1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <uapi/linux/sched.h> 5 6 #include <linux/sched/prio.h> 7 8 9 struct sched_param { 10 int sched_priority; 11 }; 12 13 #include <asm/param.h> /* for HZ */ 14 15 #include <linux/capability.h> 16 #include <linux/threads.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/timex.h> 20 #include <linux/jiffies.h> 21 #include <linux/plist.h> 22 #include <linux/rbtree.h> 23 #include <linux/thread_info.h> 24 #include <linux/cpumask.h> 25 #include <linux/errno.h> 26 #include <linux/nodemask.h> 27 #include <linux/mm_types.h> 28 #include <linux/preempt.h> 29 30 #include <asm/page.h> 31 #include <asm/ptrace.h> 32 #include <linux/cputime.h> 33 34 #include <linux/smp.h> 35 #include <linux/sem.h> 36 #include <linux/shm.h> 37 #include <linux/signal.h> 38 #include <linux/compiler.h> 39 #include <linux/completion.h> 40 #include <linux/pid.h> 41 #include <linux/percpu.h> 42 #include <linux/topology.h> 43 #include <linux/seccomp.h> 44 #include <linux/rcupdate.h> 45 #include <linux/rculist.h> 46 #include <linux/rtmutex.h> 47 48 #include <linux/time.h> 49 #include <linux/param.h> 50 #include <linux/resource.h> 51 #include <linux/timer.h> 52 #include <linux/hrtimer.h> 53 #include <linux/kcov.h> 54 #include <linux/task_io_accounting.h> 55 #include <linux/latencytop.h> 56 #include <linux/cred.h> 57 #include <linux/llist.h> 58 #include <linux/uidgid.h> 59 #include <linux/gfp.h> 60 #include <linux/magic.h> 61 #include <linux/cgroup-defs.h> 62 63 #include <asm/processor.h> 64 65 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */ 66 67 /* 68 * Extended scheduling parameters data structure. 69 * 70 * This is needed because the original struct sched_param can not be 71 * altered without introducing ABI issues with legacy applications 72 * (e.g., in sched_getparam()). 73 * 74 * However, the possibility of specifying more than just a priority for 75 * the tasks may be useful for a wide variety of application fields, e.g., 76 * multimedia, streaming, automation and control, and many others. 77 * 78 * This variant (sched_attr) is meant at describing a so-called 79 * sporadic time-constrained task. In such model a task is specified by: 80 * - the activation period or minimum instance inter-arrival time; 81 * - the maximum (or average, depending on the actual scheduling 82 * discipline) computation time of all instances, a.k.a. runtime; 83 * - the deadline (relative to the actual activation time) of each 84 * instance. 85 * Very briefly, a periodic (sporadic) task asks for the execution of 86 * some specific computation --which is typically called an instance-- 87 * (at most) every period. Moreover, each instance typically lasts no more 88 * than the runtime and must be completed by time instant t equal to 89 * the instance activation time + the deadline. 90 * 91 * This is reflected by the actual fields of the sched_attr structure: 92 * 93 * @size size of the structure, for fwd/bwd compat. 94 * 95 * @sched_policy task's scheduling policy 96 * @sched_flags for customizing the scheduler behaviour 97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH) 98 * @sched_priority task's static priority (SCHED_FIFO/RR) 99 * @sched_deadline representative of the task's deadline 100 * @sched_runtime representative of the task's runtime 101 * @sched_period representative of the task's period 102 * 103 * Given this task model, there are a multiplicity of scheduling algorithms 104 * and policies, that can be used to ensure all the tasks will make their 105 * timing constraints. 106 * 107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the 108 * only user of this new interface. More information about the algorithm 109 * available in the scheduling class file or in Documentation/. 110 */ 111 struct sched_attr { 112 u32 size; 113 114 u32 sched_policy; 115 u64 sched_flags; 116 117 /* SCHED_NORMAL, SCHED_BATCH */ 118 s32 sched_nice; 119 120 /* SCHED_FIFO, SCHED_RR */ 121 u32 sched_priority; 122 123 /* SCHED_DEADLINE */ 124 u64 sched_runtime; 125 u64 sched_deadline; 126 u64 sched_period; 127 }; 128 129 struct futex_pi_state; 130 struct robust_list_head; 131 struct bio_list; 132 struct fs_struct; 133 struct perf_event_context; 134 struct blk_plug; 135 struct filename; 136 struct nameidata; 137 138 #define VMACACHE_BITS 2 139 #define VMACACHE_SIZE (1U << VMACACHE_BITS) 140 #define VMACACHE_MASK (VMACACHE_SIZE - 1) 141 142 /* 143 * These are the constant used to fake the fixed-point load-average 144 * counting. Some notes: 145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 146 * a load-average precision of 10 bits integer + 11 bits fractional 147 * - if you want to count load-averages more often, you need more 148 * precision, or rounding will get you. With 2-second counting freq, 149 * the EXP_n values would be 1981, 2034 and 2043 if still using only 150 * 11 bit fractions. 151 */ 152 extern unsigned long avenrun[]; /* Load averages */ 153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 154 155 #define FSHIFT 11 /* nr of bits of precision */ 156 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 157 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 158 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 159 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 160 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 161 162 #define CALC_LOAD(load,exp,n) \ 163 load *= exp; \ 164 load += n*(FIXED_1-exp); \ 165 load >>= FSHIFT; 166 167 extern unsigned long total_forks; 168 extern int nr_threads; 169 DECLARE_PER_CPU(unsigned long, process_counts); 170 extern int nr_processes(void); 171 extern unsigned long nr_running(void); 172 extern bool single_task_running(void); 173 extern unsigned long nr_iowait(void); 174 extern unsigned long nr_iowait_cpu(int cpu); 175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load); 176 177 extern void calc_global_load(unsigned long ticks); 178 179 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 180 extern void cpu_load_update_nohz_start(void); 181 extern void cpu_load_update_nohz_stop(void); 182 #else 183 static inline void cpu_load_update_nohz_start(void) { } 184 static inline void cpu_load_update_nohz_stop(void) { } 185 #endif 186 187 extern void dump_cpu_task(int cpu); 188 189 struct seq_file; 190 struct cfs_rq; 191 struct task_group; 192 #ifdef CONFIG_SCHED_DEBUG 193 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 194 extern void proc_sched_set_task(struct task_struct *p); 195 #endif 196 197 /* 198 * Task state bitmask. NOTE! These bits are also 199 * encoded in fs/proc/array.c: get_task_state(). 200 * 201 * We have two separate sets of flags: task->state 202 * is about runnability, while task->exit_state are 203 * about the task exiting. Confusing, but this way 204 * modifying one set can't modify the other one by 205 * mistake. 206 */ 207 #define TASK_RUNNING 0 208 #define TASK_INTERRUPTIBLE 1 209 #define TASK_UNINTERRUPTIBLE 2 210 #define __TASK_STOPPED 4 211 #define __TASK_TRACED 8 212 /* in tsk->exit_state */ 213 #define EXIT_DEAD 16 214 #define EXIT_ZOMBIE 32 215 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 216 /* in tsk->state again */ 217 #define TASK_DEAD 64 218 #define TASK_WAKEKILL 128 219 #define TASK_WAKING 256 220 #define TASK_PARKED 512 221 #define TASK_NOLOAD 1024 222 #define TASK_STATE_MAX 2048 223 224 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN" 225 226 extern char ___assert_task_state[1 - 2*!!( 227 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 228 229 /* Convenience macros for the sake of set_task_state */ 230 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 231 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 232 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 233 234 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 235 236 /* Convenience macros for the sake of wake_up */ 237 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 238 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 239 240 /* get_task_state() */ 241 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD) 244 245 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 246 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 247 #define task_is_stopped_or_traced(task) \ 248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 249 #define task_contributes_to_load(task) \ 250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 251 (task->flags & PF_FROZEN) == 0 && \ 252 (task->state & TASK_NOLOAD) == 0) 253 254 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 255 256 #define __set_task_state(tsk, state_value) \ 257 do { \ 258 (tsk)->task_state_change = _THIS_IP_; \ 259 (tsk)->state = (state_value); \ 260 } while (0) 261 #define set_task_state(tsk, state_value) \ 262 do { \ 263 (tsk)->task_state_change = _THIS_IP_; \ 264 smp_store_mb((tsk)->state, (state_value)); \ 265 } while (0) 266 267 /* 268 * set_current_state() includes a barrier so that the write of current->state 269 * is correctly serialised wrt the caller's subsequent test of whether to 270 * actually sleep: 271 * 272 * set_current_state(TASK_UNINTERRUPTIBLE); 273 * if (do_i_need_to_sleep()) 274 * schedule(); 275 * 276 * If the caller does not need such serialisation then use __set_current_state() 277 */ 278 #define __set_current_state(state_value) \ 279 do { \ 280 current->task_state_change = _THIS_IP_; \ 281 current->state = (state_value); \ 282 } while (0) 283 #define set_current_state(state_value) \ 284 do { \ 285 current->task_state_change = _THIS_IP_; \ 286 smp_store_mb(current->state, (state_value)); \ 287 } while (0) 288 289 #else 290 291 #define __set_task_state(tsk, state_value) \ 292 do { (tsk)->state = (state_value); } while (0) 293 #define set_task_state(tsk, state_value) \ 294 smp_store_mb((tsk)->state, (state_value)) 295 296 /* 297 * set_current_state() includes a barrier so that the write of current->state 298 * is correctly serialised wrt the caller's subsequent test of whether to 299 * actually sleep: 300 * 301 * set_current_state(TASK_UNINTERRUPTIBLE); 302 * if (do_i_need_to_sleep()) 303 * schedule(); 304 * 305 * If the caller does not need such serialisation then use __set_current_state() 306 */ 307 #define __set_current_state(state_value) \ 308 do { current->state = (state_value); } while (0) 309 #define set_current_state(state_value) \ 310 smp_store_mb(current->state, (state_value)) 311 312 #endif 313 314 /* Task command name length */ 315 #define TASK_COMM_LEN 16 316 317 #include <linux/spinlock.h> 318 319 /* 320 * This serializes "schedule()" and also protects 321 * the run-queue from deletions/modifications (but 322 * _adding_ to the beginning of the run-queue has 323 * a separate lock). 324 */ 325 extern rwlock_t tasklist_lock; 326 extern spinlock_t mmlist_lock; 327 328 struct task_struct; 329 330 #ifdef CONFIG_PROVE_RCU 331 extern int lockdep_tasklist_lock_is_held(void); 332 #endif /* #ifdef CONFIG_PROVE_RCU */ 333 334 extern void sched_init(void); 335 extern void sched_init_smp(void); 336 extern asmlinkage void schedule_tail(struct task_struct *prev); 337 extern void init_idle(struct task_struct *idle, int cpu); 338 extern void init_idle_bootup_task(struct task_struct *idle); 339 340 extern cpumask_var_t cpu_isolated_map; 341 342 extern int runqueue_is_locked(int cpu); 343 344 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 345 extern void nohz_balance_enter_idle(int cpu); 346 extern void set_cpu_sd_state_idle(void); 347 extern int get_nohz_timer_target(void); 348 #else 349 static inline void nohz_balance_enter_idle(int cpu) { } 350 static inline void set_cpu_sd_state_idle(void) { } 351 #endif 352 353 /* 354 * Only dump TASK_* tasks. (0 for all tasks) 355 */ 356 extern void show_state_filter(unsigned long state_filter); 357 358 static inline void show_state(void) 359 { 360 show_state_filter(0); 361 } 362 363 extern void show_regs(struct pt_regs *); 364 365 /* 366 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 367 * task), SP is the stack pointer of the first frame that should be shown in the back 368 * trace (or NULL if the entire call-chain of the task should be shown). 369 */ 370 extern void show_stack(struct task_struct *task, unsigned long *sp); 371 372 extern void cpu_init (void); 373 extern void trap_init(void); 374 extern void update_process_times(int user); 375 extern void scheduler_tick(void); 376 extern int sched_cpu_starting(unsigned int cpu); 377 extern int sched_cpu_activate(unsigned int cpu); 378 extern int sched_cpu_deactivate(unsigned int cpu); 379 380 #ifdef CONFIG_HOTPLUG_CPU 381 extern int sched_cpu_dying(unsigned int cpu); 382 #else 383 # define sched_cpu_dying NULL 384 #endif 385 386 extern void sched_show_task(struct task_struct *p); 387 388 #ifdef CONFIG_LOCKUP_DETECTOR 389 extern void touch_softlockup_watchdog_sched(void); 390 extern void touch_softlockup_watchdog(void); 391 extern void touch_softlockup_watchdog_sync(void); 392 extern void touch_all_softlockup_watchdogs(void); 393 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 394 void __user *buffer, 395 size_t *lenp, loff_t *ppos); 396 extern unsigned int softlockup_panic; 397 extern unsigned int hardlockup_panic; 398 void lockup_detector_init(void); 399 #else 400 static inline void touch_softlockup_watchdog_sched(void) 401 { 402 } 403 static inline void touch_softlockup_watchdog(void) 404 { 405 } 406 static inline void touch_softlockup_watchdog_sync(void) 407 { 408 } 409 static inline void touch_all_softlockup_watchdogs(void) 410 { 411 } 412 static inline void lockup_detector_init(void) 413 { 414 } 415 #endif 416 417 #ifdef CONFIG_DETECT_HUNG_TASK 418 void reset_hung_task_detector(void); 419 #else 420 static inline void reset_hung_task_detector(void) 421 { 422 } 423 #endif 424 425 /* Attach to any functions which should be ignored in wchan output. */ 426 #define __sched __attribute__((__section__(".sched.text"))) 427 428 /* Linker adds these: start and end of __sched functions */ 429 extern char __sched_text_start[], __sched_text_end[]; 430 431 /* Is this address in the __sched functions? */ 432 extern int in_sched_functions(unsigned long addr); 433 434 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 435 extern signed long schedule_timeout(signed long timeout); 436 extern signed long schedule_timeout_interruptible(signed long timeout); 437 extern signed long schedule_timeout_killable(signed long timeout); 438 extern signed long schedule_timeout_uninterruptible(signed long timeout); 439 extern signed long schedule_timeout_idle(signed long timeout); 440 asmlinkage void schedule(void); 441 extern void schedule_preempt_disabled(void); 442 443 extern long io_schedule_timeout(long timeout); 444 445 static inline void io_schedule(void) 446 { 447 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT); 448 } 449 450 struct nsproxy; 451 struct user_namespace; 452 453 #ifdef CONFIG_MMU 454 extern void arch_pick_mmap_layout(struct mm_struct *mm); 455 extern unsigned long 456 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 457 unsigned long, unsigned long); 458 extern unsigned long 459 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 460 unsigned long len, unsigned long pgoff, 461 unsigned long flags); 462 #else 463 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 464 #endif 465 466 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */ 467 #define SUID_DUMP_USER 1 /* Dump as user of process */ 468 #define SUID_DUMP_ROOT 2 /* Dump as root */ 469 470 /* mm flags */ 471 472 /* for SUID_DUMP_* above */ 473 #define MMF_DUMPABLE_BITS 2 474 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 475 476 extern void set_dumpable(struct mm_struct *mm, int value); 477 /* 478 * This returns the actual value of the suid_dumpable flag. For things 479 * that are using this for checking for privilege transitions, it must 480 * test against SUID_DUMP_USER rather than treating it as a boolean 481 * value. 482 */ 483 static inline int __get_dumpable(unsigned long mm_flags) 484 { 485 return mm_flags & MMF_DUMPABLE_MASK; 486 } 487 488 static inline int get_dumpable(struct mm_struct *mm) 489 { 490 return __get_dumpable(mm->flags); 491 } 492 493 /* coredump filter bits */ 494 #define MMF_DUMP_ANON_PRIVATE 2 495 #define MMF_DUMP_ANON_SHARED 3 496 #define MMF_DUMP_MAPPED_PRIVATE 4 497 #define MMF_DUMP_MAPPED_SHARED 5 498 #define MMF_DUMP_ELF_HEADERS 6 499 #define MMF_DUMP_HUGETLB_PRIVATE 7 500 #define MMF_DUMP_HUGETLB_SHARED 8 501 #define MMF_DUMP_DAX_PRIVATE 9 502 #define MMF_DUMP_DAX_SHARED 10 503 504 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 505 #define MMF_DUMP_FILTER_BITS 9 506 #define MMF_DUMP_FILTER_MASK \ 507 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 508 #define MMF_DUMP_FILTER_DEFAULT \ 509 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 510 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 511 512 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 513 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 514 #else 515 # define MMF_DUMP_MASK_DEFAULT_ELF 0 516 #endif 517 /* leave room for more dump flags */ 518 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 519 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 520 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 521 522 #define MMF_HAS_UPROBES 19 /* has uprobes */ 523 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 524 525 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 526 527 struct sighand_struct { 528 atomic_t count; 529 struct k_sigaction action[_NSIG]; 530 spinlock_t siglock; 531 wait_queue_head_t signalfd_wqh; 532 }; 533 534 struct pacct_struct { 535 int ac_flag; 536 long ac_exitcode; 537 unsigned long ac_mem; 538 cputime_t ac_utime, ac_stime; 539 unsigned long ac_minflt, ac_majflt; 540 }; 541 542 struct cpu_itimer { 543 cputime_t expires; 544 cputime_t incr; 545 u32 error; 546 u32 incr_error; 547 }; 548 549 /** 550 * struct prev_cputime - snaphsot of system and user cputime 551 * @utime: time spent in user mode 552 * @stime: time spent in system mode 553 * @lock: protects the above two fields 554 * 555 * Stores previous user/system time values such that we can guarantee 556 * monotonicity. 557 */ 558 struct prev_cputime { 559 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 560 cputime_t utime; 561 cputime_t stime; 562 raw_spinlock_t lock; 563 #endif 564 }; 565 566 static inline void prev_cputime_init(struct prev_cputime *prev) 567 { 568 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 569 prev->utime = prev->stime = 0; 570 raw_spin_lock_init(&prev->lock); 571 #endif 572 } 573 574 /** 575 * struct task_cputime - collected CPU time counts 576 * @utime: time spent in user mode, in &cputime_t units 577 * @stime: time spent in kernel mode, in &cputime_t units 578 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 579 * 580 * This structure groups together three kinds of CPU time that are tracked for 581 * threads and thread groups. Most things considering CPU time want to group 582 * these counts together and treat all three of them in parallel. 583 */ 584 struct task_cputime { 585 cputime_t utime; 586 cputime_t stime; 587 unsigned long long sum_exec_runtime; 588 }; 589 590 /* Alternate field names when used to cache expirations. */ 591 #define virt_exp utime 592 #define prof_exp stime 593 #define sched_exp sum_exec_runtime 594 595 #define INIT_CPUTIME \ 596 (struct task_cputime) { \ 597 .utime = 0, \ 598 .stime = 0, \ 599 .sum_exec_runtime = 0, \ 600 } 601 602 /* 603 * This is the atomic variant of task_cputime, which can be used for 604 * storing and updating task_cputime statistics without locking. 605 */ 606 struct task_cputime_atomic { 607 atomic64_t utime; 608 atomic64_t stime; 609 atomic64_t sum_exec_runtime; 610 }; 611 612 #define INIT_CPUTIME_ATOMIC \ 613 (struct task_cputime_atomic) { \ 614 .utime = ATOMIC64_INIT(0), \ 615 .stime = ATOMIC64_INIT(0), \ 616 .sum_exec_runtime = ATOMIC64_INIT(0), \ 617 } 618 619 #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 620 621 /* 622 * Disable preemption until the scheduler is running -- use an unconditional 623 * value so that it also works on !PREEMPT_COUNT kernels. 624 * 625 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count(). 626 */ 627 #define INIT_PREEMPT_COUNT PREEMPT_OFFSET 628 629 /* 630 * Initial preempt_count value; reflects the preempt_count schedule invariant 631 * which states that during context switches: 632 * 633 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET 634 * 635 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels. 636 * Note: See finish_task_switch(). 637 */ 638 #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 639 640 /** 641 * struct thread_group_cputimer - thread group interval timer counts 642 * @cputime_atomic: atomic thread group interval timers. 643 * @running: true when there are timers running and 644 * @cputime_atomic receives updates. 645 * @checking_timer: true when a thread in the group is in the 646 * process of checking for thread group timers. 647 * 648 * This structure contains the version of task_cputime, above, that is 649 * used for thread group CPU timer calculations. 650 */ 651 struct thread_group_cputimer { 652 struct task_cputime_atomic cputime_atomic; 653 bool running; 654 bool checking_timer; 655 }; 656 657 #include <linux/rwsem.h> 658 struct autogroup; 659 660 /* 661 * NOTE! "signal_struct" does not have its own 662 * locking, because a shared signal_struct always 663 * implies a shared sighand_struct, so locking 664 * sighand_struct is always a proper superset of 665 * the locking of signal_struct. 666 */ 667 struct signal_struct { 668 atomic_t sigcnt; 669 atomic_t live; 670 int nr_threads; 671 struct list_head thread_head; 672 673 wait_queue_head_t wait_chldexit; /* for wait4() */ 674 675 /* current thread group signal load-balancing target: */ 676 struct task_struct *curr_target; 677 678 /* shared signal handling: */ 679 struct sigpending shared_pending; 680 681 /* thread group exit support */ 682 int group_exit_code; 683 /* overloaded: 684 * - notify group_exit_task when ->count is equal to notify_count 685 * - everyone except group_exit_task is stopped during signal delivery 686 * of fatal signals, group_exit_task processes the signal. 687 */ 688 int notify_count; 689 struct task_struct *group_exit_task; 690 691 /* thread group stop support, overloads group_exit_code too */ 692 int group_stop_count; 693 unsigned int flags; /* see SIGNAL_* flags below */ 694 695 /* 696 * PR_SET_CHILD_SUBREAPER marks a process, like a service 697 * manager, to re-parent orphan (double-forking) child processes 698 * to this process instead of 'init'. The service manager is 699 * able to receive SIGCHLD signals and is able to investigate 700 * the process until it calls wait(). All children of this 701 * process will inherit a flag if they should look for a 702 * child_subreaper process at exit. 703 */ 704 unsigned int is_child_subreaper:1; 705 unsigned int has_child_subreaper:1; 706 707 /* POSIX.1b Interval Timers */ 708 int posix_timer_id; 709 struct list_head posix_timers; 710 711 /* ITIMER_REAL timer for the process */ 712 struct hrtimer real_timer; 713 struct pid *leader_pid; 714 ktime_t it_real_incr; 715 716 /* 717 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 718 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 719 * values are defined to 0 and 1 respectively 720 */ 721 struct cpu_itimer it[2]; 722 723 /* 724 * Thread group totals for process CPU timers. 725 * See thread_group_cputimer(), et al, for details. 726 */ 727 struct thread_group_cputimer cputimer; 728 729 /* Earliest-expiration cache. */ 730 struct task_cputime cputime_expires; 731 732 #ifdef CONFIG_NO_HZ_FULL 733 atomic_t tick_dep_mask; 734 #endif 735 736 struct list_head cpu_timers[3]; 737 738 struct pid *tty_old_pgrp; 739 740 /* boolean value for session group leader */ 741 int leader; 742 743 struct tty_struct *tty; /* NULL if no tty */ 744 745 #ifdef CONFIG_SCHED_AUTOGROUP 746 struct autogroup *autogroup; 747 #endif 748 /* 749 * Cumulative resource counters for dead threads in the group, 750 * and for reaped dead child processes forked by this group. 751 * Live threads maintain their own counters and add to these 752 * in __exit_signal, except for the group leader. 753 */ 754 seqlock_t stats_lock; 755 cputime_t utime, stime, cutime, cstime; 756 cputime_t gtime; 757 cputime_t cgtime; 758 struct prev_cputime prev_cputime; 759 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 760 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 761 unsigned long inblock, oublock, cinblock, coublock; 762 unsigned long maxrss, cmaxrss; 763 struct task_io_accounting ioac; 764 765 /* 766 * Cumulative ns of schedule CPU time fo dead threads in the 767 * group, not including a zombie group leader, (This only differs 768 * from jiffies_to_ns(utime + stime) if sched_clock uses something 769 * other than jiffies.) 770 */ 771 unsigned long long sum_sched_runtime; 772 773 /* 774 * We don't bother to synchronize most readers of this at all, 775 * because there is no reader checking a limit that actually needs 776 * to get both rlim_cur and rlim_max atomically, and either one 777 * alone is a single word that can safely be read normally. 778 * getrlimit/setrlimit use task_lock(current->group_leader) to 779 * protect this instead of the siglock, because they really 780 * have no need to disable irqs. 781 */ 782 struct rlimit rlim[RLIM_NLIMITS]; 783 784 #ifdef CONFIG_BSD_PROCESS_ACCT 785 struct pacct_struct pacct; /* per-process accounting information */ 786 #endif 787 #ifdef CONFIG_TASKSTATS 788 struct taskstats *stats; 789 #endif 790 #ifdef CONFIG_AUDIT 791 unsigned audit_tty; 792 struct tty_audit_buf *tty_audit_buf; 793 #endif 794 795 oom_flags_t oom_flags; 796 short oom_score_adj; /* OOM kill score adjustment */ 797 short oom_score_adj_min; /* OOM kill score adjustment min value. 798 * Only settable by CAP_SYS_RESOURCE. */ 799 800 struct mutex cred_guard_mutex; /* guard against foreign influences on 801 * credential calculations 802 * (notably. ptrace) */ 803 }; 804 805 /* 806 * Bits in flags field of signal_struct. 807 */ 808 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 809 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 810 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 811 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 812 /* 813 * Pending notifications to parent. 814 */ 815 #define SIGNAL_CLD_STOPPED 0x00000010 816 #define SIGNAL_CLD_CONTINUED 0x00000020 817 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 818 819 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 820 821 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 822 static inline int signal_group_exit(const struct signal_struct *sig) 823 { 824 return (sig->flags & SIGNAL_GROUP_EXIT) || 825 (sig->group_exit_task != NULL); 826 } 827 828 /* 829 * Some day this will be a full-fledged user tracking system.. 830 */ 831 struct user_struct { 832 atomic_t __count; /* reference count */ 833 atomic_t processes; /* How many processes does this user have? */ 834 atomic_t sigpending; /* How many pending signals does this user have? */ 835 #ifdef CONFIG_INOTIFY_USER 836 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 837 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 838 #endif 839 #ifdef CONFIG_FANOTIFY 840 atomic_t fanotify_listeners; 841 #endif 842 #ifdef CONFIG_EPOLL 843 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 844 #endif 845 #ifdef CONFIG_POSIX_MQUEUE 846 /* protected by mq_lock */ 847 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 848 #endif 849 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 850 unsigned long unix_inflight; /* How many files in flight in unix sockets */ 851 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */ 852 853 #ifdef CONFIG_KEYS 854 struct key *uid_keyring; /* UID specific keyring */ 855 struct key *session_keyring; /* UID's default session keyring */ 856 #endif 857 858 /* Hash table maintenance information */ 859 struct hlist_node uidhash_node; 860 kuid_t uid; 861 862 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL) 863 atomic_long_t locked_vm; 864 #endif 865 }; 866 867 extern int uids_sysfs_init(void); 868 869 extern struct user_struct *find_user(kuid_t); 870 871 extern struct user_struct root_user; 872 #define INIT_USER (&root_user) 873 874 875 struct backing_dev_info; 876 struct reclaim_state; 877 878 #ifdef CONFIG_SCHED_INFO 879 struct sched_info { 880 /* cumulative counters */ 881 unsigned long pcount; /* # of times run on this cpu */ 882 unsigned long long run_delay; /* time spent waiting on a runqueue */ 883 884 /* timestamps */ 885 unsigned long long last_arrival,/* when we last ran on a cpu */ 886 last_queued; /* when we were last queued to run */ 887 }; 888 #endif /* CONFIG_SCHED_INFO */ 889 890 #ifdef CONFIG_TASK_DELAY_ACCT 891 struct task_delay_info { 892 spinlock_t lock; 893 unsigned int flags; /* Private per-task flags */ 894 895 /* For each stat XXX, add following, aligned appropriately 896 * 897 * struct timespec XXX_start, XXX_end; 898 * u64 XXX_delay; 899 * u32 XXX_count; 900 * 901 * Atomicity of updates to XXX_delay, XXX_count protected by 902 * single lock above (split into XXX_lock if contention is an issue). 903 */ 904 905 /* 906 * XXX_count is incremented on every XXX operation, the delay 907 * associated with the operation is added to XXX_delay. 908 * XXX_delay contains the accumulated delay time in nanoseconds. 909 */ 910 u64 blkio_start; /* Shared by blkio, swapin */ 911 u64 blkio_delay; /* wait for sync block io completion */ 912 u64 swapin_delay; /* wait for swapin block io completion */ 913 u32 blkio_count; /* total count of the number of sync block */ 914 /* io operations performed */ 915 u32 swapin_count; /* total count of the number of swapin block */ 916 /* io operations performed */ 917 918 u64 freepages_start; 919 u64 freepages_delay; /* wait for memory reclaim */ 920 u32 freepages_count; /* total count of memory reclaim */ 921 }; 922 #endif /* CONFIG_TASK_DELAY_ACCT */ 923 924 static inline int sched_info_on(void) 925 { 926 #ifdef CONFIG_SCHEDSTATS 927 return 1; 928 #elif defined(CONFIG_TASK_DELAY_ACCT) 929 extern int delayacct_on; 930 return delayacct_on; 931 #else 932 return 0; 933 #endif 934 } 935 936 #ifdef CONFIG_SCHEDSTATS 937 void force_schedstat_enabled(void); 938 #endif 939 940 enum cpu_idle_type { 941 CPU_IDLE, 942 CPU_NOT_IDLE, 943 CPU_NEWLY_IDLE, 944 CPU_MAX_IDLE_TYPES 945 }; 946 947 /* 948 * Integer metrics need fixed point arithmetic, e.g., sched/fair 949 * has a few: load, load_avg, util_avg, freq, and capacity. 950 * 951 * We define a basic fixed point arithmetic range, and then formalize 952 * all these metrics based on that basic range. 953 */ 954 # define SCHED_FIXEDPOINT_SHIFT 10 955 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) 956 957 /* 958 * Increase resolution of cpu_capacity calculations 959 */ 960 #define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT 961 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 962 963 /* 964 * Wake-queues are lists of tasks with a pending wakeup, whose 965 * callers have already marked the task as woken internally, 966 * and can thus carry on. A common use case is being able to 967 * do the wakeups once the corresponding user lock as been 968 * released. 969 * 970 * We hold reference to each task in the list across the wakeup, 971 * thus guaranteeing that the memory is still valid by the time 972 * the actual wakeups are performed in wake_up_q(). 973 * 974 * One per task suffices, because there's never a need for a task to be 975 * in two wake queues simultaneously; it is forbidden to abandon a task 976 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is 977 * already in a wake queue, the wakeup will happen soon and the second 978 * waker can just skip it. 979 * 980 * The WAKE_Q macro declares and initializes the list head. 981 * wake_up_q() does NOT reinitialize the list; it's expected to be 982 * called near the end of a function, where the fact that the queue is 983 * not used again will be easy to see by inspection. 984 * 985 * Note that this can cause spurious wakeups. schedule() callers 986 * must ensure the call is done inside a loop, confirming that the 987 * wakeup condition has in fact occurred. 988 */ 989 struct wake_q_node { 990 struct wake_q_node *next; 991 }; 992 993 struct wake_q_head { 994 struct wake_q_node *first; 995 struct wake_q_node **lastp; 996 }; 997 998 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01) 999 1000 #define WAKE_Q(name) \ 1001 struct wake_q_head name = { WAKE_Q_TAIL, &name.first } 1002 1003 extern void wake_q_add(struct wake_q_head *head, 1004 struct task_struct *task); 1005 extern void wake_up_q(struct wake_q_head *head); 1006 1007 /* 1008 * sched-domains (multiprocessor balancing) declarations: 1009 */ 1010 #ifdef CONFIG_SMP 1011 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 1012 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 1013 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 1014 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 1015 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 1016 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 1017 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */ 1018 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */ 1019 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 1020 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 1021 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 1022 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 1023 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 1024 #define SD_NUMA 0x4000 /* cross-node balancing */ 1025 1026 #ifdef CONFIG_SCHED_SMT 1027 static inline int cpu_smt_flags(void) 1028 { 1029 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 1030 } 1031 #endif 1032 1033 #ifdef CONFIG_SCHED_MC 1034 static inline int cpu_core_flags(void) 1035 { 1036 return SD_SHARE_PKG_RESOURCES; 1037 } 1038 #endif 1039 1040 #ifdef CONFIG_NUMA 1041 static inline int cpu_numa_flags(void) 1042 { 1043 return SD_NUMA; 1044 } 1045 #endif 1046 1047 struct sched_domain_attr { 1048 int relax_domain_level; 1049 }; 1050 1051 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 1052 .relax_domain_level = -1, \ 1053 } 1054 1055 extern int sched_domain_level_max; 1056 1057 struct sched_group; 1058 1059 struct sched_domain { 1060 /* These fields must be setup */ 1061 struct sched_domain *parent; /* top domain must be null terminated */ 1062 struct sched_domain *child; /* bottom domain must be null terminated */ 1063 struct sched_group *groups; /* the balancing groups of the domain */ 1064 unsigned long min_interval; /* Minimum balance interval ms */ 1065 unsigned long max_interval; /* Maximum balance interval ms */ 1066 unsigned int busy_factor; /* less balancing by factor if busy */ 1067 unsigned int imbalance_pct; /* No balance until over watermark */ 1068 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 1069 unsigned int busy_idx; 1070 unsigned int idle_idx; 1071 unsigned int newidle_idx; 1072 unsigned int wake_idx; 1073 unsigned int forkexec_idx; 1074 unsigned int smt_gain; 1075 1076 int nohz_idle; /* NOHZ IDLE status */ 1077 int flags; /* See SD_* */ 1078 int level; 1079 1080 /* Runtime fields. */ 1081 unsigned long last_balance; /* init to jiffies. units in jiffies */ 1082 unsigned int balance_interval; /* initialise to 1. units in ms. */ 1083 unsigned int nr_balance_failed; /* initialise to 0 */ 1084 1085 /* idle_balance() stats */ 1086 u64 max_newidle_lb_cost; 1087 unsigned long next_decay_max_lb_cost; 1088 1089 #ifdef CONFIG_SCHEDSTATS 1090 /* load_balance() stats */ 1091 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 1092 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 1093 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 1094 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 1095 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 1096 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 1097 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 1098 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 1099 1100 /* Active load balancing */ 1101 unsigned int alb_count; 1102 unsigned int alb_failed; 1103 unsigned int alb_pushed; 1104 1105 /* SD_BALANCE_EXEC stats */ 1106 unsigned int sbe_count; 1107 unsigned int sbe_balanced; 1108 unsigned int sbe_pushed; 1109 1110 /* SD_BALANCE_FORK stats */ 1111 unsigned int sbf_count; 1112 unsigned int sbf_balanced; 1113 unsigned int sbf_pushed; 1114 1115 /* try_to_wake_up() stats */ 1116 unsigned int ttwu_wake_remote; 1117 unsigned int ttwu_move_affine; 1118 unsigned int ttwu_move_balance; 1119 #endif 1120 #ifdef CONFIG_SCHED_DEBUG 1121 char *name; 1122 #endif 1123 union { 1124 void *private; /* used during construction */ 1125 struct rcu_head rcu; /* used during destruction */ 1126 }; 1127 1128 unsigned int span_weight; 1129 /* 1130 * Span of all CPUs in this domain. 1131 * 1132 * NOTE: this field is variable length. (Allocated dynamically 1133 * by attaching extra space to the end of the structure, 1134 * depending on how many CPUs the kernel has booted up with) 1135 */ 1136 unsigned long span[0]; 1137 }; 1138 1139 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1140 { 1141 return to_cpumask(sd->span); 1142 } 1143 1144 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1145 struct sched_domain_attr *dattr_new); 1146 1147 /* Allocate an array of sched domains, for partition_sched_domains(). */ 1148 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1149 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1150 1151 bool cpus_share_cache(int this_cpu, int that_cpu); 1152 1153 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 1154 typedef int (*sched_domain_flags_f)(void); 1155 1156 #define SDTL_OVERLAP 0x01 1157 1158 struct sd_data { 1159 struct sched_domain **__percpu sd; 1160 struct sched_group **__percpu sg; 1161 struct sched_group_capacity **__percpu sgc; 1162 }; 1163 1164 struct sched_domain_topology_level { 1165 sched_domain_mask_f mask; 1166 sched_domain_flags_f sd_flags; 1167 int flags; 1168 int numa_level; 1169 struct sd_data data; 1170 #ifdef CONFIG_SCHED_DEBUG 1171 char *name; 1172 #endif 1173 }; 1174 1175 extern void set_sched_topology(struct sched_domain_topology_level *tl); 1176 extern void wake_up_if_idle(int cpu); 1177 1178 #ifdef CONFIG_SCHED_DEBUG 1179 # define SD_INIT_NAME(type) .name = #type 1180 #else 1181 # define SD_INIT_NAME(type) 1182 #endif 1183 1184 #else /* CONFIG_SMP */ 1185 1186 struct sched_domain_attr; 1187 1188 static inline void 1189 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1190 struct sched_domain_attr *dattr_new) 1191 { 1192 } 1193 1194 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1195 { 1196 return true; 1197 } 1198 1199 #endif /* !CONFIG_SMP */ 1200 1201 1202 struct io_context; /* See blkdev.h */ 1203 1204 1205 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1206 extern void prefetch_stack(struct task_struct *t); 1207 #else 1208 static inline void prefetch_stack(struct task_struct *t) { } 1209 #endif 1210 1211 struct audit_context; /* See audit.c */ 1212 struct mempolicy; 1213 struct pipe_inode_info; 1214 struct uts_namespace; 1215 1216 struct load_weight { 1217 unsigned long weight; 1218 u32 inv_weight; 1219 }; 1220 1221 /* 1222 * The load_avg/util_avg accumulates an infinite geometric series 1223 * (see __update_load_avg() in kernel/sched/fair.c). 1224 * 1225 * [load_avg definition] 1226 * 1227 * load_avg = runnable% * scale_load_down(load) 1228 * 1229 * where runnable% is the time ratio that a sched_entity is runnable. 1230 * For cfs_rq, it is the aggregated load_avg of all runnable and 1231 * blocked sched_entities. 1232 * 1233 * load_avg may also take frequency scaling into account: 1234 * 1235 * load_avg = runnable% * scale_load_down(load) * freq% 1236 * 1237 * where freq% is the CPU frequency normalized to the highest frequency. 1238 * 1239 * [util_avg definition] 1240 * 1241 * util_avg = running% * SCHED_CAPACITY_SCALE 1242 * 1243 * where running% is the time ratio that a sched_entity is running on 1244 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable 1245 * and blocked sched_entities. 1246 * 1247 * util_avg may also factor frequency scaling and CPU capacity scaling: 1248 * 1249 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity% 1250 * 1251 * where freq% is the same as above, and capacity% is the CPU capacity 1252 * normalized to the greatest capacity (due to uarch differences, etc). 1253 * 1254 * N.B., the above ratios (runnable%, running%, freq%, and capacity%) 1255 * themselves are in the range of [0, 1]. To do fixed point arithmetics, 1256 * we therefore scale them to as large a range as necessary. This is for 1257 * example reflected by util_avg's SCHED_CAPACITY_SCALE. 1258 * 1259 * [Overflow issue] 1260 * 1261 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities 1262 * with the highest load (=88761), always runnable on a single cfs_rq, 1263 * and should not overflow as the number already hits PID_MAX_LIMIT. 1264 * 1265 * For all other cases (including 32-bit kernels), struct load_weight's 1266 * weight will overflow first before we do, because: 1267 * 1268 * Max(load_avg) <= Max(load.weight) 1269 * 1270 * Then it is the load_weight's responsibility to consider overflow 1271 * issues. 1272 */ 1273 struct sched_avg { 1274 u64 last_update_time, load_sum; 1275 u32 util_sum, period_contrib; 1276 unsigned long load_avg, util_avg; 1277 }; 1278 1279 #ifdef CONFIG_SCHEDSTATS 1280 struct sched_statistics { 1281 u64 wait_start; 1282 u64 wait_max; 1283 u64 wait_count; 1284 u64 wait_sum; 1285 u64 iowait_count; 1286 u64 iowait_sum; 1287 1288 u64 sleep_start; 1289 u64 sleep_max; 1290 s64 sum_sleep_runtime; 1291 1292 u64 block_start; 1293 u64 block_max; 1294 u64 exec_max; 1295 u64 slice_max; 1296 1297 u64 nr_migrations_cold; 1298 u64 nr_failed_migrations_affine; 1299 u64 nr_failed_migrations_running; 1300 u64 nr_failed_migrations_hot; 1301 u64 nr_forced_migrations; 1302 1303 u64 nr_wakeups; 1304 u64 nr_wakeups_sync; 1305 u64 nr_wakeups_migrate; 1306 u64 nr_wakeups_local; 1307 u64 nr_wakeups_remote; 1308 u64 nr_wakeups_affine; 1309 u64 nr_wakeups_affine_attempts; 1310 u64 nr_wakeups_passive; 1311 u64 nr_wakeups_idle; 1312 }; 1313 #endif 1314 1315 struct sched_entity { 1316 struct load_weight load; /* for load-balancing */ 1317 struct rb_node run_node; 1318 struct list_head group_node; 1319 unsigned int on_rq; 1320 1321 u64 exec_start; 1322 u64 sum_exec_runtime; 1323 u64 vruntime; 1324 u64 prev_sum_exec_runtime; 1325 1326 u64 nr_migrations; 1327 1328 #ifdef CONFIG_SCHEDSTATS 1329 struct sched_statistics statistics; 1330 #endif 1331 1332 #ifdef CONFIG_FAIR_GROUP_SCHED 1333 int depth; 1334 struct sched_entity *parent; 1335 /* rq on which this entity is (to be) queued: */ 1336 struct cfs_rq *cfs_rq; 1337 /* rq "owned" by this entity/group: */ 1338 struct cfs_rq *my_q; 1339 #endif 1340 1341 #ifdef CONFIG_SMP 1342 /* 1343 * Per entity load average tracking. 1344 * 1345 * Put into separate cache line so it does not 1346 * collide with read-mostly values above. 1347 */ 1348 struct sched_avg avg ____cacheline_aligned_in_smp; 1349 #endif 1350 }; 1351 1352 struct sched_rt_entity { 1353 struct list_head run_list; 1354 unsigned long timeout; 1355 unsigned long watchdog_stamp; 1356 unsigned int time_slice; 1357 unsigned short on_rq; 1358 unsigned short on_list; 1359 1360 struct sched_rt_entity *back; 1361 #ifdef CONFIG_RT_GROUP_SCHED 1362 struct sched_rt_entity *parent; 1363 /* rq on which this entity is (to be) queued: */ 1364 struct rt_rq *rt_rq; 1365 /* rq "owned" by this entity/group: */ 1366 struct rt_rq *my_q; 1367 #endif 1368 }; 1369 1370 struct sched_dl_entity { 1371 struct rb_node rb_node; 1372 1373 /* 1374 * Original scheduling parameters. Copied here from sched_attr 1375 * during sched_setattr(), they will remain the same until 1376 * the next sched_setattr(). 1377 */ 1378 u64 dl_runtime; /* maximum runtime for each instance */ 1379 u64 dl_deadline; /* relative deadline of each instance */ 1380 u64 dl_period; /* separation of two instances (period) */ 1381 u64 dl_bw; /* dl_runtime / dl_deadline */ 1382 1383 /* 1384 * Actual scheduling parameters. Initialized with the values above, 1385 * they are continously updated during task execution. Note that 1386 * the remaining runtime could be < 0 in case we are in overrun. 1387 */ 1388 s64 runtime; /* remaining runtime for this instance */ 1389 u64 deadline; /* absolute deadline for this instance */ 1390 unsigned int flags; /* specifying the scheduler behaviour */ 1391 1392 /* 1393 * Some bool flags: 1394 * 1395 * @dl_throttled tells if we exhausted the runtime. If so, the 1396 * task has to wait for a replenishment to be performed at the 1397 * next firing of dl_timer. 1398 * 1399 * @dl_boosted tells if we are boosted due to DI. If so we are 1400 * outside bandwidth enforcement mechanism (but only until we 1401 * exit the critical section); 1402 * 1403 * @dl_yielded tells if task gave up the cpu before consuming 1404 * all its available runtime during the last job. 1405 */ 1406 int dl_throttled, dl_boosted, dl_yielded; 1407 1408 /* 1409 * Bandwidth enforcement timer. Each -deadline task has its 1410 * own bandwidth to be enforced, thus we need one timer per task. 1411 */ 1412 struct hrtimer dl_timer; 1413 }; 1414 1415 union rcu_special { 1416 struct { 1417 u8 blocked; 1418 u8 need_qs; 1419 u8 exp_need_qs; 1420 u8 pad; /* Otherwise the compiler can store garbage here. */ 1421 } b; /* Bits. */ 1422 u32 s; /* Set of bits. */ 1423 }; 1424 struct rcu_node; 1425 1426 enum perf_event_task_context { 1427 perf_invalid_context = -1, 1428 perf_hw_context = 0, 1429 perf_sw_context, 1430 perf_nr_task_contexts, 1431 }; 1432 1433 /* Track pages that require TLB flushes */ 1434 struct tlbflush_unmap_batch { 1435 /* 1436 * Each bit set is a CPU that potentially has a TLB entry for one of 1437 * the PFNs being flushed. See set_tlb_ubc_flush_pending(). 1438 */ 1439 struct cpumask cpumask; 1440 1441 /* True if any bit in cpumask is set */ 1442 bool flush_required; 1443 1444 /* 1445 * If true then the PTE was dirty when unmapped. The entry must be 1446 * flushed before IO is initiated or a stale TLB entry potentially 1447 * allows an update without redirtying the page. 1448 */ 1449 bool writable; 1450 }; 1451 1452 struct task_struct { 1453 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1454 void *stack; 1455 atomic_t usage; 1456 unsigned int flags; /* per process flags, defined below */ 1457 unsigned int ptrace; 1458 1459 #ifdef CONFIG_SMP 1460 struct llist_node wake_entry; 1461 int on_cpu; 1462 unsigned int wakee_flips; 1463 unsigned long wakee_flip_decay_ts; 1464 struct task_struct *last_wakee; 1465 1466 int wake_cpu; 1467 #endif 1468 int on_rq; 1469 1470 int prio, static_prio, normal_prio; 1471 unsigned int rt_priority; 1472 const struct sched_class *sched_class; 1473 struct sched_entity se; 1474 struct sched_rt_entity rt; 1475 #ifdef CONFIG_CGROUP_SCHED 1476 struct task_group *sched_task_group; 1477 #endif 1478 struct sched_dl_entity dl; 1479 1480 #ifdef CONFIG_PREEMPT_NOTIFIERS 1481 /* list of struct preempt_notifier: */ 1482 struct hlist_head preempt_notifiers; 1483 #endif 1484 1485 #ifdef CONFIG_BLK_DEV_IO_TRACE 1486 unsigned int btrace_seq; 1487 #endif 1488 1489 unsigned int policy; 1490 int nr_cpus_allowed; 1491 cpumask_t cpus_allowed; 1492 1493 #ifdef CONFIG_PREEMPT_RCU 1494 int rcu_read_lock_nesting; 1495 union rcu_special rcu_read_unlock_special; 1496 struct list_head rcu_node_entry; 1497 struct rcu_node *rcu_blocked_node; 1498 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1499 #ifdef CONFIG_TASKS_RCU 1500 unsigned long rcu_tasks_nvcsw; 1501 bool rcu_tasks_holdout; 1502 struct list_head rcu_tasks_holdout_list; 1503 int rcu_tasks_idle_cpu; 1504 #endif /* #ifdef CONFIG_TASKS_RCU */ 1505 1506 #ifdef CONFIG_SCHED_INFO 1507 struct sched_info sched_info; 1508 #endif 1509 1510 struct list_head tasks; 1511 #ifdef CONFIG_SMP 1512 struct plist_node pushable_tasks; 1513 struct rb_node pushable_dl_tasks; 1514 #endif 1515 1516 struct mm_struct *mm, *active_mm; 1517 /* per-thread vma caching */ 1518 u32 vmacache_seqnum; 1519 struct vm_area_struct *vmacache[VMACACHE_SIZE]; 1520 #if defined(SPLIT_RSS_COUNTING) 1521 struct task_rss_stat rss_stat; 1522 #endif 1523 /* task state */ 1524 int exit_state; 1525 int exit_code, exit_signal; 1526 int pdeath_signal; /* The signal sent when the parent dies */ 1527 unsigned long jobctl; /* JOBCTL_*, siglock protected */ 1528 1529 /* Used for emulating ABI behavior of previous Linux versions */ 1530 unsigned int personality; 1531 1532 /* scheduler bits, serialized by scheduler locks */ 1533 unsigned sched_reset_on_fork:1; 1534 unsigned sched_contributes_to_load:1; 1535 unsigned sched_migrated:1; 1536 unsigned :0; /* force alignment to the next boundary */ 1537 1538 /* unserialized, strictly 'current' */ 1539 unsigned in_execve:1; /* bit to tell LSMs we're in execve */ 1540 unsigned in_iowait:1; 1541 #ifdef CONFIG_MEMCG 1542 unsigned memcg_may_oom:1; 1543 #ifndef CONFIG_SLOB 1544 unsigned memcg_kmem_skip_account:1; 1545 #endif 1546 #endif 1547 #ifdef CONFIG_COMPAT_BRK 1548 unsigned brk_randomized:1; 1549 #endif 1550 1551 unsigned long atomic_flags; /* Flags needing atomic access. */ 1552 1553 struct restart_block restart_block; 1554 1555 pid_t pid; 1556 pid_t tgid; 1557 1558 #ifdef CONFIG_CC_STACKPROTECTOR 1559 /* Canary value for the -fstack-protector gcc feature */ 1560 unsigned long stack_canary; 1561 #endif 1562 /* 1563 * pointers to (original) parent process, youngest child, younger sibling, 1564 * older sibling, respectively. (p->father can be replaced with 1565 * p->real_parent->pid) 1566 */ 1567 struct task_struct __rcu *real_parent; /* real parent process */ 1568 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1569 /* 1570 * children/sibling forms the list of my natural children 1571 */ 1572 struct list_head children; /* list of my children */ 1573 struct list_head sibling; /* linkage in my parent's children list */ 1574 struct task_struct *group_leader; /* threadgroup leader */ 1575 1576 /* 1577 * ptraced is the list of tasks this task is using ptrace on. 1578 * This includes both natural children and PTRACE_ATTACH targets. 1579 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1580 */ 1581 struct list_head ptraced; 1582 struct list_head ptrace_entry; 1583 1584 /* PID/PID hash table linkage. */ 1585 struct pid_link pids[PIDTYPE_MAX]; 1586 struct list_head thread_group; 1587 struct list_head thread_node; 1588 1589 struct completion *vfork_done; /* for vfork() */ 1590 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1591 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1592 1593 cputime_t utime, stime, utimescaled, stimescaled; 1594 cputime_t gtime; 1595 struct prev_cputime prev_cputime; 1596 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1597 seqcount_t vtime_seqcount; 1598 unsigned long long vtime_snap; 1599 enum { 1600 /* Task is sleeping or running in a CPU with VTIME inactive */ 1601 VTIME_INACTIVE = 0, 1602 /* Task runs in userspace in a CPU with VTIME active */ 1603 VTIME_USER, 1604 /* Task runs in kernelspace in a CPU with VTIME active */ 1605 VTIME_SYS, 1606 } vtime_snap_whence; 1607 #endif 1608 1609 #ifdef CONFIG_NO_HZ_FULL 1610 atomic_t tick_dep_mask; 1611 #endif 1612 unsigned long nvcsw, nivcsw; /* context switch counts */ 1613 u64 start_time; /* monotonic time in nsec */ 1614 u64 real_start_time; /* boot based time in nsec */ 1615 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1616 unsigned long min_flt, maj_flt; 1617 1618 struct task_cputime cputime_expires; 1619 struct list_head cpu_timers[3]; 1620 1621 /* process credentials */ 1622 const struct cred __rcu *real_cred; /* objective and real subjective task 1623 * credentials (COW) */ 1624 const struct cred __rcu *cred; /* effective (overridable) subjective task 1625 * credentials (COW) */ 1626 char comm[TASK_COMM_LEN]; /* executable name excluding path 1627 - access with [gs]et_task_comm (which lock 1628 it with task_lock()) 1629 - initialized normally by setup_new_exec */ 1630 /* file system info */ 1631 struct nameidata *nameidata; 1632 #ifdef CONFIG_SYSVIPC 1633 /* ipc stuff */ 1634 struct sysv_sem sysvsem; 1635 struct sysv_shm sysvshm; 1636 #endif 1637 #ifdef CONFIG_DETECT_HUNG_TASK 1638 /* hung task detection */ 1639 unsigned long last_switch_count; 1640 #endif 1641 /* filesystem information */ 1642 struct fs_struct *fs; 1643 /* open file information */ 1644 struct files_struct *files; 1645 /* namespaces */ 1646 struct nsproxy *nsproxy; 1647 /* signal handlers */ 1648 struct signal_struct *signal; 1649 struct sighand_struct *sighand; 1650 1651 sigset_t blocked, real_blocked; 1652 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1653 struct sigpending pending; 1654 1655 unsigned long sas_ss_sp; 1656 size_t sas_ss_size; 1657 unsigned sas_ss_flags; 1658 1659 struct callback_head *task_works; 1660 1661 struct audit_context *audit_context; 1662 #ifdef CONFIG_AUDITSYSCALL 1663 kuid_t loginuid; 1664 unsigned int sessionid; 1665 #endif 1666 struct seccomp seccomp; 1667 1668 /* Thread group tracking */ 1669 u32 parent_exec_id; 1670 u32 self_exec_id; 1671 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1672 * mempolicy */ 1673 spinlock_t alloc_lock; 1674 1675 /* Protection of the PI data structures: */ 1676 raw_spinlock_t pi_lock; 1677 1678 struct wake_q_node wake_q; 1679 1680 #ifdef CONFIG_RT_MUTEXES 1681 /* PI waiters blocked on a rt_mutex held by this task */ 1682 struct rb_root pi_waiters; 1683 struct rb_node *pi_waiters_leftmost; 1684 /* Deadlock detection and priority inheritance handling */ 1685 struct rt_mutex_waiter *pi_blocked_on; 1686 #endif 1687 1688 #ifdef CONFIG_DEBUG_MUTEXES 1689 /* mutex deadlock detection */ 1690 struct mutex_waiter *blocked_on; 1691 #endif 1692 #ifdef CONFIG_TRACE_IRQFLAGS 1693 unsigned int irq_events; 1694 unsigned long hardirq_enable_ip; 1695 unsigned long hardirq_disable_ip; 1696 unsigned int hardirq_enable_event; 1697 unsigned int hardirq_disable_event; 1698 int hardirqs_enabled; 1699 int hardirq_context; 1700 unsigned long softirq_disable_ip; 1701 unsigned long softirq_enable_ip; 1702 unsigned int softirq_disable_event; 1703 unsigned int softirq_enable_event; 1704 int softirqs_enabled; 1705 int softirq_context; 1706 #endif 1707 #ifdef CONFIG_LOCKDEP 1708 # define MAX_LOCK_DEPTH 48UL 1709 u64 curr_chain_key; 1710 int lockdep_depth; 1711 unsigned int lockdep_recursion; 1712 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1713 gfp_t lockdep_reclaim_gfp; 1714 #endif 1715 #ifdef CONFIG_UBSAN 1716 unsigned int in_ubsan; 1717 #endif 1718 1719 /* journalling filesystem info */ 1720 void *journal_info; 1721 1722 /* stacked block device info */ 1723 struct bio_list *bio_list; 1724 1725 #ifdef CONFIG_BLOCK 1726 /* stack plugging */ 1727 struct blk_plug *plug; 1728 #endif 1729 1730 /* VM state */ 1731 struct reclaim_state *reclaim_state; 1732 1733 struct backing_dev_info *backing_dev_info; 1734 1735 struct io_context *io_context; 1736 1737 unsigned long ptrace_message; 1738 siginfo_t *last_siginfo; /* For ptrace use. */ 1739 struct task_io_accounting ioac; 1740 #if defined(CONFIG_TASK_XACCT) 1741 u64 acct_rss_mem1; /* accumulated rss usage */ 1742 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1743 cputime_t acct_timexpd; /* stime + utime since last update */ 1744 #endif 1745 #ifdef CONFIG_CPUSETS 1746 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1747 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1748 int cpuset_mem_spread_rotor; 1749 int cpuset_slab_spread_rotor; 1750 #endif 1751 #ifdef CONFIG_CGROUPS 1752 /* Control Group info protected by css_set_lock */ 1753 struct css_set __rcu *cgroups; 1754 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1755 struct list_head cg_list; 1756 #endif 1757 #ifdef CONFIG_FUTEX 1758 struct robust_list_head __user *robust_list; 1759 #ifdef CONFIG_COMPAT 1760 struct compat_robust_list_head __user *compat_robust_list; 1761 #endif 1762 struct list_head pi_state_list; 1763 struct futex_pi_state *pi_state_cache; 1764 #endif 1765 #ifdef CONFIG_PERF_EVENTS 1766 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1767 struct mutex perf_event_mutex; 1768 struct list_head perf_event_list; 1769 #endif 1770 #ifdef CONFIG_DEBUG_PREEMPT 1771 unsigned long preempt_disable_ip; 1772 #endif 1773 #ifdef CONFIG_NUMA 1774 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1775 short il_next; 1776 short pref_node_fork; 1777 #endif 1778 #ifdef CONFIG_NUMA_BALANCING 1779 int numa_scan_seq; 1780 unsigned int numa_scan_period; 1781 unsigned int numa_scan_period_max; 1782 int numa_preferred_nid; 1783 unsigned long numa_migrate_retry; 1784 u64 node_stamp; /* migration stamp */ 1785 u64 last_task_numa_placement; 1786 u64 last_sum_exec_runtime; 1787 struct callback_head numa_work; 1788 1789 struct list_head numa_entry; 1790 struct numa_group *numa_group; 1791 1792 /* 1793 * numa_faults is an array split into four regions: 1794 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1795 * in this precise order. 1796 * 1797 * faults_memory: Exponential decaying average of faults on a per-node 1798 * basis. Scheduling placement decisions are made based on these 1799 * counts. The values remain static for the duration of a PTE scan. 1800 * faults_cpu: Track the nodes the process was running on when a NUMA 1801 * hinting fault was incurred. 1802 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1803 * during the current scan window. When the scan completes, the counts 1804 * in faults_memory and faults_cpu decay and these values are copied. 1805 */ 1806 unsigned long *numa_faults; 1807 unsigned long total_numa_faults; 1808 1809 /* 1810 * numa_faults_locality tracks if faults recorded during the last 1811 * scan window were remote/local or failed to migrate. The task scan 1812 * period is adapted based on the locality of the faults with different 1813 * weights depending on whether they were shared or private faults 1814 */ 1815 unsigned long numa_faults_locality[3]; 1816 1817 unsigned long numa_pages_migrated; 1818 #endif /* CONFIG_NUMA_BALANCING */ 1819 1820 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 1821 struct tlbflush_unmap_batch tlb_ubc; 1822 #endif 1823 1824 struct rcu_head rcu; 1825 1826 /* 1827 * cache last used pipe for splice 1828 */ 1829 struct pipe_inode_info *splice_pipe; 1830 1831 struct page_frag task_frag; 1832 1833 #ifdef CONFIG_TASK_DELAY_ACCT 1834 struct task_delay_info *delays; 1835 #endif 1836 #ifdef CONFIG_FAULT_INJECTION 1837 int make_it_fail; 1838 #endif 1839 /* 1840 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1841 * balance_dirty_pages() for some dirty throttling pause 1842 */ 1843 int nr_dirtied; 1844 int nr_dirtied_pause; 1845 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1846 1847 #ifdef CONFIG_LATENCYTOP 1848 int latency_record_count; 1849 struct latency_record latency_record[LT_SAVECOUNT]; 1850 #endif 1851 /* 1852 * time slack values; these are used to round up poll() and 1853 * select() etc timeout values. These are in nanoseconds. 1854 */ 1855 u64 timer_slack_ns; 1856 u64 default_timer_slack_ns; 1857 1858 #ifdef CONFIG_KASAN 1859 unsigned int kasan_depth; 1860 #endif 1861 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1862 /* Index of current stored address in ret_stack */ 1863 int curr_ret_stack; 1864 /* Stack of return addresses for return function tracing */ 1865 struct ftrace_ret_stack *ret_stack; 1866 /* time stamp for last schedule */ 1867 unsigned long long ftrace_timestamp; 1868 /* 1869 * Number of functions that haven't been traced 1870 * because of depth overrun. 1871 */ 1872 atomic_t trace_overrun; 1873 /* Pause for the tracing */ 1874 atomic_t tracing_graph_pause; 1875 #endif 1876 #ifdef CONFIG_TRACING 1877 /* state flags for use by tracers */ 1878 unsigned long trace; 1879 /* bitmask and counter of trace recursion */ 1880 unsigned long trace_recursion; 1881 #endif /* CONFIG_TRACING */ 1882 #ifdef CONFIG_KCOV 1883 /* Coverage collection mode enabled for this task (0 if disabled). */ 1884 enum kcov_mode kcov_mode; 1885 /* Size of the kcov_area. */ 1886 unsigned kcov_size; 1887 /* Buffer for coverage collection. */ 1888 void *kcov_area; 1889 /* kcov desciptor wired with this task or NULL. */ 1890 struct kcov *kcov; 1891 #endif 1892 #ifdef CONFIG_MEMCG 1893 struct mem_cgroup *memcg_in_oom; 1894 gfp_t memcg_oom_gfp_mask; 1895 int memcg_oom_order; 1896 1897 /* number of pages to reclaim on returning to userland */ 1898 unsigned int memcg_nr_pages_over_high; 1899 #endif 1900 #ifdef CONFIG_UPROBES 1901 struct uprobe_task *utask; 1902 #endif 1903 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1904 unsigned int sequential_io; 1905 unsigned int sequential_io_avg; 1906 #endif 1907 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1908 unsigned long task_state_change; 1909 #endif 1910 int pagefault_disabled; 1911 #ifdef CONFIG_MMU 1912 struct task_struct *oom_reaper_list; 1913 #endif 1914 /* CPU-specific state of this task */ 1915 struct thread_struct thread; 1916 /* 1917 * WARNING: on x86, 'thread_struct' contains a variable-sized 1918 * structure. It *MUST* be at the end of 'task_struct'. 1919 * 1920 * Do not put anything below here! 1921 */ 1922 }; 1923 1924 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1925 extern int arch_task_struct_size __read_mostly; 1926 #else 1927 # define arch_task_struct_size (sizeof(struct task_struct)) 1928 #endif 1929 1930 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1931 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1932 1933 static inline int tsk_nr_cpus_allowed(struct task_struct *p) 1934 { 1935 return p->nr_cpus_allowed; 1936 } 1937 1938 #define TNF_MIGRATED 0x01 1939 #define TNF_NO_GROUP 0x02 1940 #define TNF_SHARED 0x04 1941 #define TNF_FAULT_LOCAL 0x08 1942 #define TNF_MIGRATE_FAIL 0x10 1943 1944 #ifdef CONFIG_NUMA_BALANCING 1945 extern void task_numa_fault(int last_node, int node, int pages, int flags); 1946 extern pid_t task_numa_group_id(struct task_struct *p); 1947 extern void set_numabalancing_state(bool enabled); 1948 extern void task_numa_free(struct task_struct *p); 1949 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page, 1950 int src_nid, int dst_cpu); 1951 #else 1952 static inline void task_numa_fault(int last_node, int node, int pages, 1953 int flags) 1954 { 1955 } 1956 static inline pid_t task_numa_group_id(struct task_struct *p) 1957 { 1958 return 0; 1959 } 1960 static inline void set_numabalancing_state(bool enabled) 1961 { 1962 } 1963 static inline void task_numa_free(struct task_struct *p) 1964 { 1965 } 1966 static inline bool should_numa_migrate_memory(struct task_struct *p, 1967 struct page *page, int src_nid, int dst_cpu) 1968 { 1969 return true; 1970 } 1971 #endif 1972 1973 static inline struct pid *task_pid(struct task_struct *task) 1974 { 1975 return task->pids[PIDTYPE_PID].pid; 1976 } 1977 1978 static inline struct pid *task_tgid(struct task_struct *task) 1979 { 1980 return task->group_leader->pids[PIDTYPE_PID].pid; 1981 } 1982 1983 /* 1984 * Without tasklist or rcu lock it is not safe to dereference 1985 * the result of task_pgrp/task_session even if task == current, 1986 * we can race with another thread doing sys_setsid/sys_setpgid. 1987 */ 1988 static inline struct pid *task_pgrp(struct task_struct *task) 1989 { 1990 return task->group_leader->pids[PIDTYPE_PGID].pid; 1991 } 1992 1993 static inline struct pid *task_session(struct task_struct *task) 1994 { 1995 return task->group_leader->pids[PIDTYPE_SID].pid; 1996 } 1997 1998 struct pid_namespace; 1999 2000 /* 2001 * the helpers to get the task's different pids as they are seen 2002 * from various namespaces 2003 * 2004 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 2005 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 2006 * current. 2007 * task_xid_nr_ns() : id seen from the ns specified; 2008 * 2009 * set_task_vxid() : assigns a virtual id to a task; 2010 * 2011 * see also pid_nr() etc in include/linux/pid.h 2012 */ 2013 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 2014 struct pid_namespace *ns); 2015 2016 static inline pid_t task_pid_nr(struct task_struct *tsk) 2017 { 2018 return tsk->pid; 2019 } 2020 2021 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 2022 struct pid_namespace *ns) 2023 { 2024 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 2025 } 2026 2027 static inline pid_t task_pid_vnr(struct task_struct *tsk) 2028 { 2029 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 2030 } 2031 2032 2033 static inline pid_t task_tgid_nr(struct task_struct *tsk) 2034 { 2035 return tsk->tgid; 2036 } 2037 2038 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 2039 2040 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 2041 { 2042 return pid_vnr(task_tgid(tsk)); 2043 } 2044 2045 2046 static inline int pid_alive(const struct task_struct *p); 2047 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 2048 { 2049 pid_t pid = 0; 2050 2051 rcu_read_lock(); 2052 if (pid_alive(tsk)) 2053 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 2054 rcu_read_unlock(); 2055 2056 return pid; 2057 } 2058 2059 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 2060 { 2061 return task_ppid_nr_ns(tsk, &init_pid_ns); 2062 } 2063 2064 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 2065 struct pid_namespace *ns) 2066 { 2067 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 2068 } 2069 2070 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 2071 { 2072 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 2073 } 2074 2075 2076 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 2077 struct pid_namespace *ns) 2078 { 2079 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 2080 } 2081 2082 static inline pid_t task_session_vnr(struct task_struct *tsk) 2083 { 2084 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 2085 } 2086 2087 /* obsolete, do not use */ 2088 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 2089 { 2090 return task_pgrp_nr_ns(tsk, &init_pid_ns); 2091 } 2092 2093 /** 2094 * pid_alive - check that a task structure is not stale 2095 * @p: Task structure to be checked. 2096 * 2097 * Test if a process is not yet dead (at most zombie state) 2098 * If pid_alive fails, then pointers within the task structure 2099 * can be stale and must not be dereferenced. 2100 * 2101 * Return: 1 if the process is alive. 0 otherwise. 2102 */ 2103 static inline int pid_alive(const struct task_struct *p) 2104 { 2105 return p->pids[PIDTYPE_PID].pid != NULL; 2106 } 2107 2108 /** 2109 * is_global_init - check if a task structure is init. Since init 2110 * is free to have sub-threads we need to check tgid. 2111 * @tsk: Task structure to be checked. 2112 * 2113 * Check if a task structure is the first user space task the kernel created. 2114 * 2115 * Return: 1 if the task structure is init. 0 otherwise. 2116 */ 2117 static inline int is_global_init(struct task_struct *tsk) 2118 { 2119 return task_tgid_nr(tsk) == 1; 2120 } 2121 2122 extern struct pid *cad_pid; 2123 2124 extern void free_task(struct task_struct *tsk); 2125 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 2126 2127 extern void __put_task_struct(struct task_struct *t); 2128 2129 static inline void put_task_struct(struct task_struct *t) 2130 { 2131 if (atomic_dec_and_test(&t->usage)) 2132 __put_task_struct(t); 2133 } 2134 2135 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2136 extern void task_cputime(struct task_struct *t, 2137 cputime_t *utime, cputime_t *stime); 2138 extern void task_cputime_scaled(struct task_struct *t, 2139 cputime_t *utimescaled, cputime_t *stimescaled); 2140 extern cputime_t task_gtime(struct task_struct *t); 2141 #else 2142 static inline void task_cputime(struct task_struct *t, 2143 cputime_t *utime, cputime_t *stime) 2144 { 2145 if (utime) 2146 *utime = t->utime; 2147 if (stime) 2148 *stime = t->stime; 2149 } 2150 2151 static inline void task_cputime_scaled(struct task_struct *t, 2152 cputime_t *utimescaled, 2153 cputime_t *stimescaled) 2154 { 2155 if (utimescaled) 2156 *utimescaled = t->utimescaled; 2157 if (stimescaled) 2158 *stimescaled = t->stimescaled; 2159 } 2160 2161 static inline cputime_t task_gtime(struct task_struct *t) 2162 { 2163 return t->gtime; 2164 } 2165 #endif 2166 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2167 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2168 2169 /* 2170 * Per process flags 2171 */ 2172 #define PF_EXITING 0x00000004 /* getting shut down */ 2173 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 2174 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 2175 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 2176 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 2177 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 2178 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 2179 #define PF_DUMPCORE 0x00000200 /* dumped core */ 2180 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 2181 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 2182 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 2183 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 2184 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 2185 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 2186 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 2187 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 2188 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 2189 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 2190 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 2191 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 2192 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 2193 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 2194 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 2195 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 2196 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 2197 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 2198 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ 2199 2200 /* 2201 * Only the _current_ task can read/write to tsk->flags, but other 2202 * tasks can access tsk->flags in readonly mode for example 2203 * with tsk_used_math (like during threaded core dumping). 2204 * There is however an exception to this rule during ptrace 2205 * or during fork: the ptracer task is allowed to write to the 2206 * child->flags of its traced child (same goes for fork, the parent 2207 * can write to the child->flags), because we're guaranteed the 2208 * child is not running and in turn not changing child->flags 2209 * at the same time the parent does it. 2210 */ 2211 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 2212 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 2213 #define clear_used_math() clear_stopped_child_used_math(current) 2214 #define set_used_math() set_stopped_child_used_math(current) 2215 #define conditional_stopped_child_used_math(condition, child) \ 2216 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 2217 #define conditional_used_math(condition) \ 2218 conditional_stopped_child_used_math(condition, current) 2219 #define copy_to_stopped_child_used_math(child) \ 2220 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 2221 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 2222 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 2223 #define used_math() tsk_used_math(current) 2224 2225 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags 2226 * __GFP_FS is also cleared as it implies __GFP_IO. 2227 */ 2228 static inline gfp_t memalloc_noio_flags(gfp_t flags) 2229 { 2230 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 2231 flags &= ~(__GFP_IO | __GFP_FS); 2232 return flags; 2233 } 2234 2235 static inline unsigned int memalloc_noio_save(void) 2236 { 2237 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 2238 current->flags |= PF_MEMALLOC_NOIO; 2239 return flags; 2240 } 2241 2242 static inline void memalloc_noio_restore(unsigned int flags) 2243 { 2244 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 2245 } 2246 2247 /* Per-process atomic flags. */ 2248 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 2249 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 2250 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 2251 2252 2253 #define TASK_PFA_TEST(name, func) \ 2254 static inline bool task_##func(struct task_struct *p) \ 2255 { return test_bit(PFA_##name, &p->atomic_flags); } 2256 #define TASK_PFA_SET(name, func) \ 2257 static inline void task_set_##func(struct task_struct *p) \ 2258 { set_bit(PFA_##name, &p->atomic_flags); } 2259 #define TASK_PFA_CLEAR(name, func) \ 2260 static inline void task_clear_##func(struct task_struct *p) \ 2261 { clear_bit(PFA_##name, &p->atomic_flags); } 2262 2263 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 2264 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 2265 2266 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 2267 TASK_PFA_SET(SPREAD_PAGE, spread_page) 2268 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 2269 2270 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 2271 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 2272 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 2273 2274 /* 2275 * task->jobctl flags 2276 */ 2277 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 2278 2279 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 2280 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 2281 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 2282 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 2283 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 2284 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 2285 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 2286 2287 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT) 2288 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT) 2289 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT) 2290 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT) 2291 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT) 2292 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT) 2293 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT) 2294 2295 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 2296 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 2297 2298 extern bool task_set_jobctl_pending(struct task_struct *task, 2299 unsigned long mask); 2300 extern void task_clear_jobctl_trapping(struct task_struct *task); 2301 extern void task_clear_jobctl_pending(struct task_struct *task, 2302 unsigned long mask); 2303 2304 static inline void rcu_copy_process(struct task_struct *p) 2305 { 2306 #ifdef CONFIG_PREEMPT_RCU 2307 p->rcu_read_lock_nesting = 0; 2308 p->rcu_read_unlock_special.s = 0; 2309 p->rcu_blocked_node = NULL; 2310 INIT_LIST_HEAD(&p->rcu_node_entry); 2311 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 2312 #ifdef CONFIG_TASKS_RCU 2313 p->rcu_tasks_holdout = false; 2314 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 2315 p->rcu_tasks_idle_cpu = -1; 2316 #endif /* #ifdef CONFIG_TASKS_RCU */ 2317 } 2318 2319 static inline void tsk_restore_flags(struct task_struct *task, 2320 unsigned long orig_flags, unsigned long flags) 2321 { 2322 task->flags &= ~flags; 2323 task->flags |= orig_flags & flags; 2324 } 2325 2326 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, 2327 const struct cpumask *trial); 2328 extern int task_can_attach(struct task_struct *p, 2329 const struct cpumask *cs_cpus_allowed); 2330 #ifdef CONFIG_SMP 2331 extern void do_set_cpus_allowed(struct task_struct *p, 2332 const struct cpumask *new_mask); 2333 2334 extern int set_cpus_allowed_ptr(struct task_struct *p, 2335 const struct cpumask *new_mask); 2336 #else 2337 static inline void do_set_cpus_allowed(struct task_struct *p, 2338 const struct cpumask *new_mask) 2339 { 2340 } 2341 static inline int set_cpus_allowed_ptr(struct task_struct *p, 2342 const struct cpumask *new_mask) 2343 { 2344 if (!cpumask_test_cpu(0, new_mask)) 2345 return -EINVAL; 2346 return 0; 2347 } 2348 #endif 2349 2350 #ifdef CONFIG_NO_HZ_COMMON 2351 void calc_load_enter_idle(void); 2352 void calc_load_exit_idle(void); 2353 #else 2354 static inline void calc_load_enter_idle(void) { } 2355 static inline void calc_load_exit_idle(void) { } 2356 #endif /* CONFIG_NO_HZ_COMMON */ 2357 2358 /* 2359 * Do not use outside of architecture code which knows its limitations. 2360 * 2361 * sched_clock() has no promise of monotonicity or bounded drift between 2362 * CPUs, use (which you should not) requires disabling IRQs. 2363 * 2364 * Please use one of the three interfaces below. 2365 */ 2366 extern unsigned long long notrace sched_clock(void); 2367 /* 2368 * See the comment in kernel/sched/clock.c 2369 */ 2370 extern u64 running_clock(void); 2371 extern u64 sched_clock_cpu(int cpu); 2372 2373 2374 extern void sched_clock_init(void); 2375 2376 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2377 static inline void sched_clock_tick(void) 2378 { 2379 } 2380 2381 static inline void sched_clock_idle_sleep_event(void) 2382 { 2383 } 2384 2385 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 2386 { 2387 } 2388 2389 static inline u64 cpu_clock(int cpu) 2390 { 2391 return sched_clock(); 2392 } 2393 2394 static inline u64 local_clock(void) 2395 { 2396 return sched_clock(); 2397 } 2398 #else 2399 /* 2400 * Architectures can set this to 1 if they have specified 2401 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 2402 * but then during bootup it turns out that sched_clock() 2403 * is reliable after all: 2404 */ 2405 extern int sched_clock_stable(void); 2406 extern void set_sched_clock_stable(void); 2407 extern void clear_sched_clock_stable(void); 2408 2409 extern void sched_clock_tick(void); 2410 extern void sched_clock_idle_sleep_event(void); 2411 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2412 2413 /* 2414 * As outlined in clock.c, provides a fast, high resolution, nanosecond 2415 * time source that is monotonic per cpu argument and has bounded drift 2416 * between cpus. 2417 * 2418 * ######################### BIG FAT WARNING ########################## 2419 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can # 2420 * # go backwards !! # 2421 * #################################################################### 2422 */ 2423 static inline u64 cpu_clock(int cpu) 2424 { 2425 return sched_clock_cpu(cpu); 2426 } 2427 2428 static inline u64 local_clock(void) 2429 { 2430 return sched_clock_cpu(raw_smp_processor_id()); 2431 } 2432 #endif 2433 2434 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2435 /* 2436 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 2437 * The reason for this explicit opt-in is not to have perf penalty with 2438 * slow sched_clocks. 2439 */ 2440 extern void enable_sched_clock_irqtime(void); 2441 extern void disable_sched_clock_irqtime(void); 2442 #else 2443 static inline void enable_sched_clock_irqtime(void) {} 2444 static inline void disable_sched_clock_irqtime(void) {} 2445 #endif 2446 2447 extern unsigned long long 2448 task_sched_runtime(struct task_struct *task); 2449 2450 /* sched_exec is called by processes performing an exec */ 2451 #ifdef CONFIG_SMP 2452 extern void sched_exec(void); 2453 #else 2454 #define sched_exec() {} 2455 #endif 2456 2457 extern void sched_clock_idle_sleep_event(void); 2458 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2459 2460 #ifdef CONFIG_HOTPLUG_CPU 2461 extern void idle_task_exit(void); 2462 #else 2463 static inline void idle_task_exit(void) {} 2464 #endif 2465 2466 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 2467 extern void wake_up_nohz_cpu(int cpu); 2468 #else 2469 static inline void wake_up_nohz_cpu(int cpu) { } 2470 #endif 2471 2472 #ifdef CONFIG_NO_HZ_FULL 2473 extern u64 scheduler_tick_max_deferment(void); 2474 #endif 2475 2476 #ifdef CONFIG_SCHED_AUTOGROUP 2477 extern void sched_autogroup_create_attach(struct task_struct *p); 2478 extern void sched_autogroup_detach(struct task_struct *p); 2479 extern void sched_autogroup_fork(struct signal_struct *sig); 2480 extern void sched_autogroup_exit(struct signal_struct *sig); 2481 #ifdef CONFIG_PROC_FS 2482 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2483 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2484 #endif 2485 #else 2486 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2487 static inline void sched_autogroup_detach(struct task_struct *p) { } 2488 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2489 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2490 #endif 2491 2492 extern int yield_to(struct task_struct *p, bool preempt); 2493 extern void set_user_nice(struct task_struct *p, long nice); 2494 extern int task_prio(const struct task_struct *p); 2495 /** 2496 * task_nice - return the nice value of a given task. 2497 * @p: the task in question. 2498 * 2499 * Return: The nice value [ -20 ... 0 ... 19 ]. 2500 */ 2501 static inline int task_nice(const struct task_struct *p) 2502 { 2503 return PRIO_TO_NICE((p)->static_prio); 2504 } 2505 extern int can_nice(const struct task_struct *p, const int nice); 2506 extern int task_curr(const struct task_struct *p); 2507 extern int idle_cpu(int cpu); 2508 extern int sched_setscheduler(struct task_struct *, int, 2509 const struct sched_param *); 2510 extern int sched_setscheduler_nocheck(struct task_struct *, int, 2511 const struct sched_param *); 2512 extern int sched_setattr(struct task_struct *, 2513 const struct sched_attr *); 2514 extern struct task_struct *idle_task(int cpu); 2515 /** 2516 * is_idle_task - is the specified task an idle task? 2517 * @p: the task in question. 2518 * 2519 * Return: 1 if @p is an idle task. 0 otherwise. 2520 */ 2521 static inline bool is_idle_task(const struct task_struct *p) 2522 { 2523 return p->pid == 0; 2524 } 2525 extern struct task_struct *curr_task(int cpu); 2526 extern void set_curr_task(int cpu, struct task_struct *p); 2527 2528 void yield(void); 2529 2530 union thread_union { 2531 struct thread_info thread_info; 2532 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2533 }; 2534 2535 #ifndef __HAVE_ARCH_KSTACK_END 2536 static inline int kstack_end(void *addr) 2537 { 2538 /* Reliable end of stack detection: 2539 * Some APM bios versions misalign the stack 2540 */ 2541 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2542 } 2543 #endif 2544 2545 extern union thread_union init_thread_union; 2546 extern struct task_struct init_task; 2547 2548 extern struct mm_struct init_mm; 2549 2550 extern struct pid_namespace init_pid_ns; 2551 2552 /* 2553 * find a task by one of its numerical ids 2554 * 2555 * find_task_by_pid_ns(): 2556 * finds a task by its pid in the specified namespace 2557 * find_task_by_vpid(): 2558 * finds a task by its virtual pid 2559 * 2560 * see also find_vpid() etc in include/linux/pid.h 2561 */ 2562 2563 extern struct task_struct *find_task_by_vpid(pid_t nr); 2564 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2565 struct pid_namespace *ns); 2566 2567 /* per-UID process charging. */ 2568 extern struct user_struct * alloc_uid(kuid_t); 2569 static inline struct user_struct *get_uid(struct user_struct *u) 2570 { 2571 atomic_inc(&u->__count); 2572 return u; 2573 } 2574 extern void free_uid(struct user_struct *); 2575 2576 #include <asm/current.h> 2577 2578 extern void xtime_update(unsigned long ticks); 2579 2580 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2581 extern int wake_up_process(struct task_struct *tsk); 2582 extern void wake_up_new_task(struct task_struct *tsk); 2583 #ifdef CONFIG_SMP 2584 extern void kick_process(struct task_struct *tsk); 2585 #else 2586 static inline void kick_process(struct task_struct *tsk) { } 2587 #endif 2588 extern int sched_fork(unsigned long clone_flags, struct task_struct *p); 2589 extern void sched_dead(struct task_struct *p); 2590 2591 extern void proc_caches_init(void); 2592 extern void flush_signals(struct task_struct *); 2593 extern void ignore_signals(struct task_struct *); 2594 extern void flush_signal_handlers(struct task_struct *, int force_default); 2595 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2596 2597 static inline int kernel_dequeue_signal(siginfo_t *info) 2598 { 2599 struct task_struct *tsk = current; 2600 siginfo_t __info; 2601 int ret; 2602 2603 spin_lock_irq(&tsk->sighand->siglock); 2604 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info); 2605 spin_unlock_irq(&tsk->sighand->siglock); 2606 2607 return ret; 2608 } 2609 2610 static inline void kernel_signal_stop(void) 2611 { 2612 spin_lock_irq(¤t->sighand->siglock); 2613 if (current->jobctl & JOBCTL_STOP_DEQUEUED) 2614 __set_current_state(TASK_STOPPED); 2615 spin_unlock_irq(¤t->sighand->siglock); 2616 2617 schedule(); 2618 } 2619 2620 extern void release_task(struct task_struct * p); 2621 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2622 extern int force_sigsegv(int, struct task_struct *); 2623 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2624 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2625 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2626 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2627 const struct cred *, u32); 2628 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2629 extern int kill_pid(struct pid *pid, int sig, int priv); 2630 extern int kill_proc_info(int, struct siginfo *, pid_t); 2631 extern __must_check bool do_notify_parent(struct task_struct *, int); 2632 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2633 extern void force_sig(int, struct task_struct *); 2634 extern int send_sig(int, struct task_struct *, int); 2635 extern int zap_other_threads(struct task_struct *p); 2636 extern struct sigqueue *sigqueue_alloc(void); 2637 extern void sigqueue_free(struct sigqueue *); 2638 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2639 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2640 2641 static inline void restore_saved_sigmask(void) 2642 { 2643 if (test_and_clear_restore_sigmask()) 2644 __set_current_blocked(¤t->saved_sigmask); 2645 } 2646 2647 static inline sigset_t *sigmask_to_save(void) 2648 { 2649 sigset_t *res = ¤t->blocked; 2650 if (unlikely(test_restore_sigmask())) 2651 res = ¤t->saved_sigmask; 2652 return res; 2653 } 2654 2655 static inline int kill_cad_pid(int sig, int priv) 2656 { 2657 return kill_pid(cad_pid, sig, priv); 2658 } 2659 2660 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2661 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2662 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2663 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2664 2665 /* 2666 * True if we are on the alternate signal stack. 2667 */ 2668 static inline int on_sig_stack(unsigned long sp) 2669 { 2670 /* 2671 * If the signal stack is SS_AUTODISARM then, by construction, we 2672 * can't be on the signal stack unless user code deliberately set 2673 * SS_AUTODISARM when we were already on it. 2674 * 2675 * This improves reliability: if user state gets corrupted such that 2676 * the stack pointer points very close to the end of the signal stack, 2677 * then this check will enable the signal to be handled anyway. 2678 */ 2679 if (current->sas_ss_flags & SS_AUTODISARM) 2680 return 0; 2681 2682 #ifdef CONFIG_STACK_GROWSUP 2683 return sp >= current->sas_ss_sp && 2684 sp - current->sas_ss_sp < current->sas_ss_size; 2685 #else 2686 return sp > current->sas_ss_sp && 2687 sp - current->sas_ss_sp <= current->sas_ss_size; 2688 #endif 2689 } 2690 2691 static inline int sas_ss_flags(unsigned long sp) 2692 { 2693 if (!current->sas_ss_size) 2694 return SS_DISABLE; 2695 2696 return on_sig_stack(sp) ? SS_ONSTACK : 0; 2697 } 2698 2699 static inline void sas_ss_reset(struct task_struct *p) 2700 { 2701 p->sas_ss_sp = 0; 2702 p->sas_ss_size = 0; 2703 p->sas_ss_flags = SS_DISABLE; 2704 } 2705 2706 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2707 { 2708 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2709 #ifdef CONFIG_STACK_GROWSUP 2710 return current->sas_ss_sp; 2711 #else 2712 return current->sas_ss_sp + current->sas_ss_size; 2713 #endif 2714 return sp; 2715 } 2716 2717 /* 2718 * Routines for handling mm_structs 2719 */ 2720 extern struct mm_struct * mm_alloc(void); 2721 2722 /* mmdrop drops the mm and the page tables */ 2723 extern void __mmdrop(struct mm_struct *); 2724 static inline void mmdrop(struct mm_struct * mm) 2725 { 2726 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2727 __mmdrop(mm); 2728 } 2729 2730 /* mmput gets rid of the mappings and all user-space */ 2731 extern void mmput(struct mm_struct *); 2732 /* Grab a reference to a task's mm, if it is not already going away */ 2733 extern struct mm_struct *get_task_mm(struct task_struct *task); 2734 /* 2735 * Grab a reference to a task's mm, if it is not already going away 2736 * and ptrace_may_access with the mode parameter passed to it 2737 * succeeds. 2738 */ 2739 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2740 /* Remove the current tasks stale references to the old mm_struct */ 2741 extern void mm_release(struct task_struct *, struct mm_struct *); 2742 2743 #ifdef CONFIG_HAVE_COPY_THREAD_TLS 2744 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long, 2745 struct task_struct *, unsigned long); 2746 #else 2747 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2748 struct task_struct *); 2749 2750 /* Architectures that haven't opted into copy_thread_tls get the tls argument 2751 * via pt_regs, so ignore the tls argument passed via C. */ 2752 static inline int copy_thread_tls( 2753 unsigned long clone_flags, unsigned long sp, unsigned long arg, 2754 struct task_struct *p, unsigned long tls) 2755 { 2756 return copy_thread(clone_flags, sp, arg, p); 2757 } 2758 #endif 2759 extern void flush_thread(void); 2760 extern void exit_thread(void); 2761 2762 extern void exit_files(struct task_struct *); 2763 extern void __cleanup_sighand(struct sighand_struct *); 2764 2765 extern void exit_itimers(struct signal_struct *); 2766 extern void flush_itimer_signals(void); 2767 2768 extern void do_group_exit(int); 2769 2770 extern int do_execve(struct filename *, 2771 const char __user * const __user *, 2772 const char __user * const __user *); 2773 extern int do_execveat(int, struct filename *, 2774 const char __user * const __user *, 2775 const char __user * const __user *, 2776 int); 2777 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long); 2778 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2779 struct task_struct *fork_idle(int); 2780 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2781 2782 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 2783 static inline void set_task_comm(struct task_struct *tsk, const char *from) 2784 { 2785 __set_task_comm(tsk, from, false); 2786 } 2787 extern char *get_task_comm(char *to, struct task_struct *tsk); 2788 2789 #ifdef CONFIG_SMP 2790 void scheduler_ipi(void); 2791 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2792 #else 2793 static inline void scheduler_ipi(void) { } 2794 static inline unsigned long wait_task_inactive(struct task_struct *p, 2795 long match_state) 2796 { 2797 return 1; 2798 } 2799 #endif 2800 2801 #define tasklist_empty() \ 2802 list_empty(&init_task.tasks) 2803 2804 #define next_task(p) \ 2805 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2806 2807 #define for_each_process(p) \ 2808 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2809 2810 extern bool current_is_single_threaded(void); 2811 2812 /* 2813 * Careful: do_each_thread/while_each_thread is a double loop so 2814 * 'break' will not work as expected - use goto instead. 2815 */ 2816 #define do_each_thread(g, t) \ 2817 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2818 2819 #define while_each_thread(g, t) \ 2820 while ((t = next_thread(t)) != g) 2821 2822 #define __for_each_thread(signal, t) \ 2823 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 2824 2825 #define for_each_thread(p, t) \ 2826 __for_each_thread((p)->signal, t) 2827 2828 /* Careful: this is a double loop, 'break' won't work as expected. */ 2829 #define for_each_process_thread(p, t) \ 2830 for_each_process(p) for_each_thread(p, t) 2831 2832 static inline int get_nr_threads(struct task_struct *tsk) 2833 { 2834 return tsk->signal->nr_threads; 2835 } 2836 2837 static inline bool thread_group_leader(struct task_struct *p) 2838 { 2839 return p->exit_signal >= 0; 2840 } 2841 2842 /* Do to the insanities of de_thread it is possible for a process 2843 * to have the pid of the thread group leader without actually being 2844 * the thread group leader. For iteration through the pids in proc 2845 * all we care about is that we have a task with the appropriate 2846 * pid, we don't actually care if we have the right task. 2847 */ 2848 static inline bool has_group_leader_pid(struct task_struct *p) 2849 { 2850 return task_pid(p) == p->signal->leader_pid; 2851 } 2852 2853 static inline 2854 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 2855 { 2856 return p1->signal == p2->signal; 2857 } 2858 2859 static inline struct task_struct *next_thread(const struct task_struct *p) 2860 { 2861 return list_entry_rcu(p->thread_group.next, 2862 struct task_struct, thread_group); 2863 } 2864 2865 static inline int thread_group_empty(struct task_struct *p) 2866 { 2867 return list_empty(&p->thread_group); 2868 } 2869 2870 #define delay_group_leader(p) \ 2871 (thread_group_leader(p) && !thread_group_empty(p)) 2872 2873 /* 2874 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2875 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2876 * pins the final release of task.io_context. Also protects ->cpuset and 2877 * ->cgroup.subsys[]. And ->vfork_done. 2878 * 2879 * Nests both inside and outside of read_lock(&tasklist_lock). 2880 * It must not be nested with write_lock_irq(&tasklist_lock), 2881 * neither inside nor outside. 2882 */ 2883 static inline void task_lock(struct task_struct *p) 2884 { 2885 spin_lock(&p->alloc_lock); 2886 } 2887 2888 static inline void task_unlock(struct task_struct *p) 2889 { 2890 spin_unlock(&p->alloc_lock); 2891 } 2892 2893 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2894 unsigned long *flags); 2895 2896 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2897 unsigned long *flags) 2898 { 2899 struct sighand_struct *ret; 2900 2901 ret = __lock_task_sighand(tsk, flags); 2902 (void)__cond_lock(&tsk->sighand->siglock, ret); 2903 return ret; 2904 } 2905 2906 static inline void unlock_task_sighand(struct task_struct *tsk, 2907 unsigned long *flags) 2908 { 2909 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2910 } 2911 2912 /** 2913 * threadgroup_change_begin - mark the beginning of changes to a threadgroup 2914 * @tsk: task causing the changes 2915 * 2916 * All operations which modify a threadgroup - a new thread joining the 2917 * group, death of a member thread (the assertion of PF_EXITING) and 2918 * exec(2) dethreading the process and replacing the leader - are wrapped 2919 * by threadgroup_change_{begin|end}(). This is to provide a place which 2920 * subsystems needing threadgroup stability can hook into for 2921 * synchronization. 2922 */ 2923 static inline void threadgroup_change_begin(struct task_struct *tsk) 2924 { 2925 might_sleep(); 2926 cgroup_threadgroup_change_begin(tsk); 2927 } 2928 2929 /** 2930 * threadgroup_change_end - mark the end of changes to a threadgroup 2931 * @tsk: task causing the changes 2932 * 2933 * See threadgroup_change_begin(). 2934 */ 2935 static inline void threadgroup_change_end(struct task_struct *tsk) 2936 { 2937 cgroup_threadgroup_change_end(tsk); 2938 } 2939 2940 #ifndef __HAVE_THREAD_FUNCTIONS 2941 2942 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2943 #define task_stack_page(task) ((task)->stack) 2944 2945 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2946 { 2947 *task_thread_info(p) = *task_thread_info(org); 2948 task_thread_info(p)->task = p; 2949 } 2950 2951 /* 2952 * Return the address of the last usable long on the stack. 2953 * 2954 * When the stack grows down, this is just above the thread 2955 * info struct. Going any lower will corrupt the threadinfo. 2956 * 2957 * When the stack grows up, this is the highest address. 2958 * Beyond that position, we corrupt data on the next page. 2959 */ 2960 static inline unsigned long *end_of_stack(struct task_struct *p) 2961 { 2962 #ifdef CONFIG_STACK_GROWSUP 2963 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1; 2964 #else 2965 return (unsigned long *)(task_thread_info(p) + 1); 2966 #endif 2967 } 2968 2969 #endif 2970 #define task_stack_end_corrupted(task) \ 2971 (*(end_of_stack(task)) != STACK_END_MAGIC) 2972 2973 static inline int object_is_on_stack(void *obj) 2974 { 2975 void *stack = task_stack_page(current); 2976 2977 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2978 } 2979 2980 extern void thread_info_cache_init(void); 2981 2982 #ifdef CONFIG_DEBUG_STACK_USAGE 2983 static inline unsigned long stack_not_used(struct task_struct *p) 2984 { 2985 unsigned long *n = end_of_stack(p); 2986 2987 do { /* Skip over canary */ 2988 # ifdef CONFIG_STACK_GROWSUP 2989 n--; 2990 # else 2991 n++; 2992 # endif 2993 } while (!*n); 2994 2995 # ifdef CONFIG_STACK_GROWSUP 2996 return (unsigned long)end_of_stack(p) - (unsigned long)n; 2997 # else 2998 return (unsigned long)n - (unsigned long)end_of_stack(p); 2999 # endif 3000 } 3001 #endif 3002 extern void set_task_stack_end_magic(struct task_struct *tsk); 3003 3004 /* set thread flags in other task's structures 3005 * - see asm/thread_info.h for TIF_xxxx flags available 3006 */ 3007 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 3008 { 3009 set_ti_thread_flag(task_thread_info(tsk), flag); 3010 } 3011 3012 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 3013 { 3014 clear_ti_thread_flag(task_thread_info(tsk), flag); 3015 } 3016 3017 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 3018 { 3019 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 3020 } 3021 3022 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 3023 { 3024 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 3025 } 3026 3027 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 3028 { 3029 return test_ti_thread_flag(task_thread_info(tsk), flag); 3030 } 3031 3032 static inline void set_tsk_need_resched(struct task_struct *tsk) 3033 { 3034 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 3035 } 3036 3037 static inline void clear_tsk_need_resched(struct task_struct *tsk) 3038 { 3039 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 3040 } 3041 3042 static inline int test_tsk_need_resched(struct task_struct *tsk) 3043 { 3044 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 3045 } 3046 3047 static inline int restart_syscall(void) 3048 { 3049 set_tsk_thread_flag(current, TIF_SIGPENDING); 3050 return -ERESTARTNOINTR; 3051 } 3052 3053 static inline int signal_pending(struct task_struct *p) 3054 { 3055 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 3056 } 3057 3058 static inline int __fatal_signal_pending(struct task_struct *p) 3059 { 3060 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 3061 } 3062 3063 static inline int fatal_signal_pending(struct task_struct *p) 3064 { 3065 return signal_pending(p) && __fatal_signal_pending(p); 3066 } 3067 3068 static inline int signal_pending_state(long state, struct task_struct *p) 3069 { 3070 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 3071 return 0; 3072 if (!signal_pending(p)) 3073 return 0; 3074 3075 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 3076 } 3077 3078 /* 3079 * cond_resched() and cond_resched_lock(): latency reduction via 3080 * explicit rescheduling in places that are safe. The return 3081 * value indicates whether a reschedule was done in fact. 3082 * cond_resched_lock() will drop the spinlock before scheduling, 3083 * cond_resched_softirq() will enable bhs before scheduling. 3084 */ 3085 extern int _cond_resched(void); 3086 3087 #define cond_resched() ({ \ 3088 ___might_sleep(__FILE__, __LINE__, 0); \ 3089 _cond_resched(); \ 3090 }) 3091 3092 extern int __cond_resched_lock(spinlock_t *lock); 3093 3094 #define cond_resched_lock(lock) ({ \ 3095 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 3096 __cond_resched_lock(lock); \ 3097 }) 3098 3099 extern int __cond_resched_softirq(void); 3100 3101 #define cond_resched_softirq() ({ \ 3102 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 3103 __cond_resched_softirq(); \ 3104 }) 3105 3106 static inline void cond_resched_rcu(void) 3107 { 3108 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 3109 rcu_read_unlock(); 3110 cond_resched(); 3111 rcu_read_lock(); 3112 #endif 3113 } 3114 3115 /* 3116 * Does a critical section need to be broken due to another 3117 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 3118 * but a general need for low latency) 3119 */ 3120 static inline int spin_needbreak(spinlock_t *lock) 3121 { 3122 #ifdef CONFIG_PREEMPT 3123 return spin_is_contended(lock); 3124 #else 3125 return 0; 3126 #endif 3127 } 3128 3129 /* 3130 * Idle thread specific functions to determine the need_resched 3131 * polling state. 3132 */ 3133 #ifdef TIF_POLLING_NRFLAG 3134 static inline int tsk_is_polling(struct task_struct *p) 3135 { 3136 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 3137 } 3138 3139 static inline void __current_set_polling(void) 3140 { 3141 set_thread_flag(TIF_POLLING_NRFLAG); 3142 } 3143 3144 static inline bool __must_check current_set_polling_and_test(void) 3145 { 3146 __current_set_polling(); 3147 3148 /* 3149 * Polling state must be visible before we test NEED_RESCHED, 3150 * paired by resched_curr() 3151 */ 3152 smp_mb__after_atomic(); 3153 3154 return unlikely(tif_need_resched()); 3155 } 3156 3157 static inline void __current_clr_polling(void) 3158 { 3159 clear_thread_flag(TIF_POLLING_NRFLAG); 3160 } 3161 3162 static inline bool __must_check current_clr_polling_and_test(void) 3163 { 3164 __current_clr_polling(); 3165 3166 /* 3167 * Polling state must be visible before we test NEED_RESCHED, 3168 * paired by resched_curr() 3169 */ 3170 smp_mb__after_atomic(); 3171 3172 return unlikely(tif_need_resched()); 3173 } 3174 3175 #else 3176 static inline int tsk_is_polling(struct task_struct *p) { return 0; } 3177 static inline void __current_set_polling(void) { } 3178 static inline void __current_clr_polling(void) { } 3179 3180 static inline bool __must_check current_set_polling_and_test(void) 3181 { 3182 return unlikely(tif_need_resched()); 3183 } 3184 static inline bool __must_check current_clr_polling_and_test(void) 3185 { 3186 return unlikely(tif_need_resched()); 3187 } 3188 #endif 3189 3190 static inline void current_clr_polling(void) 3191 { 3192 __current_clr_polling(); 3193 3194 /* 3195 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit. 3196 * Once the bit is cleared, we'll get IPIs with every new 3197 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also 3198 * fold. 3199 */ 3200 smp_mb(); /* paired with resched_curr() */ 3201 3202 preempt_fold_need_resched(); 3203 } 3204 3205 static __always_inline bool need_resched(void) 3206 { 3207 return unlikely(tif_need_resched()); 3208 } 3209 3210 /* 3211 * Thread group CPU time accounting. 3212 */ 3213 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 3214 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 3215 3216 /* 3217 * Reevaluate whether the task has signals pending delivery. 3218 * Wake the task if so. 3219 * This is required every time the blocked sigset_t changes. 3220 * callers must hold sighand->siglock. 3221 */ 3222 extern void recalc_sigpending_and_wake(struct task_struct *t); 3223 extern void recalc_sigpending(void); 3224 3225 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 3226 3227 static inline void signal_wake_up(struct task_struct *t, bool resume) 3228 { 3229 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 3230 } 3231 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 3232 { 3233 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 3234 } 3235 3236 /* 3237 * Wrappers for p->thread_info->cpu access. No-op on UP. 3238 */ 3239 #ifdef CONFIG_SMP 3240 3241 static inline unsigned int task_cpu(const struct task_struct *p) 3242 { 3243 return task_thread_info(p)->cpu; 3244 } 3245 3246 static inline int task_node(const struct task_struct *p) 3247 { 3248 return cpu_to_node(task_cpu(p)); 3249 } 3250 3251 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 3252 3253 #else 3254 3255 static inline unsigned int task_cpu(const struct task_struct *p) 3256 { 3257 return 0; 3258 } 3259 3260 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 3261 { 3262 } 3263 3264 #endif /* CONFIG_SMP */ 3265 3266 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 3267 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 3268 3269 #ifdef CONFIG_CGROUP_SCHED 3270 extern struct task_group root_task_group; 3271 #endif /* CONFIG_CGROUP_SCHED */ 3272 3273 extern int task_can_switch_user(struct user_struct *up, 3274 struct task_struct *tsk); 3275 3276 #ifdef CONFIG_TASK_XACCT 3277 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3278 { 3279 tsk->ioac.rchar += amt; 3280 } 3281 3282 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3283 { 3284 tsk->ioac.wchar += amt; 3285 } 3286 3287 static inline void inc_syscr(struct task_struct *tsk) 3288 { 3289 tsk->ioac.syscr++; 3290 } 3291 3292 static inline void inc_syscw(struct task_struct *tsk) 3293 { 3294 tsk->ioac.syscw++; 3295 } 3296 #else 3297 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3298 { 3299 } 3300 3301 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3302 { 3303 } 3304 3305 static inline void inc_syscr(struct task_struct *tsk) 3306 { 3307 } 3308 3309 static inline void inc_syscw(struct task_struct *tsk) 3310 { 3311 } 3312 #endif 3313 3314 #ifndef TASK_SIZE_OF 3315 #define TASK_SIZE_OF(tsk) TASK_SIZE 3316 #endif 3317 3318 #ifdef CONFIG_MEMCG 3319 extern void mm_update_next_owner(struct mm_struct *mm); 3320 #else 3321 static inline void mm_update_next_owner(struct mm_struct *mm) 3322 { 3323 } 3324 #endif /* CONFIG_MEMCG */ 3325 3326 static inline unsigned long task_rlimit(const struct task_struct *tsk, 3327 unsigned int limit) 3328 { 3329 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur); 3330 } 3331 3332 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 3333 unsigned int limit) 3334 { 3335 return READ_ONCE(tsk->signal->rlim[limit].rlim_max); 3336 } 3337 3338 static inline unsigned long rlimit(unsigned int limit) 3339 { 3340 return task_rlimit(current, limit); 3341 } 3342 3343 static inline unsigned long rlimit_max(unsigned int limit) 3344 { 3345 return task_rlimit_max(current, limit); 3346 } 3347 3348 #ifdef CONFIG_CPU_FREQ 3349 struct update_util_data { 3350 void (*func)(struct update_util_data *data, 3351 u64 time, unsigned long util, unsigned long max); 3352 }; 3353 3354 void cpufreq_set_update_util_data(int cpu, struct update_util_data *data); 3355 #endif /* CONFIG_CPU_FREQ */ 3356 3357 #endif 3358