 2503 2504 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2505 2506 #else 2507 2508 static inline unsigned int task_cpu(const struct task_struct *p) 2509 { 2510 return 0; 2511 } 2512 2513 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2514 { 2515 } 2516 2517 #endif /* CONFIG_SMP */ 2518 2519 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2520 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2521 2522 extern void normalize_rt_tasks(void); 2523 2524 #ifdef CONFIG_CGROUP_SCHED 2525 2526 extern struct task_group root_task_group; 2527 2528 extern struct task_group *sched_create_group(struct task_group *parent); 2529 extern void sched_destroy_group(struct task_group *tg); 2530 extern void sched_move_task(struct task_struct *tsk); 2531 #ifdef CONFIG_FAIR_GROUP_SCHED 2532 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2533 extern unsigned long sched_group_shares(struct task_group *tg); 2534 #endif 2535 #ifdef CONFIG_RT_GROUP_SCHED 2536 extern int sched_group_set_rt_runtime(struct task_group *tg, 2537 long rt_runtime_us); 2538 extern long sched_group_rt_runtime(struct task_group *tg); 2539 extern int sched_group_set_rt_period(struct task_group *tg, 2540 long rt_period_us); 2541 extern long sched_group_rt_period(struct task_group *tg); 2542 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 2543 #endif 2544 #endif 2545 2546 extern int task_can_switch_user(struct user_struct *up, 2547 struct task_struct *tsk); 2548 2549 #ifdef CONFIG_TASK_XACCT 2550 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2551 { 2552 tsk->ioac.rchar += amt; 2553 } 2554 2555 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2556 { 2557 tsk->ioac.wchar += amt; 2558 } 2559 2560 static inline void inc_syscr(struct task_struct *tsk) 2561 { 2562 tsk->ioac.syscr++; 2563 } 2564 2565 static inline void inc_syscw(struct task_struct *tsk) 2566 { 2567 tsk->ioac.syscw++; 2568 } 2569 #else 2570 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2571 { 2572 } 2573 2574 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2575 { 2576 } 2577 2578 static inline void inc_syscr(struct task_struct *tsk) 2579 { 2580 } 2581 2582 static inline void inc_syscw(struct task_struct *tsk) 2583 { 2584 } 2585 #endif 2586 2587 #ifndef TASK_SIZE_OF 2588 #define TASK_SIZE_OF(tsk) TASK_SIZE 2589 #endif 2590 2591 #ifdef CONFIG_MM_OWNER 2592 extern void mm_update_next_owner(struct mm_struct *mm); 2593 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2594 #else 2595 static inline void mm_update_next_owner(struct mm_struct *mm) 2596 { 2597 } 2598 2599 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2600 { 2601 } 2602 #endif /* CONFIG_MM_OWNER */ 2603 2604 static inline unsigned long task_rlimit(const struct task_struct *tsk, 2605 unsigned int limit) 2606 { 2607 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2608 } 2609 2610 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2611 unsigned int limit) 2612 { 2613 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2614 } 2615 2616 static inline unsigned long rlimit(unsigned int limit) 2617 { 2618 return task_rlimit(current, limit); 2619 } 2620 2621 static inline unsigned long rlimit_max(unsigned int limit) 2622 { 2623 return task_rlimit_max(current, limit); 2624 } 2625 2626 #endif /* __KERNEL__ */ 2627 2628 #endif 2629