1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 /* 5 * cloning flags: 6 */ 7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15 #define CLONE_THREAD 0x00010000 /* Same thread group? */ 16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24 /* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state) 25 and is now available for re-use. */ 26 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 27 #define CLONE_NEWIPC 0x08000000 /* New ipcs */ 28 #define CLONE_NEWUSER 0x10000000 /* New user namespace */ 29 #define CLONE_NEWPID 0x20000000 /* New pid namespace */ 30 #define CLONE_NEWNET 0x40000000 /* New network namespace */ 31 #define CLONE_IO 0x80000000 /* Clone io context */ 32 33 /* 34 * Scheduling policies 35 */ 36 #define SCHED_NORMAL 0 37 #define SCHED_FIFO 1 38 #define SCHED_RR 2 39 #define SCHED_BATCH 3 40 /* SCHED_ISO: reserved but not implemented yet */ 41 #define SCHED_IDLE 5 42 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */ 43 #define SCHED_RESET_ON_FORK 0x40000000 44 45 #ifdef __KERNEL__ 46 47 struct sched_param { 48 int sched_priority; 49 }; 50 51 #include <asm/param.h> /* for HZ */ 52 53 #include <linux/capability.h> 54 #include <linux/threads.h> 55 #include <linux/kernel.h> 56 #include <linux/types.h> 57 #include <linux/timex.h> 58 #include <linux/jiffies.h> 59 #include <linux/rbtree.h> 60 #include <linux/thread_info.h> 61 #include <linux/cpumask.h> 62 #include <linux/errno.h> 63 #include <linux/nodemask.h> 64 #include <linux/mm_types.h> 65 66 #include <asm/system.h> 67 #include <asm/page.h> 68 #include <asm/ptrace.h> 69 #include <asm/cputime.h> 70 71 #include <linux/smp.h> 72 #include <linux/sem.h> 73 #include <linux/signal.h> 74 #include <linux/compiler.h> 75 #include <linux/completion.h> 76 #include <linux/pid.h> 77 #include <linux/percpu.h> 78 #include <linux/topology.h> 79 #include <linux/proportions.h> 80 #include <linux/seccomp.h> 81 #include <linux/rcupdate.h> 82 #include <linux/rculist.h> 83 #include <linux/rtmutex.h> 84 85 #include <linux/time.h> 86 #include <linux/param.h> 87 #include <linux/resource.h> 88 #include <linux/timer.h> 89 #include <linux/hrtimer.h> 90 #include <linux/task_io_accounting.h> 91 #include <linux/latencytop.h> 92 #include <linux/cred.h> 93 94 #include <asm/processor.h> 95 96 struct exec_domain; 97 struct futex_pi_state; 98 struct robust_list_head; 99 struct bio_list; 100 struct fs_struct; 101 struct perf_event_context; 102 struct blk_plug; 103 104 /* 105 * List of flags we want to share for kernel threads, 106 * if only because they are not used by them anyway. 107 */ 108 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 109 110 /* 111 * These are the constant used to fake the fixed-point load-average 112 * counting. Some notes: 113 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 114 * a load-average precision of 10 bits integer + 11 bits fractional 115 * - if you want to count load-averages more often, you need more 116 * precision, or rounding will get you. With 2-second counting freq, 117 * the EXP_n values would be 1981, 2034 and 2043 if still using only 118 * 11 bit fractions. 119 */ 120 extern unsigned long avenrun[]; /* Load averages */ 121 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 122 123 #define FSHIFT 11 /* nr of bits of precision */ 124 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 125 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 126 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 127 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 128 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 129 130 #define CALC_LOAD(load,exp,n) \ 131 load *= exp; \ 132 load += n*(FIXED_1-exp); \ 133 load >>= FSHIFT; 134 135 extern unsigned long total_forks; 136 extern int nr_threads; 137 DECLARE_PER_CPU(unsigned long, process_counts); 138 extern int nr_processes(void); 139 extern unsigned long nr_running(void); 140 extern unsigned long nr_uninterruptible(void); 141 extern unsigned long nr_iowait(void); 142 extern unsigned long nr_iowait_cpu(int cpu); 143 extern unsigned long this_cpu_load(void); 144 145 146 extern void calc_global_load(unsigned long ticks); 147 148 extern unsigned long get_parent_ip(unsigned long addr); 149 150 struct seq_file; 151 struct cfs_rq; 152 struct task_group; 153 #ifdef CONFIG_SCHED_DEBUG 154 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 155 extern void proc_sched_set_task(struct task_struct *p); 156 extern void 157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 158 #else 159 static inline void 160 proc_sched_show_task(struct task_struct *p, struct seq_file *m) 161 { 162 } 163 static inline void proc_sched_set_task(struct task_struct *p) 164 { 165 } 166 static inline void 167 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 168 { 169 } 170 #endif 171 172 /* 173 * Task state bitmask. NOTE! These bits are also 174 * encoded in fs/proc/array.c: get_task_state(). 175 * 176 * We have two separate sets of flags: task->state 177 * is about runnability, while task->exit_state are 178 * about the task exiting. Confusing, but this way 179 * modifying one set can't modify the other one by 180 * mistake. 181 */ 182 #define TASK_RUNNING 0 183 #define TASK_INTERRUPTIBLE 1 184 #define TASK_UNINTERRUPTIBLE 2 185 #define __TASK_STOPPED 4 186 #define __TASK_TRACED 8 187 /* in tsk->exit_state */ 188 #define EXIT_ZOMBIE 16 189 #define EXIT_DEAD 32 190 /* in tsk->state again */ 191 #define TASK_DEAD 64 192 #define TASK_WAKEKILL 128 193 #define TASK_WAKING 256 194 #define TASK_STATE_MAX 512 195 196 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW" 197 198 extern char ___assert_task_state[1 - 2*!!( 199 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 200 201 /* Convenience macros for the sake of set_task_state */ 202 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 203 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 204 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 205 206 /* Convenience macros for the sake of wake_up */ 207 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 208 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 209 210 /* get_task_state() */ 211 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 212 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 213 __TASK_TRACED) 214 215 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 216 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 217 #define task_is_dead(task) ((task)->exit_state != 0) 218 #define task_is_stopped_or_traced(task) \ 219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 220 #define task_contributes_to_load(task) \ 221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 222 (task->flags & PF_FREEZING) == 0) 223 224 #define __set_task_state(tsk, state_value) \ 225 do { (tsk)->state = (state_value); } while (0) 226 #define set_task_state(tsk, state_value) \ 227 set_mb((tsk)->state, (state_value)) 228 229 /* 230 * set_current_state() includes a barrier so that the write of current->state 231 * is correctly serialised wrt the caller's subsequent test of whether to 232 * actually sleep: 233 * 234 * set_current_state(TASK_UNINTERRUPTIBLE); 235 * if (do_i_need_to_sleep()) 236 * schedule(); 237 * 238 * If the caller does not need such serialisation then use __set_current_state() 239 */ 240 #define __set_current_state(state_value) \ 241 do { current->state = (state_value); } while (0) 242 #define set_current_state(state_value) \ 243 set_mb(current->state, (state_value)) 244 245 /* Task command name length */ 246 #define TASK_COMM_LEN 16 247 248 #include <linux/spinlock.h> 249 250 /* 251 * This serializes "schedule()" and also protects 252 * the run-queue from deletions/modifications (but 253 * _adding_ to the beginning of the run-queue has 254 * a separate lock). 255 */ 256 extern rwlock_t tasklist_lock; 257 extern spinlock_t mmlist_lock; 258 259 struct task_struct; 260 261 #ifdef CONFIG_PROVE_RCU 262 extern int lockdep_tasklist_lock_is_held(void); 263 #endif /* #ifdef CONFIG_PROVE_RCU */ 264 265 extern void sched_init(void); 266 extern void sched_init_smp(void); 267 extern asmlinkage void schedule_tail(struct task_struct *prev); 268 extern void init_idle(struct task_struct *idle, int cpu); 269 extern void init_idle_bootup_task(struct task_struct *idle); 270 271 extern int runqueue_is_locked(int cpu); 272 273 extern cpumask_var_t nohz_cpu_mask; 274 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 275 extern void select_nohz_load_balancer(int stop_tick); 276 extern int get_nohz_timer_target(void); 277 #else 278 static inline void select_nohz_load_balancer(int stop_tick) { } 279 #endif 280 281 /* 282 * Only dump TASK_* tasks. (0 for all tasks) 283 */ 284 extern void show_state_filter(unsigned long state_filter); 285 286 static inline void show_state(void) 287 { 288 show_state_filter(0); 289 } 290 291 extern void show_regs(struct pt_regs *); 292 293 /* 294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 295 * task), SP is the stack pointer of the first frame that should be shown in the back 296 * trace (or NULL if the entire call-chain of the task should be shown). 297 */ 298 extern void show_stack(struct task_struct *task, unsigned long *sp); 299 300 void io_schedule(void); 301 long io_schedule_timeout(long timeout); 302 303 extern void cpu_init (void); 304 extern void trap_init(void); 305 extern void update_process_times(int user); 306 extern void scheduler_tick(void); 307 308 extern void sched_show_task(struct task_struct *p); 309 310 #ifdef CONFIG_LOCKUP_DETECTOR 311 extern void touch_softlockup_watchdog(void); 312 extern void touch_softlockup_watchdog_sync(void); 313 extern void touch_all_softlockup_watchdogs(void); 314 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 315 void __user *buffer, 316 size_t *lenp, loff_t *ppos); 317 extern unsigned int softlockup_panic; 318 void lockup_detector_init(void); 319 #else 320 static inline void touch_softlockup_watchdog(void) 321 { 322 } 323 static inline void touch_softlockup_watchdog_sync(void) 324 { 325 } 326 static inline void touch_all_softlockup_watchdogs(void) 327 { 328 } 329 static inline void lockup_detector_init(void) 330 { 331 } 332 #endif 333 334 #ifdef CONFIG_DETECT_HUNG_TASK 335 extern unsigned int sysctl_hung_task_panic; 336 extern unsigned long sysctl_hung_task_check_count; 337 extern unsigned long sysctl_hung_task_timeout_secs; 338 extern unsigned long sysctl_hung_task_warnings; 339 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, 340 void __user *buffer, 341 size_t *lenp, loff_t *ppos); 342 #else 343 /* Avoid need for ifdefs elsewhere in the code */ 344 enum { sysctl_hung_task_timeout_secs = 0 }; 345 #endif 346 347 /* Attach to any functions which should be ignored in wchan output. */ 348 #define __sched __attribute__((__section__(".sched.text"))) 349 350 /* Linker adds these: start and end of __sched functions */ 351 extern char __sched_text_start[], __sched_text_end[]; 352 353 /* Is this address in the __sched functions? */ 354 extern int in_sched_functions(unsigned long addr); 355 356 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 357 extern signed long schedule_timeout(signed long timeout); 358 extern signed long schedule_timeout_interruptible(signed long timeout); 359 extern signed long schedule_timeout_killable(signed long timeout); 360 extern signed long schedule_timeout_uninterruptible(signed long timeout); 361 asmlinkage void schedule(void); 362 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner); 363 364 struct nsproxy; 365 struct user_namespace; 366 367 /* 368 * Default maximum number of active map areas, this limits the number of vmas 369 * per mm struct. Users can overwrite this number by sysctl but there is a 370 * problem. 371 * 372 * When a program's coredump is generated as ELF format, a section is created 373 * per a vma. In ELF, the number of sections is represented in unsigned short. 374 * This means the number of sections should be smaller than 65535 at coredump. 375 * Because the kernel adds some informative sections to a image of program at 376 * generating coredump, we need some margin. The number of extra sections is 377 * 1-3 now and depends on arch. We use "5" as safe margin, here. 378 */ 379 #define MAPCOUNT_ELF_CORE_MARGIN (5) 380 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 381 382 extern int sysctl_max_map_count; 383 384 #include <linux/aio.h> 385 386 #ifdef CONFIG_MMU 387 extern void arch_pick_mmap_layout(struct mm_struct *mm); 388 extern unsigned long 389 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 390 unsigned long, unsigned long); 391 extern unsigned long 392 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 393 unsigned long len, unsigned long pgoff, 394 unsigned long flags); 395 extern void arch_unmap_area(struct mm_struct *, unsigned long); 396 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 397 #else 398 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 399 #endif 400 401 402 extern void set_dumpable(struct mm_struct *mm, int value); 403 extern int get_dumpable(struct mm_struct *mm); 404 405 /* mm flags */ 406 /* dumpable bits */ 407 #define MMF_DUMPABLE 0 /* core dump is permitted */ 408 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 409 410 #define MMF_DUMPABLE_BITS 2 411 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 412 413 /* coredump filter bits */ 414 #define MMF_DUMP_ANON_PRIVATE 2 415 #define MMF_DUMP_ANON_SHARED 3 416 #define MMF_DUMP_MAPPED_PRIVATE 4 417 #define MMF_DUMP_MAPPED_SHARED 5 418 #define MMF_DUMP_ELF_HEADERS 6 419 #define MMF_DUMP_HUGETLB_PRIVATE 7 420 #define MMF_DUMP_HUGETLB_SHARED 8 421 422 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 423 #define MMF_DUMP_FILTER_BITS 7 424 #define MMF_DUMP_FILTER_MASK \ 425 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 426 #define MMF_DUMP_FILTER_DEFAULT \ 427 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 428 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 429 430 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 431 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 432 #else 433 # define MMF_DUMP_MASK_DEFAULT_ELF 0 434 #endif 435 /* leave room for more dump flags */ 436 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 437 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 438 439 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 440 441 struct sighand_struct { 442 atomic_t count; 443 struct k_sigaction action[_NSIG]; 444 spinlock_t siglock; 445 wait_queue_head_t signalfd_wqh; 446 }; 447 448 struct pacct_struct { 449 int ac_flag; 450 long ac_exitcode; 451 unsigned long ac_mem; 452 cputime_t ac_utime, ac_stime; 453 unsigned long ac_minflt, ac_majflt; 454 }; 455 456 struct cpu_itimer { 457 cputime_t expires; 458 cputime_t incr; 459 u32 error; 460 u32 incr_error; 461 }; 462 463 /** 464 * struct task_cputime - collected CPU time counts 465 * @utime: time spent in user mode, in &cputime_t units 466 * @stime: time spent in kernel mode, in &cputime_t units 467 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 468 * 469 * This structure groups together three kinds of CPU time that are 470 * tracked for threads and thread groups. Most things considering 471 * CPU time want to group these counts together and treat all three 472 * of them in parallel. 473 */ 474 struct task_cputime { 475 cputime_t utime; 476 cputime_t stime; 477 unsigned long long sum_exec_runtime; 478 }; 479 /* Alternate field names when used to cache expirations. */ 480 #define prof_exp stime 481 #define virt_exp utime 482 #define sched_exp sum_exec_runtime 483 484 #define INIT_CPUTIME \ 485 (struct task_cputime) { \ 486 .utime = cputime_zero, \ 487 .stime = cputime_zero, \ 488 .sum_exec_runtime = 0, \ 489 } 490 491 /* 492 * Disable preemption until the scheduler is running. 493 * Reset by start_kernel()->sched_init()->init_idle(). 494 * 495 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 496 * before the scheduler is active -- see should_resched(). 497 */ 498 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 499 500 /** 501 * struct thread_group_cputimer - thread group interval timer counts 502 * @cputime: thread group interval timers. 503 * @running: non-zero when there are timers running and 504 * @cputime receives updates. 505 * @lock: lock for fields in this struct. 506 * 507 * This structure contains the version of task_cputime, above, that is 508 * used for thread group CPU timer calculations. 509 */ 510 struct thread_group_cputimer { 511 struct task_cputime cputime; 512 int running; 513 spinlock_t lock; 514 }; 515 516 #include <linux/rwsem.h> 517 struct autogroup; 518 519 /* 520 * NOTE! "signal_struct" does not have its own 521 * locking, because a shared signal_struct always 522 * implies a shared sighand_struct, so locking 523 * sighand_struct is always a proper superset of 524 * the locking of signal_struct. 525 */ 526 struct signal_struct { 527 atomic_t sigcnt; 528 atomic_t live; 529 int nr_threads; 530 531 wait_queue_head_t wait_chldexit; /* for wait4() */ 532 533 /* current thread group signal load-balancing target: */ 534 struct task_struct *curr_target; 535 536 /* shared signal handling: */ 537 struct sigpending shared_pending; 538 539 /* thread group exit support */ 540 int group_exit_code; 541 /* overloaded: 542 * - notify group_exit_task when ->count is equal to notify_count 543 * - everyone except group_exit_task is stopped during signal delivery 544 * of fatal signals, group_exit_task processes the signal. 545 */ 546 int notify_count; 547 struct task_struct *group_exit_task; 548 549 /* thread group stop support, overloads group_exit_code too */ 550 int group_stop_count; 551 unsigned int flags; /* see SIGNAL_* flags below */ 552 553 /* POSIX.1b Interval Timers */ 554 struct list_head posix_timers; 555 556 /* ITIMER_REAL timer for the process */ 557 struct hrtimer real_timer; 558 struct pid *leader_pid; 559 ktime_t it_real_incr; 560 561 /* 562 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 563 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 564 * values are defined to 0 and 1 respectively 565 */ 566 struct cpu_itimer it[2]; 567 568 /* 569 * Thread group totals for process CPU timers. 570 * See thread_group_cputimer(), et al, for details. 571 */ 572 struct thread_group_cputimer cputimer; 573 574 /* Earliest-expiration cache. */ 575 struct task_cputime cputime_expires; 576 577 struct list_head cpu_timers[3]; 578 579 struct pid *tty_old_pgrp; 580 581 /* boolean value for session group leader */ 582 int leader; 583 584 struct tty_struct *tty; /* NULL if no tty */ 585 586 #ifdef CONFIG_SCHED_AUTOGROUP 587 struct autogroup *autogroup; 588 #endif 589 /* 590 * Cumulative resource counters for dead threads in the group, 591 * and for reaped dead child processes forked by this group. 592 * Live threads maintain their own counters and add to these 593 * in __exit_signal, except for the group leader. 594 */ 595 cputime_t utime, stime, cutime, cstime; 596 cputime_t gtime; 597 cputime_t cgtime; 598 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 599 cputime_t prev_utime, prev_stime; 600 #endif 601 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 602 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 603 unsigned long inblock, oublock, cinblock, coublock; 604 unsigned long maxrss, cmaxrss; 605 struct task_io_accounting ioac; 606 607 /* 608 * Cumulative ns of schedule CPU time fo dead threads in the 609 * group, not including a zombie group leader, (This only differs 610 * from jiffies_to_ns(utime + stime) if sched_clock uses something 611 * other than jiffies.) 612 */ 613 unsigned long long sum_sched_runtime; 614 615 /* 616 * We don't bother to synchronize most readers of this at all, 617 * because there is no reader checking a limit that actually needs 618 * to get both rlim_cur and rlim_max atomically, and either one 619 * alone is a single word that can safely be read normally. 620 * getrlimit/setrlimit use task_lock(current->group_leader) to 621 * protect this instead of the siglock, because they really 622 * have no need to disable irqs. 623 */ 624 struct rlimit rlim[RLIM_NLIMITS]; 625 626 #ifdef CONFIG_BSD_PROCESS_ACCT 627 struct pacct_struct pacct; /* per-process accounting information */ 628 #endif 629 #ifdef CONFIG_TASKSTATS 630 struct taskstats *stats; 631 #endif 632 #ifdef CONFIG_AUDIT 633 unsigned audit_tty; 634 struct tty_audit_buf *tty_audit_buf; 635 #endif 636 #ifdef CONFIG_CGROUPS 637 /* 638 * The threadgroup_fork_lock prevents threads from forking with 639 * CLONE_THREAD while held for writing. Use this for fork-sensitive 640 * threadgroup-wide operations. It's taken for reading in fork.c in 641 * copy_process(). 642 * Currently only needed write-side by cgroups. 643 */ 644 struct rw_semaphore threadgroup_fork_lock; 645 #endif 646 647 int oom_adj; /* OOM kill score adjustment (bit shift) */ 648 int oom_score_adj; /* OOM kill score adjustment */ 649 int oom_score_adj_min; /* OOM kill score adjustment minimum value. 650 * Only settable by CAP_SYS_RESOURCE. */ 651 652 struct mutex cred_guard_mutex; /* guard against foreign influences on 653 * credential calculations 654 * (notably. ptrace) */ 655 }; 656 657 /* Context switch must be unlocked if interrupts are to be enabled */ 658 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 659 # define __ARCH_WANT_UNLOCKED_CTXSW 660 #endif 661 662 /* 663 * Bits in flags field of signal_struct. 664 */ 665 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 666 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 667 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 668 /* 669 * Pending notifications to parent. 670 */ 671 #define SIGNAL_CLD_STOPPED 0x00000010 672 #define SIGNAL_CLD_CONTINUED 0x00000020 673 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 674 675 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 676 677 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 678 static inline int signal_group_exit(const struct signal_struct *sig) 679 { 680 return (sig->flags & SIGNAL_GROUP_EXIT) || 681 (sig->group_exit_task != NULL); 682 } 683 684 /* 685 * Some day this will be a full-fledged user tracking system.. 686 */ 687 struct user_struct { 688 atomic_t __count; /* reference count */ 689 atomic_t processes; /* How many processes does this user have? */ 690 atomic_t files; /* How many open files does this user have? */ 691 atomic_t sigpending; /* How many pending signals does this user have? */ 692 #ifdef CONFIG_INOTIFY_USER 693 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 694 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 695 #endif 696 #ifdef CONFIG_FANOTIFY 697 atomic_t fanotify_listeners; 698 #endif 699 #ifdef CONFIG_EPOLL 700 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 701 #endif 702 #ifdef CONFIG_POSIX_MQUEUE 703 /* protected by mq_lock */ 704 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 705 #endif 706 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 707 708 #ifdef CONFIG_KEYS 709 struct key *uid_keyring; /* UID specific keyring */ 710 struct key *session_keyring; /* UID's default session keyring */ 711 #endif 712 713 /* Hash table maintenance information */ 714 struct hlist_node uidhash_node; 715 uid_t uid; 716 struct user_namespace *user_ns; 717 718 #ifdef CONFIG_PERF_EVENTS 719 atomic_long_t locked_vm; 720 #endif 721 }; 722 723 extern int uids_sysfs_init(void); 724 725 extern struct user_struct *find_user(uid_t); 726 727 extern struct user_struct root_user; 728 #define INIT_USER (&root_user) 729 730 731 struct backing_dev_info; 732 struct reclaim_state; 733 734 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 735 struct sched_info { 736 /* cumulative counters */ 737 unsigned long pcount; /* # of times run on this cpu */ 738 unsigned long long run_delay; /* time spent waiting on a runqueue */ 739 740 /* timestamps */ 741 unsigned long long last_arrival,/* when we last ran on a cpu */ 742 last_queued; /* when we were last queued to run */ 743 }; 744 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 745 746 #ifdef CONFIG_TASK_DELAY_ACCT 747 struct task_delay_info { 748 spinlock_t lock; 749 unsigned int flags; /* Private per-task flags */ 750 751 /* For each stat XXX, add following, aligned appropriately 752 * 753 * struct timespec XXX_start, XXX_end; 754 * u64 XXX_delay; 755 * u32 XXX_count; 756 * 757 * Atomicity of updates to XXX_delay, XXX_count protected by 758 * single lock above (split into XXX_lock if contention is an issue). 759 */ 760 761 /* 762 * XXX_count is incremented on every XXX operation, the delay 763 * associated with the operation is added to XXX_delay. 764 * XXX_delay contains the accumulated delay time in nanoseconds. 765 */ 766 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 767 u64 blkio_delay; /* wait for sync block io completion */ 768 u64 swapin_delay; /* wait for swapin block io completion */ 769 u32 blkio_count; /* total count of the number of sync block */ 770 /* io operations performed */ 771 u32 swapin_count; /* total count of the number of swapin block */ 772 /* io operations performed */ 773 774 struct timespec freepages_start, freepages_end; 775 u64 freepages_delay; /* wait for memory reclaim */ 776 u32 freepages_count; /* total count of memory reclaim */ 777 }; 778 #endif /* CONFIG_TASK_DELAY_ACCT */ 779 780 static inline int sched_info_on(void) 781 { 782 #ifdef CONFIG_SCHEDSTATS 783 return 1; 784 #elif defined(CONFIG_TASK_DELAY_ACCT) 785 extern int delayacct_on; 786 return delayacct_on; 787 #else 788 return 0; 789 #endif 790 } 791 792 enum cpu_idle_type { 793 CPU_IDLE, 794 CPU_NOT_IDLE, 795 CPU_NEWLY_IDLE, 796 CPU_MAX_IDLE_TYPES 797 }; 798 799 /* 800 * Increase resolution of nice-level calculations for 64-bit architectures. 801 * The extra resolution improves shares distribution and load balancing of 802 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 803 * hierarchies, especially on larger systems. This is not a user-visible change 804 * and does not change the user-interface for setting shares/weights. 805 * 806 * We increase resolution only if we have enough bits to allow this increased 807 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution 808 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the 809 * increased costs. 810 */ 811 #if BITS_PER_LONG > 32 812 # define SCHED_LOAD_RESOLUTION 10 813 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION) 814 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION) 815 #else 816 # define SCHED_LOAD_RESOLUTION 0 817 # define scale_load(w) (w) 818 # define scale_load_down(w) (w) 819 #endif 820 821 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION) 822 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 823 824 /* 825 * Increase resolution of cpu_power calculations 826 */ 827 #define SCHED_POWER_SHIFT 10 828 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT) 829 830 /* 831 * sched-domains (multiprocessor balancing) declarations: 832 */ 833 #ifdef CONFIG_SMP 834 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 835 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 836 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 837 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 838 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 839 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 840 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */ 841 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 842 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */ 843 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 844 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 845 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 846 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 847 848 enum powersavings_balance_level { 849 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */ 850 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package 851 * first for long running threads 852 */ 853 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle 854 * cpu package for power savings 855 */ 856 MAX_POWERSAVINGS_BALANCE_LEVELS 857 }; 858 859 extern int sched_mc_power_savings, sched_smt_power_savings; 860 861 static inline int sd_balance_for_mc_power(void) 862 { 863 if (sched_smt_power_savings) 864 return SD_POWERSAVINGS_BALANCE; 865 866 if (!sched_mc_power_savings) 867 return SD_PREFER_SIBLING; 868 869 return 0; 870 } 871 872 static inline int sd_balance_for_package_power(void) 873 { 874 if (sched_mc_power_savings | sched_smt_power_savings) 875 return SD_POWERSAVINGS_BALANCE; 876 877 return SD_PREFER_SIBLING; 878 } 879 880 extern int __weak arch_sd_sibiling_asym_packing(void); 881 882 /* 883 * Optimise SD flags for power savings: 884 * SD_BALANCE_NEWIDLE helps aggressive task consolidation and power savings. 885 * Keep default SD flags if sched_{smt,mc}_power_saving=0 886 */ 887 888 static inline int sd_power_saving_flags(void) 889 { 890 if (sched_mc_power_savings | sched_smt_power_savings) 891 return SD_BALANCE_NEWIDLE; 892 893 return 0; 894 } 895 896 struct sched_group { 897 struct sched_group *next; /* Must be a circular list */ 898 atomic_t ref; 899 900 /* 901 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 902 * single CPU. 903 */ 904 unsigned int cpu_power, cpu_power_orig; 905 unsigned int group_weight; 906 907 /* 908 * The CPUs this group covers. 909 * 910 * NOTE: this field is variable length. (Allocated dynamically 911 * by attaching extra space to the end of the structure, 912 * depending on how many CPUs the kernel has booted up with) 913 */ 914 unsigned long cpumask[0]; 915 }; 916 917 static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 918 { 919 return to_cpumask(sg->cpumask); 920 } 921 922 struct sched_domain_attr { 923 int relax_domain_level; 924 }; 925 926 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 927 .relax_domain_level = -1, \ 928 } 929 930 extern int sched_domain_level_max; 931 932 struct sched_domain { 933 /* These fields must be setup */ 934 struct sched_domain *parent; /* top domain must be null terminated */ 935 struct sched_domain *child; /* bottom domain must be null terminated */ 936 struct sched_group *groups; /* the balancing groups of the domain */ 937 unsigned long min_interval; /* Minimum balance interval ms */ 938 unsigned long max_interval; /* Maximum balance interval ms */ 939 unsigned int busy_factor; /* less balancing by factor if busy */ 940 unsigned int imbalance_pct; /* No balance until over watermark */ 941 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 942 unsigned int busy_idx; 943 unsigned int idle_idx; 944 unsigned int newidle_idx; 945 unsigned int wake_idx; 946 unsigned int forkexec_idx; 947 unsigned int smt_gain; 948 int flags; /* See SD_* */ 949 int level; 950 951 /* Runtime fields. */ 952 unsigned long last_balance; /* init to jiffies. units in jiffies */ 953 unsigned int balance_interval; /* initialise to 1. units in ms. */ 954 unsigned int nr_balance_failed; /* initialise to 0 */ 955 956 u64 last_update; 957 958 #ifdef CONFIG_SCHEDSTATS 959 /* load_balance() stats */ 960 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 961 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 962 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 963 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 964 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 965 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 966 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 967 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 968 969 /* Active load balancing */ 970 unsigned int alb_count; 971 unsigned int alb_failed; 972 unsigned int alb_pushed; 973 974 /* SD_BALANCE_EXEC stats */ 975 unsigned int sbe_count; 976 unsigned int sbe_balanced; 977 unsigned int sbe_pushed; 978 979 /* SD_BALANCE_FORK stats */ 980 unsigned int sbf_count; 981 unsigned int sbf_balanced; 982 unsigned int sbf_pushed; 983 984 /* try_to_wake_up() stats */ 985 unsigned int ttwu_wake_remote; 986 unsigned int ttwu_move_affine; 987 unsigned int ttwu_move_balance; 988 #endif 989 #ifdef CONFIG_SCHED_DEBUG 990 char *name; 991 #endif 992 union { 993 void *private; /* used during construction */ 994 struct rcu_head rcu; /* used during destruction */ 995 }; 996 997 unsigned int span_weight; 998 /* 999 * Span of all CPUs in this domain. 1000 * 1001 * NOTE: this field is variable length. (Allocated dynamically 1002 * by attaching extra space to the end of the structure, 1003 * depending on how many CPUs the kernel has booted up with) 1004 */ 1005 unsigned long span[0]; 1006 }; 1007 1008 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1009 { 1010 return to_cpumask(sd->span); 1011 } 1012 1013 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1014 struct sched_domain_attr *dattr_new); 1015 1016 /* Allocate an array of sched domains, for partition_sched_domains(). */ 1017 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1018 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1019 1020 /* Test a flag in parent sched domain */ 1021 static inline int test_sd_parent(struct sched_domain *sd, int flag) 1022 { 1023 if (sd->parent && (sd->parent->flags & flag)) 1024 return 1; 1025 1026 return 0; 1027 } 1028 1029 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu); 1030 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu); 1031 1032 #else /* CONFIG_SMP */ 1033 1034 struct sched_domain_attr; 1035 1036 static inline void 1037 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1038 struct sched_domain_attr *dattr_new) 1039 { 1040 } 1041 #endif /* !CONFIG_SMP */ 1042 1043 1044 struct io_context; /* See blkdev.h */ 1045 1046 1047 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1048 extern void prefetch_stack(struct task_struct *t); 1049 #else 1050 static inline void prefetch_stack(struct task_struct *t) { } 1051 #endif 1052 1053 struct audit_context; /* See audit.c */ 1054 struct mempolicy; 1055 struct pipe_inode_info; 1056 struct uts_namespace; 1057 1058 struct rq; 1059 struct sched_domain; 1060 1061 /* 1062 * wake flags 1063 */ 1064 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */ 1065 #define WF_FORK 0x02 /* child wakeup after fork */ 1066 #define WF_MIGRATED 0x04 /* internal use, task got migrated */ 1067 1068 #define ENQUEUE_WAKEUP 1 1069 #define ENQUEUE_HEAD 2 1070 #ifdef CONFIG_SMP 1071 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */ 1072 #else 1073 #define ENQUEUE_WAKING 0 1074 #endif 1075 1076 #define DEQUEUE_SLEEP 1 1077 1078 struct sched_class { 1079 const struct sched_class *next; 1080 1081 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1082 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1083 void (*yield_task) (struct rq *rq); 1084 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); 1085 1086 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1087 1088 struct task_struct * (*pick_next_task) (struct rq *rq); 1089 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1090 1091 #ifdef CONFIG_SMP 1092 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags); 1093 1094 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 1095 void (*post_schedule) (struct rq *this_rq); 1096 void (*task_waking) (struct task_struct *task); 1097 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1098 1099 void (*set_cpus_allowed)(struct task_struct *p, 1100 const struct cpumask *newmask); 1101 1102 void (*rq_online)(struct rq *rq); 1103 void (*rq_offline)(struct rq *rq); 1104 #endif 1105 1106 void (*set_curr_task) (struct rq *rq); 1107 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1108 void (*task_fork) (struct task_struct *p); 1109 1110 void (*switched_from) (struct rq *this_rq, struct task_struct *task); 1111 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1112 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1113 int oldprio); 1114 1115 unsigned int (*get_rr_interval) (struct rq *rq, 1116 struct task_struct *task); 1117 1118 #ifdef CONFIG_FAIR_GROUP_SCHED 1119 void (*task_move_group) (struct task_struct *p, int on_rq); 1120 #endif 1121 }; 1122 1123 struct load_weight { 1124 unsigned long weight, inv_weight; 1125 }; 1126 1127 #ifdef CONFIG_SCHEDSTATS 1128 struct sched_statistics { 1129 u64 wait_start; 1130 u64 wait_max; 1131 u64 wait_count; 1132 u64 wait_sum; 1133 u64 iowait_count; 1134 u64 iowait_sum; 1135 1136 u64 sleep_start; 1137 u64 sleep_max; 1138 s64 sum_sleep_runtime; 1139 1140 u64 block_start; 1141 u64 block_max; 1142 u64 exec_max; 1143 u64 slice_max; 1144 1145 u64 nr_migrations_cold; 1146 u64 nr_failed_migrations_affine; 1147 u64 nr_failed_migrations_running; 1148 u64 nr_failed_migrations_hot; 1149 u64 nr_forced_migrations; 1150 1151 u64 nr_wakeups; 1152 u64 nr_wakeups_sync; 1153 u64 nr_wakeups_migrate; 1154 u64 nr_wakeups_local; 1155 u64 nr_wakeups_remote; 1156 u64 nr_wakeups_affine; 1157 u64 nr_wakeups_affine_attempts; 1158 u64 nr_wakeups_passive; 1159 u64 nr_wakeups_idle; 1160 }; 1161 #endif 1162 1163 struct sched_entity { 1164 struct load_weight load; /* for load-balancing */ 1165 struct rb_node run_node; 1166 struct list_head group_node; 1167 unsigned int on_rq; 1168 1169 u64 exec_start; 1170 u64 sum_exec_runtime; 1171 u64 vruntime; 1172 u64 prev_sum_exec_runtime; 1173 1174 u64 nr_migrations; 1175 1176 #ifdef CONFIG_SCHEDSTATS 1177 struct sched_statistics statistics; 1178 #endif 1179 1180 #ifdef CONFIG_FAIR_GROUP_SCHED 1181 struct sched_entity *parent; 1182 /* rq on which this entity is (to be) queued: */ 1183 struct cfs_rq *cfs_rq; 1184 /* rq "owned" by this entity/group: */ 1185 struct cfs_rq *my_q; 1186 #endif 1187 }; 1188 1189 struct sched_rt_entity { 1190 struct list_head run_list; 1191 unsigned long timeout; 1192 unsigned int time_slice; 1193 int nr_cpus_allowed; 1194 1195 struct sched_rt_entity *back; 1196 #ifdef CONFIG_RT_GROUP_SCHED 1197 struct sched_rt_entity *parent; 1198 /* rq on which this entity is (to be) queued: */ 1199 struct rt_rq *rt_rq; 1200 /* rq "owned" by this entity/group: */ 1201 struct rt_rq *my_q; 1202 #endif 1203 }; 1204 1205 struct rcu_node; 1206 1207 enum perf_event_task_context { 1208 perf_invalid_context = -1, 1209 perf_hw_context = 0, 1210 perf_sw_context, 1211 perf_nr_task_contexts, 1212 }; 1213 1214 struct task_struct { 1215 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1216 void *stack; 1217 atomic_t usage; 1218 unsigned int flags; /* per process flags, defined below */ 1219 unsigned int ptrace; 1220 1221 #ifdef CONFIG_SMP 1222 struct task_struct *wake_entry; 1223 int on_cpu; 1224 #endif 1225 int on_rq; 1226 1227 int prio, static_prio, normal_prio; 1228 unsigned int rt_priority; 1229 const struct sched_class *sched_class; 1230 struct sched_entity se; 1231 struct sched_rt_entity rt; 1232 1233 #ifdef CONFIG_PREEMPT_NOTIFIERS 1234 /* list of struct preempt_notifier: */ 1235 struct hlist_head preempt_notifiers; 1236 #endif 1237 1238 /* 1239 * fpu_counter contains the number of consecutive context switches 1240 * that the FPU is used. If this is over a threshold, the lazy fpu 1241 * saving becomes unlazy to save the trap. This is an unsigned char 1242 * so that after 256 times the counter wraps and the behavior turns 1243 * lazy again; this to deal with bursty apps that only use FPU for 1244 * a short time 1245 */ 1246 unsigned char fpu_counter; 1247 #ifdef CONFIG_BLK_DEV_IO_TRACE 1248 unsigned int btrace_seq; 1249 #endif 1250 1251 unsigned int policy; 1252 cpumask_t cpus_allowed; 1253 1254 #ifdef CONFIG_PREEMPT_RCU 1255 int rcu_read_lock_nesting; 1256 char rcu_read_unlock_special; 1257 struct list_head rcu_node_entry; 1258 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1259 #ifdef CONFIG_TREE_PREEMPT_RCU 1260 struct rcu_node *rcu_blocked_node; 1261 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1262 #ifdef CONFIG_RCU_BOOST 1263 struct rt_mutex *rcu_boost_mutex; 1264 #endif /* #ifdef CONFIG_RCU_BOOST */ 1265 1266 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1267 struct sched_info sched_info; 1268 #endif 1269 1270 struct list_head tasks; 1271 #ifdef CONFIG_SMP 1272 struct plist_node pushable_tasks; 1273 #endif 1274 1275 struct mm_struct *mm, *active_mm; 1276 #ifdef CONFIG_COMPAT_BRK 1277 unsigned brk_randomized:1; 1278 #endif 1279 #if defined(SPLIT_RSS_COUNTING) 1280 struct task_rss_stat rss_stat; 1281 #endif 1282 /* task state */ 1283 int exit_state; 1284 int exit_code, exit_signal; 1285 int pdeath_signal; /* The signal sent when the parent dies */ 1286 unsigned int group_stop; /* GROUP_STOP_*, siglock protected */ 1287 /* ??? */ 1288 unsigned int personality; 1289 unsigned did_exec:1; 1290 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1291 * execve */ 1292 unsigned in_iowait:1; 1293 1294 1295 /* Revert to default priority/policy when forking */ 1296 unsigned sched_reset_on_fork:1; 1297 unsigned sched_contributes_to_load:1; 1298 1299 pid_t pid; 1300 pid_t tgid; 1301 1302 #ifdef CONFIG_CC_STACKPROTECTOR 1303 /* Canary value for the -fstack-protector gcc feature */ 1304 unsigned long stack_canary; 1305 #endif 1306 1307 /* 1308 * pointers to (original) parent process, youngest child, younger sibling, 1309 * older sibling, respectively. (p->father can be replaced with 1310 * p->real_parent->pid) 1311 */ 1312 struct task_struct *real_parent; /* real parent process */ 1313 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */ 1314 /* 1315 * children/sibling forms the list of my natural children 1316 */ 1317 struct list_head children; /* list of my children */ 1318 struct list_head sibling; /* linkage in my parent's children list */ 1319 struct task_struct *group_leader; /* threadgroup leader */ 1320 1321 /* 1322 * ptraced is the list of tasks this task is using ptrace on. 1323 * This includes both natural children and PTRACE_ATTACH targets. 1324 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1325 */ 1326 struct list_head ptraced; 1327 struct list_head ptrace_entry; 1328 1329 /* PID/PID hash table linkage. */ 1330 struct pid_link pids[PIDTYPE_MAX]; 1331 struct list_head thread_group; 1332 1333 struct completion *vfork_done; /* for vfork() */ 1334 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1335 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1336 1337 cputime_t utime, stime, utimescaled, stimescaled; 1338 cputime_t gtime; 1339 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 1340 cputime_t prev_utime, prev_stime; 1341 #endif 1342 unsigned long nvcsw, nivcsw; /* context switch counts */ 1343 struct timespec start_time; /* monotonic time */ 1344 struct timespec real_start_time; /* boot based time */ 1345 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1346 unsigned long min_flt, maj_flt; 1347 1348 struct task_cputime cputime_expires; 1349 struct list_head cpu_timers[3]; 1350 1351 /* process credentials */ 1352 const struct cred __rcu *real_cred; /* objective and real subjective task 1353 * credentials (COW) */ 1354 const struct cred __rcu *cred; /* effective (overridable) subjective task 1355 * credentials (COW) */ 1356 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */ 1357 1358 char comm[TASK_COMM_LEN]; /* executable name excluding path 1359 - access with [gs]et_task_comm (which lock 1360 it with task_lock()) 1361 - initialized normally by setup_new_exec */ 1362 /* file system info */ 1363 int link_count, total_link_count; 1364 #ifdef CONFIG_SYSVIPC 1365 /* ipc stuff */ 1366 struct sysv_sem sysvsem; 1367 #endif 1368 #ifdef CONFIG_DETECT_HUNG_TASK 1369 /* hung task detection */ 1370 unsigned long last_switch_count; 1371 #endif 1372 /* CPU-specific state of this task */ 1373 struct thread_struct thread; 1374 /* filesystem information */ 1375 struct fs_struct *fs; 1376 /* open file information */ 1377 struct files_struct *files; 1378 /* namespaces */ 1379 struct nsproxy *nsproxy; 1380 /* signal handlers */ 1381 struct signal_struct *signal; 1382 struct sighand_struct *sighand; 1383 1384 sigset_t blocked, real_blocked; 1385 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1386 struct sigpending pending; 1387 1388 unsigned long sas_ss_sp; 1389 size_t sas_ss_size; 1390 int (*notifier)(void *priv); 1391 void *notifier_data; 1392 sigset_t *notifier_mask; 1393 struct audit_context *audit_context; 1394 #ifdef CONFIG_AUDITSYSCALL 1395 uid_t loginuid; 1396 unsigned int sessionid; 1397 #endif 1398 seccomp_t seccomp; 1399 1400 /* Thread group tracking */ 1401 u32 parent_exec_id; 1402 u32 self_exec_id; 1403 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1404 * mempolicy */ 1405 spinlock_t alloc_lock; 1406 1407 #ifdef CONFIG_GENERIC_HARDIRQS 1408 /* IRQ handler threads */ 1409 struct irqaction *irqaction; 1410 #endif 1411 1412 /* Protection of the PI data structures: */ 1413 raw_spinlock_t pi_lock; 1414 1415 #ifdef CONFIG_RT_MUTEXES 1416 /* PI waiters blocked on a rt_mutex held by this task */ 1417 struct plist_head pi_waiters; 1418 /* Deadlock detection and priority inheritance handling */ 1419 struct rt_mutex_waiter *pi_blocked_on; 1420 #endif 1421 1422 #ifdef CONFIG_DEBUG_MUTEXES 1423 /* mutex deadlock detection */ 1424 struct mutex_waiter *blocked_on; 1425 #endif 1426 #ifdef CONFIG_TRACE_IRQFLAGS 1427 unsigned int irq_events; 1428 unsigned long hardirq_enable_ip; 1429 unsigned long hardirq_disable_ip; 1430 unsigned int hardirq_enable_event; 1431 unsigned int hardirq_disable_event; 1432 int hardirqs_enabled; 1433 int hardirq_context; 1434 unsigned long softirq_disable_ip; 1435 unsigned long softirq_enable_ip; 1436 unsigned int softirq_disable_event; 1437 unsigned int softirq_enable_event; 1438 int softirqs_enabled; 1439 int softirq_context; 1440 #endif 1441 #ifdef CONFIG_LOCKDEP 1442 # define MAX_LOCK_DEPTH 48UL 1443 u64 curr_chain_key; 1444 int lockdep_depth; 1445 unsigned int lockdep_recursion; 1446 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1447 gfp_t lockdep_reclaim_gfp; 1448 #endif 1449 1450 /* journalling filesystem info */ 1451 void *journal_info; 1452 1453 /* stacked block device info */ 1454 struct bio_list *bio_list; 1455 1456 #ifdef CONFIG_BLOCK 1457 /* stack plugging */ 1458 struct blk_plug *plug; 1459 #endif 1460 1461 /* VM state */ 1462 struct reclaim_state *reclaim_state; 1463 1464 struct backing_dev_info *backing_dev_info; 1465 1466 struct io_context *io_context; 1467 1468 unsigned long ptrace_message; 1469 siginfo_t *last_siginfo; /* For ptrace use. */ 1470 struct task_io_accounting ioac; 1471 #if defined(CONFIG_TASK_XACCT) 1472 u64 acct_rss_mem1; /* accumulated rss usage */ 1473 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1474 cputime_t acct_timexpd; /* stime + utime since last update */ 1475 #endif 1476 #ifdef CONFIG_CPUSETS 1477 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1478 int mems_allowed_change_disable; 1479 int cpuset_mem_spread_rotor; 1480 int cpuset_slab_spread_rotor; 1481 #endif 1482 #ifdef CONFIG_CGROUPS 1483 /* Control Group info protected by css_set_lock */ 1484 struct css_set __rcu *cgroups; 1485 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1486 struct list_head cg_list; 1487 #endif 1488 #ifdef CONFIG_FUTEX 1489 struct robust_list_head __user *robust_list; 1490 #ifdef CONFIG_COMPAT 1491 struct compat_robust_list_head __user *compat_robust_list; 1492 #endif 1493 struct list_head pi_state_list; 1494 struct futex_pi_state *pi_state_cache; 1495 #endif 1496 #ifdef CONFIG_PERF_EVENTS 1497 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1498 struct mutex perf_event_mutex; 1499 struct list_head perf_event_list; 1500 #endif 1501 #ifdef CONFIG_NUMA 1502 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1503 short il_next; 1504 short pref_node_fork; 1505 #endif 1506 atomic_t fs_excl; /* holding fs exclusive resources */ 1507 struct rcu_head rcu; 1508 1509 /* 1510 * cache last used pipe for splice 1511 */ 1512 struct pipe_inode_info *splice_pipe; 1513 #ifdef CONFIG_TASK_DELAY_ACCT 1514 struct task_delay_info *delays; 1515 #endif 1516 #ifdef CONFIG_FAULT_INJECTION 1517 int make_it_fail; 1518 #endif 1519 struct prop_local_single dirties; 1520 #ifdef CONFIG_LATENCYTOP 1521 int latency_record_count; 1522 struct latency_record latency_record[LT_SAVECOUNT]; 1523 #endif 1524 /* 1525 * time slack values; these are used to round up poll() and 1526 * select() etc timeout values. These are in nanoseconds. 1527 */ 1528 unsigned long timer_slack_ns; 1529 unsigned long default_timer_slack_ns; 1530 1531 struct list_head *scm_work_list; 1532 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1533 /* Index of current stored address in ret_stack */ 1534 int curr_ret_stack; 1535 /* Stack of return addresses for return function tracing */ 1536 struct ftrace_ret_stack *ret_stack; 1537 /* time stamp for last schedule */ 1538 unsigned long long ftrace_timestamp; 1539 /* 1540 * Number of functions that haven't been traced 1541 * because of depth overrun. 1542 */ 1543 atomic_t trace_overrun; 1544 /* Pause for the tracing */ 1545 atomic_t tracing_graph_pause; 1546 #endif 1547 #ifdef CONFIG_TRACING 1548 /* state flags for use by tracers */ 1549 unsigned long trace; 1550 /* bitmask and counter of trace recursion */ 1551 unsigned long trace_recursion; 1552 #endif /* CONFIG_TRACING */ 1553 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */ 1554 struct memcg_batch_info { 1555 int do_batch; /* incremented when batch uncharge started */ 1556 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1557 unsigned long nr_pages; /* uncharged usage */ 1558 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */ 1559 } memcg_batch; 1560 #endif 1561 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1562 atomic_t ptrace_bp_refcnt; 1563 #endif 1564 }; 1565 1566 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1567 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1568 1569 /* 1570 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1571 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1572 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1573 * values are inverted: lower p->prio value means higher priority. 1574 * 1575 * The MAX_USER_RT_PRIO value allows the actual maximum 1576 * RT priority to be separate from the value exported to 1577 * user-space. This allows kernel threads to set their 1578 * priority to a value higher than any user task. Note: 1579 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1580 */ 1581 1582 #define MAX_USER_RT_PRIO 100 1583 #define MAX_RT_PRIO MAX_USER_RT_PRIO 1584 1585 #define MAX_PRIO (MAX_RT_PRIO + 40) 1586 #define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1587 1588 static inline int rt_prio(int prio) 1589 { 1590 if (unlikely(prio < MAX_RT_PRIO)) 1591 return 1; 1592 return 0; 1593 } 1594 1595 static inline int rt_task(struct task_struct *p) 1596 { 1597 return rt_prio(p->prio); 1598 } 1599 1600 static inline struct pid *task_pid(struct task_struct *task) 1601 { 1602 return task->pids[PIDTYPE_PID].pid; 1603 } 1604 1605 static inline struct pid *task_tgid(struct task_struct *task) 1606 { 1607 return task->group_leader->pids[PIDTYPE_PID].pid; 1608 } 1609 1610 /* 1611 * Without tasklist or rcu lock it is not safe to dereference 1612 * the result of task_pgrp/task_session even if task == current, 1613 * we can race with another thread doing sys_setsid/sys_setpgid. 1614 */ 1615 static inline struct pid *task_pgrp(struct task_struct *task) 1616 { 1617 return task->group_leader->pids[PIDTYPE_PGID].pid; 1618 } 1619 1620 static inline struct pid *task_session(struct task_struct *task) 1621 { 1622 return task->group_leader->pids[PIDTYPE_SID].pid; 1623 } 1624 1625 struct pid_namespace; 1626 1627 /* 1628 * the helpers to get the task's different pids as they are seen 1629 * from various namespaces 1630 * 1631 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1632 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1633 * current. 1634 * task_xid_nr_ns() : id seen from the ns specified; 1635 * 1636 * set_task_vxid() : assigns a virtual id to a task; 1637 * 1638 * see also pid_nr() etc in include/linux/pid.h 1639 */ 1640 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1641 struct pid_namespace *ns); 1642 1643 static inline pid_t task_pid_nr(struct task_struct *tsk) 1644 { 1645 return tsk->pid; 1646 } 1647 1648 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1649 struct pid_namespace *ns) 1650 { 1651 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1652 } 1653 1654 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1655 { 1656 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1657 } 1658 1659 1660 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1661 { 1662 return tsk->tgid; 1663 } 1664 1665 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1666 1667 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1668 { 1669 return pid_vnr(task_tgid(tsk)); 1670 } 1671 1672 1673 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1674 struct pid_namespace *ns) 1675 { 1676 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1677 } 1678 1679 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1680 { 1681 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1682 } 1683 1684 1685 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1686 struct pid_namespace *ns) 1687 { 1688 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1689 } 1690 1691 static inline pid_t task_session_vnr(struct task_struct *tsk) 1692 { 1693 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1694 } 1695 1696 /* obsolete, do not use */ 1697 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1698 { 1699 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1700 } 1701 1702 /** 1703 * pid_alive - check that a task structure is not stale 1704 * @p: Task structure to be checked. 1705 * 1706 * Test if a process is not yet dead (at most zombie state) 1707 * If pid_alive fails, then pointers within the task structure 1708 * can be stale and must not be dereferenced. 1709 */ 1710 static inline int pid_alive(struct task_struct *p) 1711 { 1712 return p->pids[PIDTYPE_PID].pid != NULL; 1713 } 1714 1715 /** 1716 * is_global_init - check if a task structure is init 1717 * @tsk: Task structure to be checked. 1718 * 1719 * Check if a task structure is the first user space task the kernel created. 1720 */ 1721 static inline int is_global_init(struct task_struct *tsk) 1722 { 1723 return tsk->pid == 1; 1724 } 1725 1726 /* 1727 * is_container_init: 1728 * check whether in the task is init in its own pid namespace. 1729 */ 1730 extern int is_container_init(struct task_struct *tsk); 1731 1732 extern struct pid *cad_pid; 1733 1734 extern void free_task(struct task_struct *tsk); 1735 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1736 1737 extern void __put_task_struct(struct task_struct *t); 1738 1739 static inline void put_task_struct(struct task_struct *t) 1740 { 1741 if (atomic_dec_and_test(&t->usage)) 1742 __put_task_struct(t); 1743 } 1744 1745 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1746 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1747 1748 /* 1749 * Per process flags 1750 */ 1751 #define PF_STARTING 0x00000002 /* being created */ 1752 #define PF_EXITING 0x00000004 /* getting shut down */ 1753 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1754 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1755 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1756 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1757 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1758 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1759 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1760 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1761 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1762 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1763 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */ 1764 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1765 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1766 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1767 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1768 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1769 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1770 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1771 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1772 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1773 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1774 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1775 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1776 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1777 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1778 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1779 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */ 1780 1781 /* 1782 * Only the _current_ task can read/write to tsk->flags, but other 1783 * tasks can access tsk->flags in readonly mode for example 1784 * with tsk_used_math (like during threaded core dumping). 1785 * There is however an exception to this rule during ptrace 1786 * or during fork: the ptracer task is allowed to write to the 1787 * child->flags of its traced child (same goes for fork, the parent 1788 * can write to the child->flags), because we're guaranteed the 1789 * child is not running and in turn not changing child->flags 1790 * at the same time the parent does it. 1791 */ 1792 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1793 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1794 #define clear_used_math() clear_stopped_child_used_math(current) 1795 #define set_used_math() set_stopped_child_used_math(current) 1796 #define conditional_stopped_child_used_math(condition, child) \ 1797 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1798 #define conditional_used_math(condition) \ 1799 conditional_stopped_child_used_math(condition, current) 1800 #define copy_to_stopped_child_used_math(child) \ 1801 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1802 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1803 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1804 #define used_math() tsk_used_math(current) 1805 1806 /* 1807 * task->group_stop flags 1808 */ 1809 #define GROUP_STOP_SIGMASK 0xffff /* signr of the last group stop */ 1810 #define GROUP_STOP_PENDING (1 << 16) /* task should stop for group stop */ 1811 #define GROUP_STOP_CONSUME (1 << 17) /* consume group stop count */ 1812 #define GROUP_STOP_TRAPPING (1 << 18) /* switching from STOPPED to TRACED */ 1813 #define GROUP_STOP_DEQUEUED (1 << 19) /* stop signal dequeued */ 1814 1815 extern void task_clear_group_stop_pending(struct task_struct *task); 1816 1817 #ifdef CONFIG_PREEMPT_RCU 1818 1819 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1820 #define RCU_READ_UNLOCK_BOOSTED (1 << 1) /* boosted while in RCU read-side. */ 1821 #define RCU_READ_UNLOCK_NEED_QS (1 << 2) /* RCU core needs CPU response. */ 1822 1823 static inline void rcu_copy_process(struct task_struct *p) 1824 { 1825 p->rcu_read_lock_nesting = 0; 1826 p->rcu_read_unlock_special = 0; 1827 #ifdef CONFIG_TREE_PREEMPT_RCU 1828 p->rcu_blocked_node = NULL; 1829 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1830 #ifdef CONFIG_RCU_BOOST 1831 p->rcu_boost_mutex = NULL; 1832 #endif /* #ifdef CONFIG_RCU_BOOST */ 1833 INIT_LIST_HEAD(&p->rcu_node_entry); 1834 } 1835 1836 #else 1837 1838 static inline void rcu_copy_process(struct task_struct *p) 1839 { 1840 } 1841 1842 #endif 1843 1844 #ifdef CONFIG_SMP 1845 extern void do_set_cpus_allowed(struct task_struct *p, 1846 const struct cpumask *new_mask); 1847 1848 extern int set_cpus_allowed_ptr(struct task_struct *p, 1849 const struct cpumask *new_mask); 1850 #else 1851 static inline void do_set_cpus_allowed(struct task_struct *p, 1852 const struct cpumask *new_mask) 1853 { 1854 } 1855 static inline int set_cpus_allowed_ptr(struct task_struct *p, 1856 const struct cpumask *new_mask) 1857 { 1858 if (!cpumask_test_cpu(0, new_mask)) 1859 return -EINVAL; 1860 return 0; 1861 } 1862 #endif 1863 1864 #ifndef CONFIG_CPUMASK_OFFSTACK 1865 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1866 { 1867 return set_cpus_allowed_ptr(p, &new_mask); 1868 } 1869 #endif 1870 1871 /* 1872 * Do not use outside of architecture code which knows its limitations. 1873 * 1874 * sched_clock() has no promise of monotonicity or bounded drift between 1875 * CPUs, use (which you should not) requires disabling IRQs. 1876 * 1877 * Please use one of the three interfaces below. 1878 */ 1879 extern unsigned long long notrace sched_clock(void); 1880 /* 1881 * See the comment in kernel/sched_clock.c 1882 */ 1883 extern u64 cpu_clock(int cpu); 1884 extern u64 local_clock(void); 1885 extern u64 sched_clock_cpu(int cpu); 1886 1887 1888 extern void sched_clock_init(void); 1889 1890 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1891 static inline void sched_clock_tick(void) 1892 { 1893 } 1894 1895 static inline void sched_clock_idle_sleep_event(void) 1896 { 1897 } 1898 1899 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1900 { 1901 } 1902 #else 1903 /* 1904 * Architectures can set this to 1 if they have specified 1905 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1906 * but then during bootup it turns out that sched_clock() 1907 * is reliable after all: 1908 */ 1909 extern int sched_clock_stable; 1910 1911 extern void sched_clock_tick(void); 1912 extern void sched_clock_idle_sleep_event(void); 1913 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1914 #endif 1915 1916 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1917 /* 1918 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 1919 * The reason for this explicit opt-in is not to have perf penalty with 1920 * slow sched_clocks. 1921 */ 1922 extern void enable_sched_clock_irqtime(void); 1923 extern void disable_sched_clock_irqtime(void); 1924 #else 1925 static inline void enable_sched_clock_irqtime(void) {} 1926 static inline void disable_sched_clock_irqtime(void) {} 1927 #endif 1928 1929 extern unsigned long long 1930 task_sched_runtime(struct task_struct *task); 1931 extern unsigned long long thread_group_sched_runtime(struct task_struct *task); 1932 1933 /* sched_exec is called by processes performing an exec */ 1934 #ifdef CONFIG_SMP 1935 extern void sched_exec(void); 1936 #else 1937 #define sched_exec() {} 1938 #endif 1939 1940 extern void sched_clock_idle_sleep_event(void); 1941 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1942 1943 #ifdef CONFIG_HOTPLUG_CPU 1944 extern void idle_task_exit(void); 1945 #else 1946 static inline void idle_task_exit(void) {} 1947 #endif 1948 1949 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 1950 extern void wake_up_idle_cpu(int cpu); 1951 #else 1952 static inline void wake_up_idle_cpu(int cpu) { } 1953 #endif 1954 1955 extern unsigned int sysctl_sched_latency; 1956 extern unsigned int sysctl_sched_min_granularity; 1957 extern unsigned int sysctl_sched_wakeup_granularity; 1958 extern unsigned int sysctl_sched_child_runs_first; 1959 1960 enum sched_tunable_scaling { 1961 SCHED_TUNABLESCALING_NONE, 1962 SCHED_TUNABLESCALING_LOG, 1963 SCHED_TUNABLESCALING_LINEAR, 1964 SCHED_TUNABLESCALING_END, 1965 }; 1966 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling; 1967 1968 #ifdef CONFIG_SCHED_DEBUG 1969 extern unsigned int sysctl_sched_migration_cost; 1970 extern unsigned int sysctl_sched_nr_migrate; 1971 extern unsigned int sysctl_sched_time_avg; 1972 extern unsigned int sysctl_timer_migration; 1973 extern unsigned int sysctl_sched_shares_window; 1974 1975 int sched_proc_update_handler(struct ctl_table *table, int write, 1976 void __user *buffer, size_t *length, 1977 loff_t *ppos); 1978 #endif 1979 #ifdef CONFIG_SCHED_DEBUG 1980 static inline unsigned int get_sysctl_timer_migration(void) 1981 { 1982 return sysctl_timer_migration; 1983 } 1984 #else 1985 static inline unsigned int get_sysctl_timer_migration(void) 1986 { 1987 return 1; 1988 } 1989 #endif 1990 extern unsigned int sysctl_sched_rt_period; 1991 extern int sysctl_sched_rt_runtime; 1992 1993 int sched_rt_handler(struct ctl_table *table, int write, 1994 void __user *buffer, size_t *lenp, 1995 loff_t *ppos); 1996 1997 #ifdef CONFIG_SCHED_AUTOGROUP 1998 extern unsigned int sysctl_sched_autogroup_enabled; 1999 2000 extern void sched_autogroup_create_attach(struct task_struct *p); 2001 extern void sched_autogroup_detach(struct task_struct *p); 2002 extern void sched_autogroup_fork(struct signal_struct *sig); 2003 extern void sched_autogroup_exit(struct signal_struct *sig); 2004 #ifdef CONFIG_PROC_FS 2005 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2006 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice); 2007 #endif 2008 #else 2009 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2010 static inline void sched_autogroup_detach(struct task_struct *p) { } 2011 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2012 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2013 #endif 2014 2015 #ifdef CONFIG_RT_MUTEXES 2016 extern int rt_mutex_getprio(struct task_struct *p); 2017 extern void rt_mutex_setprio(struct task_struct *p, int prio); 2018 extern void rt_mutex_adjust_pi(struct task_struct *p); 2019 #else 2020 static inline int rt_mutex_getprio(struct task_struct *p) 2021 { 2022 return p->normal_prio; 2023 } 2024 # define rt_mutex_adjust_pi(p) do { } while (0) 2025 #endif 2026 2027 extern bool yield_to(struct task_struct *p, bool preempt); 2028 extern void set_user_nice(struct task_struct *p, long nice); 2029 extern int task_prio(const struct task_struct *p); 2030 extern int task_nice(const struct task_struct *p); 2031 extern int can_nice(const struct task_struct *p, const int nice); 2032 extern int task_curr(const struct task_struct *p); 2033 extern int idle_cpu(int cpu); 2034 extern int sched_setscheduler(struct task_struct *, int, 2035 const struct sched_param *); 2036 extern int sched_setscheduler_nocheck(struct task_struct *, int, 2037 const struct sched_param *); 2038 extern struct task_struct *idle_task(int cpu); 2039 extern struct task_struct *curr_task(int cpu); 2040 extern void set_curr_task(int cpu, struct task_struct *p); 2041 2042 void yield(void); 2043 2044 /* 2045 * The default (Linux) execution domain. 2046 */ 2047 extern struct exec_domain default_exec_domain; 2048 2049 union thread_union { 2050 struct thread_info thread_info; 2051 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2052 }; 2053 2054 #ifndef __HAVE_ARCH_KSTACK_END 2055 static inline int kstack_end(void *addr) 2056 { 2057 /* Reliable end of stack detection: 2058 * Some APM bios versions misalign the stack 2059 */ 2060 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2061 } 2062 #endif 2063 2064 extern union thread_union init_thread_union; 2065 extern struct task_struct init_task; 2066 2067 extern struct mm_struct init_mm; 2068 2069 extern struct pid_namespace init_pid_ns; 2070 2071 /* 2072 * find a task by one of its numerical ids 2073 * 2074 * find_task_by_pid_ns(): 2075 * finds a task by its pid in the specified namespace 2076 * find_task_by_vpid(): 2077 * finds a task by its virtual pid 2078 * 2079 * see also find_vpid() etc in include/linux/pid.h 2080 */ 2081 2082 extern struct task_struct *find_task_by_vpid(pid_t nr); 2083 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2084 struct pid_namespace *ns); 2085 2086 extern void __set_special_pids(struct pid *pid); 2087 2088 /* per-UID process charging. */ 2089 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t); 2090 static inline struct user_struct *get_uid(struct user_struct *u) 2091 { 2092 atomic_inc(&u->__count); 2093 return u; 2094 } 2095 extern void free_uid(struct user_struct *); 2096 extern void release_uids(struct user_namespace *ns); 2097 2098 #include <asm/current.h> 2099 2100 extern void xtime_update(unsigned long ticks); 2101 2102 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2103 extern int wake_up_process(struct task_struct *tsk); 2104 extern void wake_up_new_task(struct task_struct *tsk); 2105 #ifdef CONFIG_SMP 2106 extern void kick_process(struct task_struct *tsk); 2107 #else 2108 static inline void kick_process(struct task_struct *tsk) { } 2109 #endif 2110 extern void sched_fork(struct task_struct *p); 2111 extern void sched_dead(struct task_struct *p); 2112 2113 extern void proc_caches_init(void); 2114 extern void flush_signals(struct task_struct *); 2115 extern void __flush_signals(struct task_struct *); 2116 extern void ignore_signals(struct task_struct *); 2117 extern void flush_signal_handlers(struct task_struct *, int force_default); 2118 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2119 2120 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2121 { 2122 unsigned long flags; 2123 int ret; 2124 2125 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2126 ret = dequeue_signal(tsk, mask, info); 2127 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2128 2129 return ret; 2130 } 2131 2132 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2133 sigset_t *mask); 2134 extern void unblock_all_signals(void); 2135 extern void release_task(struct task_struct * p); 2136 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2137 extern int force_sigsegv(int, struct task_struct *); 2138 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2139 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2140 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2141 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 2142 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2143 extern int kill_pid(struct pid *pid, int sig, int priv); 2144 extern int kill_proc_info(int, struct siginfo *, pid_t); 2145 extern int do_notify_parent(struct task_struct *, int); 2146 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2147 extern void force_sig(int, struct task_struct *); 2148 extern int send_sig(int, struct task_struct *, int); 2149 extern int zap_other_threads(struct task_struct *p); 2150 extern struct sigqueue *sigqueue_alloc(void); 2151 extern void sigqueue_free(struct sigqueue *); 2152 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2153 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2154 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 2155 2156 static inline int kill_cad_pid(int sig, int priv) 2157 { 2158 return kill_pid(cad_pid, sig, priv); 2159 } 2160 2161 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2162 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2163 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2164 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2165 2166 /* 2167 * True if we are on the alternate signal stack. 2168 */ 2169 static inline int on_sig_stack(unsigned long sp) 2170 { 2171 #ifdef CONFIG_STACK_GROWSUP 2172 return sp >= current->sas_ss_sp && 2173 sp - current->sas_ss_sp < current->sas_ss_size; 2174 #else 2175 return sp > current->sas_ss_sp && 2176 sp - current->sas_ss_sp <= current->sas_ss_size; 2177 #endif 2178 } 2179 2180 static inline int sas_ss_flags(unsigned long sp) 2181 { 2182 return (current->sas_ss_size == 0 ? SS_DISABLE 2183 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2184 } 2185 2186 /* 2187 * Routines for handling mm_structs 2188 */ 2189 extern struct mm_struct * mm_alloc(void); 2190 2191 /* mmdrop drops the mm and the page tables */ 2192 extern void __mmdrop(struct mm_struct *); 2193 static inline void mmdrop(struct mm_struct * mm) 2194 { 2195 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2196 __mmdrop(mm); 2197 } 2198 2199 /* mmput gets rid of the mappings and all user-space */ 2200 extern void mmput(struct mm_struct *); 2201 /* Grab a reference to a task's mm, if it is not already going away */ 2202 extern struct mm_struct *get_task_mm(struct task_struct *task); 2203 /* Remove the current tasks stale references to the old mm_struct */ 2204 extern void mm_release(struct task_struct *, struct mm_struct *); 2205 /* Allocate a new mm structure and copy contents from tsk->mm */ 2206 extern struct mm_struct *dup_mm(struct task_struct *tsk); 2207 2208 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2209 struct task_struct *, struct pt_regs *); 2210 extern void flush_thread(void); 2211 extern void exit_thread(void); 2212 2213 extern void exit_files(struct task_struct *); 2214 extern void __cleanup_sighand(struct sighand_struct *); 2215 2216 extern void exit_itimers(struct signal_struct *); 2217 extern void flush_itimer_signals(void); 2218 2219 extern NORET_TYPE void do_group_exit(int); 2220 2221 extern void daemonize(const char *, ...); 2222 extern int allow_signal(int); 2223 extern int disallow_signal(int); 2224 2225 extern int do_execve(const char *, 2226 const char __user * const __user *, 2227 const char __user * const __user *, struct pt_regs *); 2228 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 2229 struct task_struct *fork_idle(int); 2230 2231 extern void set_task_comm(struct task_struct *tsk, char *from); 2232 extern char *get_task_comm(char *to, struct task_struct *tsk); 2233 2234 #ifdef CONFIG_SMP 2235 void scheduler_ipi(void); 2236 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2237 #else 2238 static inline void scheduler_ipi(void) { } 2239 static inline unsigned long wait_task_inactive(struct task_struct *p, 2240 long match_state) 2241 { 2242 return 1; 2243 } 2244 #endif 2245 2246 #define next_task(p) \ 2247 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2248 2249 #define for_each_process(p) \ 2250 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2251 2252 extern bool current_is_single_threaded(void); 2253 2254 /* 2255 * Careful: do_each_thread/while_each_thread is a double loop so 2256 * 'break' will not work as expected - use goto instead. 2257 */ 2258 #define do_each_thread(g, t) \ 2259 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2260 2261 #define while_each_thread(g, t) \ 2262 while ((t = next_thread(t)) != g) 2263 2264 static inline int get_nr_threads(struct task_struct *tsk) 2265 { 2266 return tsk->signal->nr_threads; 2267 } 2268 2269 /* de_thread depends on thread_group_leader not being a pid based check */ 2270 #define thread_group_leader(p) (p == p->group_leader) 2271 2272 /* Do to the insanities of de_thread it is possible for a process 2273 * to have the pid of the thread group leader without actually being 2274 * the thread group leader. For iteration through the pids in proc 2275 * all we care about is that we have a task with the appropriate 2276 * pid, we don't actually care if we have the right task. 2277 */ 2278 static inline int has_group_leader_pid(struct task_struct *p) 2279 { 2280 return p->pid == p->tgid; 2281 } 2282 2283 static inline 2284 int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2285 { 2286 return p1->tgid == p2->tgid; 2287 } 2288 2289 static inline struct task_struct *next_thread(const struct task_struct *p) 2290 { 2291 return list_entry_rcu(p->thread_group.next, 2292 struct task_struct, thread_group); 2293 } 2294 2295 static inline int thread_group_empty(struct task_struct *p) 2296 { 2297 return list_empty(&p->thread_group); 2298 } 2299 2300 #define delay_group_leader(p) \ 2301 (thread_group_leader(p) && !thread_group_empty(p)) 2302 2303 static inline int task_detached(struct task_struct *p) 2304 { 2305 return p->exit_signal == -1; 2306 } 2307 2308 /* 2309 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2310 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2311 * pins the final release of task.io_context. Also protects ->cpuset and 2312 * ->cgroup.subsys[]. 2313 * 2314 * Nests both inside and outside of read_lock(&tasklist_lock). 2315 * It must not be nested with write_lock_irq(&tasklist_lock), 2316 * neither inside nor outside. 2317 */ 2318 static inline void task_lock(struct task_struct *p) 2319 { 2320 spin_lock(&p->alloc_lock); 2321 } 2322 2323 static inline void task_unlock(struct task_struct *p) 2324 { 2325 spin_unlock(&p->alloc_lock); 2326 } 2327 2328 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2329 unsigned long *flags); 2330 2331 #define lock_task_sighand(tsk, flags) \ 2332 ({ struct sighand_struct *__ss; \ 2333 __cond_lock(&(tsk)->sighand->siglock, \ 2334 (__ss = __lock_task_sighand(tsk, flags))); \ 2335 __ss; \ 2336 }) \ 2337 2338 static inline void unlock_task_sighand(struct task_struct *tsk, 2339 unsigned long *flags) 2340 { 2341 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2342 } 2343 2344 /* See the declaration of threadgroup_fork_lock in signal_struct. */ 2345 #ifdef CONFIG_CGROUPS 2346 static inline void threadgroup_fork_read_lock(struct task_struct *tsk) 2347 { 2348 down_read(&tsk->signal->threadgroup_fork_lock); 2349 } 2350 static inline void threadgroup_fork_read_unlock(struct task_struct *tsk) 2351 { 2352 up_read(&tsk->signal->threadgroup_fork_lock); 2353 } 2354 static inline void threadgroup_fork_write_lock(struct task_struct *tsk) 2355 { 2356 down_write(&tsk->signal->threadgroup_fork_lock); 2357 } 2358 static inline void threadgroup_fork_write_unlock(struct task_struct *tsk) 2359 { 2360 up_write(&tsk->signal->threadgroup_fork_lock); 2361 } 2362 #else 2363 static inline void threadgroup_fork_read_lock(struct task_struct *tsk) {} 2364 static inline void threadgroup_fork_read_unlock(struct task_struct *tsk) {} 2365 static inline void threadgroup_fork_write_lock(struct task_struct *tsk) {} 2366 static inline void threadgroup_fork_write_unlock(struct task_struct *tsk) {} 2367 #endif 2368 2369 #ifndef __HAVE_THREAD_FUNCTIONS 2370 2371 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2372 #define task_stack_page(task) ((task)->stack) 2373 2374 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2375 { 2376 *task_thread_info(p) = *task_thread_info(org); 2377 task_thread_info(p)->task = p; 2378 } 2379 2380 static inline unsigned long *end_of_stack(struct task_struct *p) 2381 { 2382 return (unsigned long *)(task_thread_info(p) + 1); 2383 } 2384 2385 #endif 2386 2387 static inline int object_is_on_stack(void *obj) 2388 { 2389 void *stack = task_stack_page(current); 2390 2391 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2392 } 2393 2394 extern void thread_info_cache_init(void); 2395 2396 #ifdef CONFIG_DEBUG_STACK_USAGE 2397 static inline unsigned long stack_not_used(struct task_struct *p) 2398 { 2399 unsigned long *n = end_of_stack(p); 2400 2401 do { /* Skip over canary */ 2402 n++; 2403 } while (!*n); 2404 2405 return (unsigned long)n - (unsigned long)end_of_stack(p); 2406 } 2407 #endif 2408 2409 /* set thread flags in other task's structures 2410 * - see asm/thread_info.h for TIF_xxxx flags available 2411 */ 2412 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2413 { 2414 set_ti_thread_flag(task_thread_info(tsk), flag); 2415 } 2416 2417 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2418 { 2419 clear_ti_thread_flag(task_thread_info(tsk), flag); 2420 } 2421 2422 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2423 { 2424 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2425 } 2426 2427 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2428 { 2429 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2430 } 2431 2432 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2433 { 2434 return test_ti_thread_flag(task_thread_info(tsk), flag); 2435 } 2436 2437 static inline void set_tsk_need_resched(struct task_struct *tsk) 2438 { 2439 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2440 } 2441 2442 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2443 { 2444 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2445 } 2446 2447 static inline int test_tsk_need_resched(struct task_struct *tsk) 2448 { 2449 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2450 } 2451 2452 static inline int restart_syscall(void) 2453 { 2454 set_tsk_thread_flag(current, TIF_SIGPENDING); 2455 return -ERESTARTNOINTR; 2456 } 2457 2458 static inline int signal_pending(struct task_struct *p) 2459 { 2460 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2461 } 2462 2463 static inline int __fatal_signal_pending(struct task_struct *p) 2464 { 2465 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2466 } 2467 2468 static inline int fatal_signal_pending(struct task_struct *p) 2469 { 2470 return signal_pending(p) && __fatal_signal_pending(p); 2471 } 2472 2473 static inline int signal_pending_state(long state, struct task_struct *p) 2474 { 2475 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2476 return 0; 2477 if (!signal_pending(p)) 2478 return 0; 2479 2480 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2481 } 2482 2483 static inline int need_resched(void) 2484 { 2485 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2486 } 2487 2488 /* 2489 * cond_resched() and cond_resched_lock(): latency reduction via 2490 * explicit rescheduling in places that are safe. The return 2491 * value indicates whether a reschedule was done in fact. 2492 * cond_resched_lock() will drop the spinlock before scheduling, 2493 * cond_resched_softirq() will enable bhs before scheduling. 2494 */ 2495 extern int _cond_resched(void); 2496 2497 #define cond_resched() ({ \ 2498 __might_sleep(__FILE__, __LINE__, 0); \ 2499 _cond_resched(); \ 2500 }) 2501 2502 extern int __cond_resched_lock(spinlock_t *lock); 2503 2504 #ifdef CONFIG_PREEMPT 2505 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2506 #else 2507 #define PREEMPT_LOCK_OFFSET 0 2508 #endif 2509 2510 #define cond_resched_lock(lock) ({ \ 2511 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2512 __cond_resched_lock(lock); \ 2513 }) 2514 2515 extern int __cond_resched_softirq(void); 2516 2517 #define cond_resched_softirq() ({ \ 2518 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2519 __cond_resched_softirq(); \ 2520 }) 2521 2522 /* 2523 * Does a critical section need to be broken due to another 2524 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2525 * but a general need for low latency) 2526 */ 2527 static inline int spin_needbreak(spinlock_t *lock) 2528 { 2529 #ifdef CONFIG_PREEMPT 2530 return spin_is_contended(lock); 2531 #else 2532 return 0; 2533 #endif 2534 } 2535 2536 /* 2537 * Thread group CPU time accounting. 2538 */ 2539 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2540 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2541 2542 static inline void thread_group_cputime_init(struct signal_struct *sig) 2543 { 2544 spin_lock_init(&sig->cputimer.lock); 2545 } 2546 2547 /* 2548 * Reevaluate whether the task has signals pending delivery. 2549 * Wake the task if so. 2550 * This is required every time the blocked sigset_t changes. 2551 * callers must hold sighand->siglock. 2552 */ 2553 extern void recalc_sigpending_and_wake(struct task_struct *t); 2554 extern void recalc_sigpending(void); 2555 2556 extern void signal_wake_up(struct task_struct *t, int resume_stopped); 2557 2558 /* 2559 * Wrappers for p->thread_info->cpu access. No-op on UP. 2560 */ 2561 #ifdef CONFIG_SMP 2562 2563 static inline unsigned int task_cpu(const struct task_struct *p) 2564 { 2565 return task_thread_info(p)->cpu; 2566 } 2567 2568 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2569 2570 #else 2571 2572 static inline unsigned int task_cpu(const struct task_struct *p) 2573 { 2574 return 0; 2575 } 2576 2577 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2578 { 2579 } 2580 2581 #endif /* CONFIG_SMP */ 2582 2583 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2584 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2585 2586 extern void normalize_rt_tasks(void); 2587 2588 #ifdef CONFIG_CGROUP_SCHED 2589 2590 extern struct task_group root_task_group; 2591 2592 extern struct task_group *sched_create_group(struct task_group *parent); 2593 extern void sched_destroy_group(struct task_group *tg); 2594 extern void sched_move_task(struct task_struct *tsk); 2595 #ifdef CONFIG_FAIR_GROUP_SCHED 2596 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2597 extern unsigned long sched_group_shares(struct task_group *tg); 2598 #endif 2599 #ifdef CONFIG_RT_GROUP_SCHED 2600 extern int sched_group_set_rt_runtime(struct task_group *tg, 2601 long rt_runtime_us); 2602 extern long sched_group_rt_runtime(struct task_group *tg); 2603 extern int sched_group_set_rt_period(struct task_group *tg, 2604 long rt_period_us); 2605 extern long sched_group_rt_period(struct task_group *tg); 2606 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 2607 #endif 2608 #endif 2609 2610 extern int task_can_switch_user(struct user_struct *up, 2611 struct task_struct *tsk); 2612 2613 #ifdef CONFIG_TASK_XACCT 2614 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2615 { 2616 tsk->ioac.rchar += amt; 2617 } 2618 2619 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2620 { 2621 tsk->ioac.wchar += amt; 2622 } 2623 2624 static inline void inc_syscr(struct task_struct *tsk) 2625 { 2626 tsk->ioac.syscr++; 2627 } 2628 2629 static inline void inc_syscw(struct task_struct *tsk) 2630 { 2631 tsk->ioac.syscw++; 2632 } 2633 #else 2634 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2635 { 2636 } 2637 2638 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2639 { 2640 } 2641 2642 static inline void inc_syscr(struct task_struct *tsk) 2643 { 2644 } 2645 2646 static inline void inc_syscw(struct task_struct *tsk) 2647 { 2648 } 2649 #endif 2650 2651 #ifndef TASK_SIZE_OF 2652 #define TASK_SIZE_OF(tsk) TASK_SIZE 2653 #endif 2654 2655 #ifdef CONFIG_MM_OWNER 2656 extern void mm_update_next_owner(struct mm_struct *mm); 2657 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2658 #else 2659 static inline void mm_update_next_owner(struct mm_struct *mm) 2660 { 2661 } 2662 2663 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2664 { 2665 } 2666 #endif /* CONFIG_MM_OWNER */ 2667 2668 static inline unsigned long task_rlimit(const struct task_struct *tsk, 2669 unsigned int limit) 2670 { 2671 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2672 } 2673 2674 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2675 unsigned int limit) 2676 { 2677 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2678 } 2679 2680 static inline unsigned long rlimit(unsigned int limit) 2681 { 2682 return task_rlimit(current, limit); 2683 } 2684 2685 static inline unsigned long rlimit_max(unsigned int limit) 2686 { 2687 return task_rlimit_max(current, limit); 2688 } 2689 2690 #endif /* __KERNEL__ */ 2691 2692 #endif 2693