xref: /linux-6.15/include/linux/sched.h (revision 258e4bfc)
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3 
4 #include <uapi/linux/sched.h>
5 
6 #include <linux/sched/prio.h>
7 
8 
9 struct sched_param {
10 	int sched_priority;
11 };
12 
13 #include <asm/param.h>	/* for HZ */
14 
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt.h>
29 
30 #include <asm/page.h>
31 #include <asm/ptrace.h>
32 #include <linux/cputime.h>
33 
34 #include <linux/smp.h>
35 #include <linux/sem.h>
36 #include <linux/shm.h>
37 #include <linux/signal.h>
38 #include <linux/compiler.h>
39 #include <linux/completion.h>
40 #include <linux/pid.h>
41 #include <linux/percpu.h>
42 #include <linux/topology.h>
43 #include <linux/seccomp.h>
44 #include <linux/rcupdate.h>
45 #include <linux/rculist.h>
46 #include <linux/rtmutex.h>
47 
48 #include <linux/time.h>
49 #include <linux/param.h>
50 #include <linux/resource.h>
51 #include <linux/timer.h>
52 #include <linux/hrtimer.h>
53 #include <linux/kcov.h>
54 #include <linux/task_io_accounting.h>
55 #include <linux/latencytop.h>
56 #include <linux/cred.h>
57 #include <linux/llist.h>
58 #include <linux/uidgid.h>
59 #include <linux/gfp.h>
60 #include <linux/magic.h>
61 #include <linux/cgroup-defs.h>
62 
63 #include <asm/processor.h>
64 
65 #define SCHED_ATTR_SIZE_VER0	48	/* sizeof first published struct */
66 
67 /*
68  * Extended scheduling parameters data structure.
69  *
70  * This is needed because the original struct sched_param can not be
71  * altered without introducing ABI issues with legacy applications
72  * (e.g., in sched_getparam()).
73  *
74  * However, the possibility of specifying more than just a priority for
75  * the tasks may be useful for a wide variety of application fields, e.g.,
76  * multimedia, streaming, automation and control, and many others.
77  *
78  * This variant (sched_attr) is meant at describing a so-called
79  * sporadic time-constrained task. In such model a task is specified by:
80  *  - the activation period or minimum instance inter-arrival time;
81  *  - the maximum (or average, depending on the actual scheduling
82  *    discipline) computation time of all instances, a.k.a. runtime;
83  *  - the deadline (relative to the actual activation time) of each
84  *    instance.
85  * Very briefly, a periodic (sporadic) task asks for the execution of
86  * some specific computation --which is typically called an instance--
87  * (at most) every period. Moreover, each instance typically lasts no more
88  * than the runtime and must be completed by time instant t equal to
89  * the instance activation time + the deadline.
90  *
91  * This is reflected by the actual fields of the sched_attr structure:
92  *
93  *  @size		size of the structure, for fwd/bwd compat.
94  *
95  *  @sched_policy	task's scheduling policy
96  *  @sched_flags	for customizing the scheduler behaviour
97  *  @sched_nice		task's nice value      (SCHED_NORMAL/BATCH)
98  *  @sched_priority	task's static priority (SCHED_FIFO/RR)
99  *  @sched_deadline	representative of the task's deadline
100  *  @sched_runtime	representative of the task's runtime
101  *  @sched_period	representative of the task's period
102  *
103  * Given this task model, there are a multiplicity of scheduling algorithms
104  * and policies, that can be used to ensure all the tasks will make their
105  * timing constraints.
106  *
107  * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108  * only user of this new interface. More information about the algorithm
109  * available in the scheduling class file or in Documentation/.
110  */
111 struct sched_attr {
112 	u32 size;
113 
114 	u32 sched_policy;
115 	u64 sched_flags;
116 
117 	/* SCHED_NORMAL, SCHED_BATCH */
118 	s32 sched_nice;
119 
120 	/* SCHED_FIFO, SCHED_RR */
121 	u32 sched_priority;
122 
123 	/* SCHED_DEADLINE */
124 	u64 sched_runtime;
125 	u64 sched_deadline;
126 	u64 sched_period;
127 };
128 
129 struct futex_pi_state;
130 struct robust_list_head;
131 struct bio_list;
132 struct fs_struct;
133 struct perf_event_context;
134 struct blk_plug;
135 struct filename;
136 struct nameidata;
137 
138 #define VMACACHE_BITS 2
139 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
140 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
141 
142 /*
143  * These are the constant used to fake the fixed-point load-average
144  * counting. Some notes:
145  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
146  *    a load-average precision of 10 bits integer + 11 bits fractional
147  *  - if you want to count load-averages more often, you need more
148  *    precision, or rounding will get you. With 2-second counting freq,
149  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
150  *    11 bit fractions.
151  */
152 extern unsigned long avenrun[];		/* Load averages */
153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
154 
155 #define FSHIFT		11		/* nr of bits of precision */
156 #define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
157 #define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
158 #define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
159 #define EXP_5		2014		/* 1/exp(5sec/5min) */
160 #define EXP_15		2037		/* 1/exp(5sec/15min) */
161 
162 #define CALC_LOAD(load,exp,n) \
163 	load *= exp; \
164 	load += n*(FIXED_1-exp); \
165 	load >>= FSHIFT;
166 
167 extern unsigned long total_forks;
168 extern int nr_threads;
169 DECLARE_PER_CPU(unsigned long, process_counts);
170 extern int nr_processes(void);
171 extern unsigned long nr_running(void);
172 extern bool single_task_running(void);
173 extern unsigned long nr_iowait(void);
174 extern unsigned long nr_iowait_cpu(int cpu);
175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
176 
177 extern void calc_global_load(unsigned long ticks);
178 
179 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
180 extern void cpu_load_update_nohz_start(void);
181 extern void cpu_load_update_nohz_stop(void);
182 #else
183 static inline void cpu_load_update_nohz_start(void) { }
184 static inline void cpu_load_update_nohz_stop(void) { }
185 #endif
186 
187 extern void dump_cpu_task(int cpu);
188 
189 struct seq_file;
190 struct cfs_rq;
191 struct task_group;
192 #ifdef CONFIG_SCHED_DEBUG
193 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194 extern void proc_sched_set_task(struct task_struct *p);
195 #endif
196 
197 /*
198  * Task state bitmask. NOTE! These bits are also
199  * encoded in fs/proc/array.c: get_task_state().
200  *
201  * We have two separate sets of flags: task->state
202  * is about runnability, while task->exit_state are
203  * about the task exiting. Confusing, but this way
204  * modifying one set can't modify the other one by
205  * mistake.
206  */
207 #define TASK_RUNNING		0
208 #define TASK_INTERRUPTIBLE	1
209 #define TASK_UNINTERRUPTIBLE	2
210 #define __TASK_STOPPED		4
211 #define __TASK_TRACED		8
212 /* in tsk->exit_state */
213 #define EXIT_DEAD		16
214 #define EXIT_ZOMBIE		32
215 #define EXIT_TRACE		(EXIT_ZOMBIE | EXIT_DEAD)
216 /* in tsk->state again */
217 #define TASK_DEAD		64
218 #define TASK_WAKEKILL		128
219 #define TASK_WAKING		256
220 #define TASK_PARKED		512
221 #define TASK_NOLOAD		1024
222 #define TASK_STATE_MAX		2048
223 
224 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
225 
226 extern char ___assert_task_state[1 - 2*!!(
227 		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
228 
229 /* Convenience macros for the sake of set_task_state */
230 #define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
231 #define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
232 #define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
233 
234 #define TASK_IDLE		(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
235 
236 /* Convenience macros for the sake of wake_up */
237 #define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
238 #define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
239 
240 /* get_task_state() */
241 #define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
242 				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
243 				 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
244 
245 #define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
246 #define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
247 #define task_is_stopped_or_traced(task)	\
248 			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
249 #define task_contributes_to_load(task)	\
250 				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
251 				 (task->flags & PF_FROZEN) == 0 && \
252 				 (task->state & TASK_NOLOAD) == 0)
253 
254 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
255 
256 #define __set_task_state(tsk, state_value)			\
257 	do {							\
258 		(tsk)->task_state_change = _THIS_IP_;		\
259 		(tsk)->state = (state_value);			\
260 	} while (0)
261 #define set_task_state(tsk, state_value)			\
262 	do {							\
263 		(tsk)->task_state_change = _THIS_IP_;		\
264 		smp_store_mb((tsk)->state, (state_value));		\
265 	} while (0)
266 
267 /*
268  * set_current_state() includes a barrier so that the write of current->state
269  * is correctly serialised wrt the caller's subsequent test of whether to
270  * actually sleep:
271  *
272  *	set_current_state(TASK_UNINTERRUPTIBLE);
273  *	if (do_i_need_to_sleep())
274  *		schedule();
275  *
276  * If the caller does not need such serialisation then use __set_current_state()
277  */
278 #define __set_current_state(state_value)			\
279 	do {							\
280 		current->task_state_change = _THIS_IP_;		\
281 		current->state = (state_value);			\
282 	} while (0)
283 #define set_current_state(state_value)				\
284 	do {							\
285 		current->task_state_change = _THIS_IP_;		\
286 		smp_store_mb(current->state, (state_value));		\
287 	} while (0)
288 
289 #else
290 
291 #define __set_task_state(tsk, state_value)		\
292 	do { (tsk)->state = (state_value); } while (0)
293 #define set_task_state(tsk, state_value)		\
294 	smp_store_mb((tsk)->state, (state_value))
295 
296 /*
297  * set_current_state() includes a barrier so that the write of current->state
298  * is correctly serialised wrt the caller's subsequent test of whether to
299  * actually sleep:
300  *
301  *	set_current_state(TASK_UNINTERRUPTIBLE);
302  *	if (do_i_need_to_sleep())
303  *		schedule();
304  *
305  * If the caller does not need such serialisation then use __set_current_state()
306  */
307 #define __set_current_state(state_value)		\
308 	do { current->state = (state_value); } while (0)
309 #define set_current_state(state_value)			\
310 	smp_store_mb(current->state, (state_value))
311 
312 #endif
313 
314 /* Task command name length */
315 #define TASK_COMM_LEN 16
316 
317 #include <linux/spinlock.h>
318 
319 /*
320  * This serializes "schedule()" and also protects
321  * the run-queue from deletions/modifications (but
322  * _adding_ to the beginning of the run-queue has
323  * a separate lock).
324  */
325 extern rwlock_t tasklist_lock;
326 extern spinlock_t mmlist_lock;
327 
328 struct task_struct;
329 
330 #ifdef CONFIG_PROVE_RCU
331 extern int lockdep_tasklist_lock_is_held(void);
332 #endif /* #ifdef CONFIG_PROVE_RCU */
333 
334 extern void sched_init(void);
335 extern void sched_init_smp(void);
336 extern asmlinkage void schedule_tail(struct task_struct *prev);
337 extern void init_idle(struct task_struct *idle, int cpu);
338 extern void init_idle_bootup_task(struct task_struct *idle);
339 
340 extern cpumask_var_t cpu_isolated_map;
341 
342 extern int runqueue_is_locked(int cpu);
343 
344 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
345 extern void nohz_balance_enter_idle(int cpu);
346 extern void set_cpu_sd_state_idle(void);
347 extern int get_nohz_timer_target(void);
348 #else
349 static inline void nohz_balance_enter_idle(int cpu) { }
350 static inline void set_cpu_sd_state_idle(void) { }
351 #endif
352 
353 /*
354  * Only dump TASK_* tasks. (0 for all tasks)
355  */
356 extern void show_state_filter(unsigned long state_filter);
357 
358 static inline void show_state(void)
359 {
360 	show_state_filter(0);
361 }
362 
363 extern void show_regs(struct pt_regs *);
364 
365 /*
366  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
367  * task), SP is the stack pointer of the first frame that should be shown in the back
368  * trace (or NULL if the entire call-chain of the task should be shown).
369  */
370 extern void show_stack(struct task_struct *task, unsigned long *sp);
371 
372 extern void cpu_init (void);
373 extern void trap_init(void);
374 extern void update_process_times(int user);
375 extern void scheduler_tick(void);
376 extern int sched_cpu_starting(unsigned int cpu);
377 extern int sched_cpu_activate(unsigned int cpu);
378 extern int sched_cpu_deactivate(unsigned int cpu);
379 
380 #ifdef CONFIG_HOTPLUG_CPU
381 extern int sched_cpu_dying(unsigned int cpu);
382 #else
383 # define sched_cpu_dying	NULL
384 #endif
385 
386 extern void sched_show_task(struct task_struct *p);
387 
388 #ifdef CONFIG_LOCKUP_DETECTOR
389 extern void touch_softlockup_watchdog_sched(void);
390 extern void touch_softlockup_watchdog(void);
391 extern void touch_softlockup_watchdog_sync(void);
392 extern void touch_all_softlockup_watchdogs(void);
393 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
394 				  void __user *buffer,
395 				  size_t *lenp, loff_t *ppos);
396 extern unsigned int  softlockup_panic;
397 extern unsigned int  hardlockup_panic;
398 void lockup_detector_init(void);
399 #else
400 static inline void touch_softlockup_watchdog_sched(void)
401 {
402 }
403 static inline void touch_softlockup_watchdog(void)
404 {
405 }
406 static inline void touch_softlockup_watchdog_sync(void)
407 {
408 }
409 static inline void touch_all_softlockup_watchdogs(void)
410 {
411 }
412 static inline void lockup_detector_init(void)
413 {
414 }
415 #endif
416 
417 #ifdef CONFIG_DETECT_HUNG_TASK
418 void reset_hung_task_detector(void);
419 #else
420 static inline void reset_hung_task_detector(void)
421 {
422 }
423 #endif
424 
425 /* Attach to any functions which should be ignored in wchan output. */
426 #define __sched		__attribute__((__section__(".sched.text")))
427 
428 /* Linker adds these: start and end of __sched functions */
429 extern char __sched_text_start[], __sched_text_end[];
430 
431 /* Is this address in the __sched functions? */
432 extern int in_sched_functions(unsigned long addr);
433 
434 #define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
435 extern signed long schedule_timeout(signed long timeout);
436 extern signed long schedule_timeout_interruptible(signed long timeout);
437 extern signed long schedule_timeout_killable(signed long timeout);
438 extern signed long schedule_timeout_uninterruptible(signed long timeout);
439 extern signed long schedule_timeout_idle(signed long timeout);
440 asmlinkage void schedule(void);
441 extern void schedule_preempt_disabled(void);
442 
443 extern long io_schedule_timeout(long timeout);
444 
445 static inline void io_schedule(void)
446 {
447 	io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
448 }
449 
450 struct nsproxy;
451 struct user_namespace;
452 
453 #ifdef CONFIG_MMU
454 extern void arch_pick_mmap_layout(struct mm_struct *mm);
455 extern unsigned long
456 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
457 		       unsigned long, unsigned long);
458 extern unsigned long
459 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
460 			  unsigned long len, unsigned long pgoff,
461 			  unsigned long flags);
462 #else
463 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
464 #endif
465 
466 #define SUID_DUMP_DISABLE	0	/* No setuid dumping */
467 #define SUID_DUMP_USER		1	/* Dump as user of process */
468 #define SUID_DUMP_ROOT		2	/* Dump as root */
469 
470 /* mm flags */
471 
472 /* for SUID_DUMP_* above */
473 #define MMF_DUMPABLE_BITS 2
474 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
475 
476 extern void set_dumpable(struct mm_struct *mm, int value);
477 /*
478  * This returns the actual value of the suid_dumpable flag. For things
479  * that are using this for checking for privilege transitions, it must
480  * test against SUID_DUMP_USER rather than treating it as a boolean
481  * value.
482  */
483 static inline int __get_dumpable(unsigned long mm_flags)
484 {
485 	return mm_flags & MMF_DUMPABLE_MASK;
486 }
487 
488 static inline int get_dumpable(struct mm_struct *mm)
489 {
490 	return __get_dumpable(mm->flags);
491 }
492 
493 /* coredump filter bits */
494 #define MMF_DUMP_ANON_PRIVATE	2
495 #define MMF_DUMP_ANON_SHARED	3
496 #define MMF_DUMP_MAPPED_PRIVATE	4
497 #define MMF_DUMP_MAPPED_SHARED	5
498 #define MMF_DUMP_ELF_HEADERS	6
499 #define MMF_DUMP_HUGETLB_PRIVATE 7
500 #define MMF_DUMP_HUGETLB_SHARED  8
501 #define MMF_DUMP_DAX_PRIVATE	9
502 #define MMF_DUMP_DAX_SHARED	10
503 
504 #define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
505 #define MMF_DUMP_FILTER_BITS	9
506 #define MMF_DUMP_FILTER_MASK \
507 	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
508 #define MMF_DUMP_FILTER_DEFAULT \
509 	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
510 	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
511 
512 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
513 # define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
514 #else
515 # define MMF_DUMP_MASK_DEFAULT_ELF	0
516 #endif
517 					/* leave room for more dump flags */
518 #define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
519 #define MMF_VM_HUGEPAGE		17	/* set when VM_HUGEPAGE is set on vma */
520 #define MMF_EXE_FILE_CHANGED	18	/* see prctl_set_mm_exe_file() */
521 
522 #define MMF_HAS_UPROBES		19	/* has uprobes */
523 #define MMF_RECALC_UPROBES	20	/* MMF_HAS_UPROBES can be wrong */
524 
525 #define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
526 
527 struct sighand_struct {
528 	atomic_t		count;
529 	struct k_sigaction	action[_NSIG];
530 	spinlock_t		siglock;
531 	wait_queue_head_t	signalfd_wqh;
532 };
533 
534 struct pacct_struct {
535 	int			ac_flag;
536 	long			ac_exitcode;
537 	unsigned long		ac_mem;
538 	cputime_t		ac_utime, ac_stime;
539 	unsigned long		ac_minflt, ac_majflt;
540 };
541 
542 struct cpu_itimer {
543 	cputime_t expires;
544 	cputime_t incr;
545 	u32 error;
546 	u32 incr_error;
547 };
548 
549 /**
550  * struct prev_cputime - snaphsot of system and user cputime
551  * @utime: time spent in user mode
552  * @stime: time spent in system mode
553  * @lock: protects the above two fields
554  *
555  * Stores previous user/system time values such that we can guarantee
556  * monotonicity.
557  */
558 struct prev_cputime {
559 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
560 	cputime_t utime;
561 	cputime_t stime;
562 	raw_spinlock_t lock;
563 #endif
564 };
565 
566 static inline void prev_cputime_init(struct prev_cputime *prev)
567 {
568 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
569 	prev->utime = prev->stime = 0;
570 	raw_spin_lock_init(&prev->lock);
571 #endif
572 }
573 
574 /**
575  * struct task_cputime - collected CPU time counts
576  * @utime:		time spent in user mode, in &cputime_t units
577  * @stime:		time spent in kernel mode, in &cputime_t units
578  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
579  *
580  * This structure groups together three kinds of CPU time that are tracked for
581  * threads and thread groups.  Most things considering CPU time want to group
582  * these counts together and treat all three of them in parallel.
583  */
584 struct task_cputime {
585 	cputime_t utime;
586 	cputime_t stime;
587 	unsigned long long sum_exec_runtime;
588 };
589 
590 /* Alternate field names when used to cache expirations. */
591 #define virt_exp	utime
592 #define prof_exp	stime
593 #define sched_exp	sum_exec_runtime
594 
595 #define INIT_CPUTIME	\
596 	(struct task_cputime) {					\
597 		.utime = 0,					\
598 		.stime = 0,					\
599 		.sum_exec_runtime = 0,				\
600 	}
601 
602 /*
603  * This is the atomic variant of task_cputime, which can be used for
604  * storing and updating task_cputime statistics without locking.
605  */
606 struct task_cputime_atomic {
607 	atomic64_t utime;
608 	atomic64_t stime;
609 	atomic64_t sum_exec_runtime;
610 };
611 
612 #define INIT_CPUTIME_ATOMIC \
613 	(struct task_cputime_atomic) {				\
614 		.utime = ATOMIC64_INIT(0),			\
615 		.stime = ATOMIC64_INIT(0),			\
616 		.sum_exec_runtime = ATOMIC64_INIT(0),		\
617 	}
618 
619 #define PREEMPT_DISABLED	(PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
620 
621 /*
622  * Disable preemption until the scheduler is running -- use an unconditional
623  * value so that it also works on !PREEMPT_COUNT kernels.
624  *
625  * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
626  */
627 #define INIT_PREEMPT_COUNT	PREEMPT_OFFSET
628 
629 /*
630  * Initial preempt_count value; reflects the preempt_count schedule invariant
631  * which states that during context switches:
632  *
633  *    preempt_count() == 2*PREEMPT_DISABLE_OFFSET
634  *
635  * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
636  * Note: See finish_task_switch().
637  */
638 #define FORK_PREEMPT_COUNT	(2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
639 
640 /**
641  * struct thread_group_cputimer - thread group interval timer counts
642  * @cputime_atomic:	atomic thread group interval timers.
643  * @running:		true when there are timers running and
644  *			@cputime_atomic receives updates.
645  * @checking_timer:	true when a thread in the group is in the
646  *			process of checking for thread group timers.
647  *
648  * This structure contains the version of task_cputime, above, that is
649  * used for thread group CPU timer calculations.
650  */
651 struct thread_group_cputimer {
652 	struct task_cputime_atomic cputime_atomic;
653 	bool running;
654 	bool checking_timer;
655 };
656 
657 #include <linux/rwsem.h>
658 struct autogroup;
659 
660 /*
661  * NOTE! "signal_struct" does not have its own
662  * locking, because a shared signal_struct always
663  * implies a shared sighand_struct, so locking
664  * sighand_struct is always a proper superset of
665  * the locking of signal_struct.
666  */
667 struct signal_struct {
668 	atomic_t		sigcnt;
669 	atomic_t		live;
670 	int			nr_threads;
671 	struct list_head	thread_head;
672 
673 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
674 
675 	/* current thread group signal load-balancing target: */
676 	struct task_struct	*curr_target;
677 
678 	/* shared signal handling: */
679 	struct sigpending	shared_pending;
680 
681 	/* thread group exit support */
682 	int			group_exit_code;
683 	/* overloaded:
684 	 * - notify group_exit_task when ->count is equal to notify_count
685 	 * - everyone except group_exit_task is stopped during signal delivery
686 	 *   of fatal signals, group_exit_task processes the signal.
687 	 */
688 	int			notify_count;
689 	struct task_struct	*group_exit_task;
690 
691 	/* thread group stop support, overloads group_exit_code too */
692 	int			group_stop_count;
693 	unsigned int		flags; /* see SIGNAL_* flags below */
694 
695 	/*
696 	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
697 	 * manager, to re-parent orphan (double-forking) child processes
698 	 * to this process instead of 'init'. The service manager is
699 	 * able to receive SIGCHLD signals and is able to investigate
700 	 * the process until it calls wait(). All children of this
701 	 * process will inherit a flag if they should look for a
702 	 * child_subreaper process at exit.
703 	 */
704 	unsigned int		is_child_subreaper:1;
705 	unsigned int		has_child_subreaper:1;
706 
707 	/* POSIX.1b Interval Timers */
708 	int			posix_timer_id;
709 	struct list_head	posix_timers;
710 
711 	/* ITIMER_REAL timer for the process */
712 	struct hrtimer real_timer;
713 	struct pid *leader_pid;
714 	ktime_t it_real_incr;
715 
716 	/*
717 	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
718 	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
719 	 * values are defined to 0 and 1 respectively
720 	 */
721 	struct cpu_itimer it[2];
722 
723 	/*
724 	 * Thread group totals for process CPU timers.
725 	 * See thread_group_cputimer(), et al, for details.
726 	 */
727 	struct thread_group_cputimer cputimer;
728 
729 	/* Earliest-expiration cache. */
730 	struct task_cputime cputime_expires;
731 
732 #ifdef CONFIG_NO_HZ_FULL
733 	atomic_t tick_dep_mask;
734 #endif
735 
736 	struct list_head cpu_timers[3];
737 
738 	struct pid *tty_old_pgrp;
739 
740 	/* boolean value for session group leader */
741 	int leader;
742 
743 	struct tty_struct *tty; /* NULL if no tty */
744 
745 #ifdef CONFIG_SCHED_AUTOGROUP
746 	struct autogroup *autogroup;
747 #endif
748 	/*
749 	 * Cumulative resource counters for dead threads in the group,
750 	 * and for reaped dead child processes forked by this group.
751 	 * Live threads maintain their own counters and add to these
752 	 * in __exit_signal, except for the group leader.
753 	 */
754 	seqlock_t stats_lock;
755 	cputime_t utime, stime, cutime, cstime;
756 	cputime_t gtime;
757 	cputime_t cgtime;
758 	struct prev_cputime prev_cputime;
759 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
760 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
761 	unsigned long inblock, oublock, cinblock, coublock;
762 	unsigned long maxrss, cmaxrss;
763 	struct task_io_accounting ioac;
764 
765 	/*
766 	 * Cumulative ns of schedule CPU time fo dead threads in the
767 	 * group, not including a zombie group leader, (This only differs
768 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
769 	 * other than jiffies.)
770 	 */
771 	unsigned long long sum_sched_runtime;
772 
773 	/*
774 	 * We don't bother to synchronize most readers of this at all,
775 	 * because there is no reader checking a limit that actually needs
776 	 * to get both rlim_cur and rlim_max atomically, and either one
777 	 * alone is a single word that can safely be read normally.
778 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
779 	 * protect this instead of the siglock, because they really
780 	 * have no need to disable irqs.
781 	 */
782 	struct rlimit rlim[RLIM_NLIMITS];
783 
784 #ifdef CONFIG_BSD_PROCESS_ACCT
785 	struct pacct_struct pacct;	/* per-process accounting information */
786 #endif
787 #ifdef CONFIG_TASKSTATS
788 	struct taskstats *stats;
789 #endif
790 #ifdef CONFIG_AUDIT
791 	unsigned audit_tty;
792 	struct tty_audit_buf *tty_audit_buf;
793 #endif
794 
795 	oom_flags_t oom_flags;
796 	short oom_score_adj;		/* OOM kill score adjustment */
797 	short oom_score_adj_min;	/* OOM kill score adjustment min value.
798 					 * Only settable by CAP_SYS_RESOURCE. */
799 
800 	struct mutex cred_guard_mutex;	/* guard against foreign influences on
801 					 * credential calculations
802 					 * (notably. ptrace) */
803 };
804 
805 /*
806  * Bits in flags field of signal_struct.
807  */
808 #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
809 #define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
810 #define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
811 #define SIGNAL_GROUP_COREDUMP	0x00000008 /* coredump in progress */
812 /*
813  * Pending notifications to parent.
814  */
815 #define SIGNAL_CLD_STOPPED	0x00000010
816 #define SIGNAL_CLD_CONTINUED	0x00000020
817 #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
818 
819 #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
820 
821 /* If true, all threads except ->group_exit_task have pending SIGKILL */
822 static inline int signal_group_exit(const struct signal_struct *sig)
823 {
824 	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
825 		(sig->group_exit_task != NULL);
826 }
827 
828 /*
829  * Some day this will be a full-fledged user tracking system..
830  */
831 struct user_struct {
832 	atomic_t __count;	/* reference count */
833 	atomic_t processes;	/* How many processes does this user have? */
834 	atomic_t sigpending;	/* How many pending signals does this user have? */
835 #ifdef CONFIG_INOTIFY_USER
836 	atomic_t inotify_watches; /* How many inotify watches does this user have? */
837 	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
838 #endif
839 #ifdef CONFIG_FANOTIFY
840 	atomic_t fanotify_listeners;
841 #endif
842 #ifdef CONFIG_EPOLL
843 	atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
844 #endif
845 #ifdef CONFIG_POSIX_MQUEUE
846 	/* protected by mq_lock	*/
847 	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
848 #endif
849 	unsigned long locked_shm; /* How many pages of mlocked shm ? */
850 	unsigned long unix_inflight;	/* How many files in flight in unix sockets */
851 	atomic_long_t pipe_bufs;  /* how many pages are allocated in pipe buffers */
852 
853 #ifdef CONFIG_KEYS
854 	struct key *uid_keyring;	/* UID specific keyring */
855 	struct key *session_keyring;	/* UID's default session keyring */
856 #endif
857 
858 	/* Hash table maintenance information */
859 	struct hlist_node uidhash_node;
860 	kuid_t uid;
861 
862 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
863 	atomic_long_t locked_vm;
864 #endif
865 };
866 
867 extern int uids_sysfs_init(void);
868 
869 extern struct user_struct *find_user(kuid_t);
870 
871 extern struct user_struct root_user;
872 #define INIT_USER (&root_user)
873 
874 
875 struct backing_dev_info;
876 struct reclaim_state;
877 
878 #ifdef CONFIG_SCHED_INFO
879 struct sched_info {
880 	/* cumulative counters */
881 	unsigned long pcount;	      /* # of times run on this cpu */
882 	unsigned long long run_delay; /* time spent waiting on a runqueue */
883 
884 	/* timestamps */
885 	unsigned long long last_arrival,/* when we last ran on a cpu */
886 			   last_queued;	/* when we were last queued to run */
887 };
888 #endif /* CONFIG_SCHED_INFO */
889 
890 #ifdef CONFIG_TASK_DELAY_ACCT
891 struct task_delay_info {
892 	spinlock_t	lock;
893 	unsigned int	flags;	/* Private per-task flags */
894 
895 	/* For each stat XXX, add following, aligned appropriately
896 	 *
897 	 * struct timespec XXX_start, XXX_end;
898 	 * u64 XXX_delay;
899 	 * u32 XXX_count;
900 	 *
901 	 * Atomicity of updates to XXX_delay, XXX_count protected by
902 	 * single lock above (split into XXX_lock if contention is an issue).
903 	 */
904 
905 	/*
906 	 * XXX_count is incremented on every XXX operation, the delay
907 	 * associated with the operation is added to XXX_delay.
908 	 * XXX_delay contains the accumulated delay time in nanoseconds.
909 	 */
910 	u64 blkio_start;	/* Shared by blkio, swapin */
911 	u64 blkio_delay;	/* wait for sync block io completion */
912 	u64 swapin_delay;	/* wait for swapin block io completion */
913 	u32 blkio_count;	/* total count of the number of sync block */
914 				/* io operations performed */
915 	u32 swapin_count;	/* total count of the number of swapin block */
916 				/* io operations performed */
917 
918 	u64 freepages_start;
919 	u64 freepages_delay;	/* wait for memory reclaim */
920 	u32 freepages_count;	/* total count of memory reclaim */
921 };
922 #endif	/* CONFIG_TASK_DELAY_ACCT */
923 
924 static inline int sched_info_on(void)
925 {
926 #ifdef CONFIG_SCHEDSTATS
927 	return 1;
928 #elif defined(CONFIG_TASK_DELAY_ACCT)
929 	extern int delayacct_on;
930 	return delayacct_on;
931 #else
932 	return 0;
933 #endif
934 }
935 
936 #ifdef CONFIG_SCHEDSTATS
937 void force_schedstat_enabled(void);
938 #endif
939 
940 enum cpu_idle_type {
941 	CPU_IDLE,
942 	CPU_NOT_IDLE,
943 	CPU_NEWLY_IDLE,
944 	CPU_MAX_IDLE_TYPES
945 };
946 
947 /*
948  * Integer metrics need fixed point arithmetic, e.g., sched/fair
949  * has a few: load, load_avg, util_avg, freq, and capacity.
950  *
951  * We define a basic fixed point arithmetic range, and then formalize
952  * all these metrics based on that basic range.
953  */
954 # define SCHED_FIXEDPOINT_SHIFT	10
955 # define SCHED_FIXEDPOINT_SCALE	(1L << SCHED_FIXEDPOINT_SHIFT)
956 
957 /*
958  * Increase resolution of cpu_capacity calculations
959  */
960 #define SCHED_CAPACITY_SHIFT	SCHED_FIXEDPOINT_SHIFT
961 #define SCHED_CAPACITY_SCALE	(1L << SCHED_CAPACITY_SHIFT)
962 
963 /*
964  * Wake-queues are lists of tasks with a pending wakeup, whose
965  * callers have already marked the task as woken internally,
966  * and can thus carry on. A common use case is being able to
967  * do the wakeups once the corresponding user lock as been
968  * released.
969  *
970  * We hold reference to each task in the list across the wakeup,
971  * thus guaranteeing that the memory is still valid by the time
972  * the actual wakeups are performed in wake_up_q().
973  *
974  * One per task suffices, because there's never a need for a task to be
975  * in two wake queues simultaneously; it is forbidden to abandon a task
976  * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
977  * already in a wake queue, the wakeup will happen soon and the second
978  * waker can just skip it.
979  *
980  * The WAKE_Q macro declares and initializes the list head.
981  * wake_up_q() does NOT reinitialize the list; it's expected to be
982  * called near the end of a function, where the fact that the queue is
983  * not used again will be easy to see by inspection.
984  *
985  * Note that this can cause spurious wakeups. schedule() callers
986  * must ensure the call is done inside a loop, confirming that the
987  * wakeup condition has in fact occurred.
988  */
989 struct wake_q_node {
990 	struct wake_q_node *next;
991 };
992 
993 struct wake_q_head {
994 	struct wake_q_node *first;
995 	struct wake_q_node **lastp;
996 };
997 
998 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
999 
1000 #define WAKE_Q(name)					\
1001 	struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
1002 
1003 extern void wake_q_add(struct wake_q_head *head,
1004 		       struct task_struct *task);
1005 extern void wake_up_q(struct wake_q_head *head);
1006 
1007 /*
1008  * sched-domains (multiprocessor balancing) declarations:
1009  */
1010 #ifdef CONFIG_SMP
1011 #define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
1012 #define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
1013 #define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
1014 #define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
1015 #define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
1016 #define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
1017 #define SD_SHARE_CPUCAPACITY	0x0080	/* Domain members share cpu power */
1018 #define SD_SHARE_POWERDOMAIN	0x0100	/* Domain members share power domain */
1019 #define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
1020 #define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
1021 #define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */
1022 #define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
1023 #define SD_OVERLAP		0x2000	/* sched_domains of this level overlap */
1024 #define SD_NUMA			0x4000	/* cross-node balancing */
1025 
1026 #ifdef CONFIG_SCHED_SMT
1027 static inline int cpu_smt_flags(void)
1028 {
1029 	return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1030 }
1031 #endif
1032 
1033 #ifdef CONFIG_SCHED_MC
1034 static inline int cpu_core_flags(void)
1035 {
1036 	return SD_SHARE_PKG_RESOURCES;
1037 }
1038 #endif
1039 
1040 #ifdef CONFIG_NUMA
1041 static inline int cpu_numa_flags(void)
1042 {
1043 	return SD_NUMA;
1044 }
1045 #endif
1046 
1047 struct sched_domain_attr {
1048 	int relax_domain_level;
1049 };
1050 
1051 #define SD_ATTR_INIT	(struct sched_domain_attr) {	\
1052 	.relax_domain_level = -1,			\
1053 }
1054 
1055 extern int sched_domain_level_max;
1056 
1057 struct sched_group;
1058 
1059 struct sched_domain {
1060 	/* These fields must be setup */
1061 	struct sched_domain *parent;	/* top domain must be null terminated */
1062 	struct sched_domain *child;	/* bottom domain must be null terminated */
1063 	struct sched_group *groups;	/* the balancing groups of the domain */
1064 	unsigned long min_interval;	/* Minimum balance interval ms */
1065 	unsigned long max_interval;	/* Maximum balance interval ms */
1066 	unsigned int busy_factor;	/* less balancing by factor if busy */
1067 	unsigned int imbalance_pct;	/* No balance until over watermark */
1068 	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
1069 	unsigned int busy_idx;
1070 	unsigned int idle_idx;
1071 	unsigned int newidle_idx;
1072 	unsigned int wake_idx;
1073 	unsigned int forkexec_idx;
1074 	unsigned int smt_gain;
1075 
1076 	int nohz_idle;			/* NOHZ IDLE status */
1077 	int flags;			/* See SD_* */
1078 	int level;
1079 
1080 	/* Runtime fields. */
1081 	unsigned long last_balance;	/* init to jiffies. units in jiffies */
1082 	unsigned int balance_interval;	/* initialise to 1. units in ms. */
1083 	unsigned int nr_balance_failed; /* initialise to 0 */
1084 
1085 	/* idle_balance() stats */
1086 	u64 max_newidle_lb_cost;
1087 	unsigned long next_decay_max_lb_cost;
1088 
1089 #ifdef CONFIG_SCHEDSTATS
1090 	/* load_balance() stats */
1091 	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1092 	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1093 	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1094 	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1095 	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1096 	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1097 	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1098 	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1099 
1100 	/* Active load balancing */
1101 	unsigned int alb_count;
1102 	unsigned int alb_failed;
1103 	unsigned int alb_pushed;
1104 
1105 	/* SD_BALANCE_EXEC stats */
1106 	unsigned int sbe_count;
1107 	unsigned int sbe_balanced;
1108 	unsigned int sbe_pushed;
1109 
1110 	/* SD_BALANCE_FORK stats */
1111 	unsigned int sbf_count;
1112 	unsigned int sbf_balanced;
1113 	unsigned int sbf_pushed;
1114 
1115 	/* try_to_wake_up() stats */
1116 	unsigned int ttwu_wake_remote;
1117 	unsigned int ttwu_move_affine;
1118 	unsigned int ttwu_move_balance;
1119 #endif
1120 #ifdef CONFIG_SCHED_DEBUG
1121 	char *name;
1122 #endif
1123 	union {
1124 		void *private;		/* used during construction */
1125 		struct rcu_head rcu;	/* used during destruction */
1126 	};
1127 
1128 	unsigned int span_weight;
1129 	/*
1130 	 * Span of all CPUs in this domain.
1131 	 *
1132 	 * NOTE: this field is variable length. (Allocated dynamically
1133 	 * by attaching extra space to the end of the structure,
1134 	 * depending on how many CPUs the kernel has booted up with)
1135 	 */
1136 	unsigned long span[0];
1137 };
1138 
1139 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1140 {
1141 	return to_cpumask(sd->span);
1142 }
1143 
1144 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1145 				    struct sched_domain_attr *dattr_new);
1146 
1147 /* Allocate an array of sched domains, for partition_sched_domains(). */
1148 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1149 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1150 
1151 bool cpus_share_cache(int this_cpu, int that_cpu);
1152 
1153 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1154 typedef int (*sched_domain_flags_f)(void);
1155 
1156 #define SDTL_OVERLAP	0x01
1157 
1158 struct sd_data {
1159 	struct sched_domain **__percpu sd;
1160 	struct sched_group **__percpu sg;
1161 	struct sched_group_capacity **__percpu sgc;
1162 };
1163 
1164 struct sched_domain_topology_level {
1165 	sched_domain_mask_f mask;
1166 	sched_domain_flags_f sd_flags;
1167 	int		    flags;
1168 	int		    numa_level;
1169 	struct sd_data      data;
1170 #ifdef CONFIG_SCHED_DEBUG
1171 	char                *name;
1172 #endif
1173 };
1174 
1175 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1176 extern void wake_up_if_idle(int cpu);
1177 
1178 #ifdef CONFIG_SCHED_DEBUG
1179 # define SD_INIT_NAME(type)		.name = #type
1180 #else
1181 # define SD_INIT_NAME(type)
1182 #endif
1183 
1184 #else /* CONFIG_SMP */
1185 
1186 struct sched_domain_attr;
1187 
1188 static inline void
1189 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1190 			struct sched_domain_attr *dattr_new)
1191 {
1192 }
1193 
1194 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1195 {
1196 	return true;
1197 }
1198 
1199 #endif	/* !CONFIG_SMP */
1200 
1201 
1202 struct io_context;			/* See blkdev.h */
1203 
1204 
1205 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1206 extern void prefetch_stack(struct task_struct *t);
1207 #else
1208 static inline void prefetch_stack(struct task_struct *t) { }
1209 #endif
1210 
1211 struct audit_context;		/* See audit.c */
1212 struct mempolicy;
1213 struct pipe_inode_info;
1214 struct uts_namespace;
1215 
1216 struct load_weight {
1217 	unsigned long weight;
1218 	u32 inv_weight;
1219 };
1220 
1221 /*
1222  * The load_avg/util_avg accumulates an infinite geometric series
1223  * (see __update_load_avg() in kernel/sched/fair.c).
1224  *
1225  * [load_avg definition]
1226  *
1227  *   load_avg = runnable% * scale_load_down(load)
1228  *
1229  * where runnable% is the time ratio that a sched_entity is runnable.
1230  * For cfs_rq, it is the aggregated load_avg of all runnable and
1231  * blocked sched_entities.
1232  *
1233  * load_avg may also take frequency scaling into account:
1234  *
1235  *   load_avg = runnable% * scale_load_down(load) * freq%
1236  *
1237  * where freq% is the CPU frequency normalized to the highest frequency.
1238  *
1239  * [util_avg definition]
1240  *
1241  *   util_avg = running% * SCHED_CAPACITY_SCALE
1242  *
1243  * where running% is the time ratio that a sched_entity is running on
1244  * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
1245  * and blocked sched_entities.
1246  *
1247  * util_avg may also factor frequency scaling and CPU capacity scaling:
1248  *
1249  *   util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
1250  *
1251  * where freq% is the same as above, and capacity% is the CPU capacity
1252  * normalized to the greatest capacity (due to uarch differences, etc).
1253  *
1254  * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
1255  * themselves are in the range of [0, 1]. To do fixed point arithmetics,
1256  * we therefore scale them to as large a range as necessary. This is for
1257  * example reflected by util_avg's SCHED_CAPACITY_SCALE.
1258  *
1259  * [Overflow issue]
1260  *
1261  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
1262  * with the highest load (=88761), always runnable on a single cfs_rq,
1263  * and should not overflow as the number already hits PID_MAX_LIMIT.
1264  *
1265  * For all other cases (including 32-bit kernels), struct load_weight's
1266  * weight will overflow first before we do, because:
1267  *
1268  *    Max(load_avg) <= Max(load.weight)
1269  *
1270  * Then it is the load_weight's responsibility to consider overflow
1271  * issues.
1272  */
1273 struct sched_avg {
1274 	u64 last_update_time, load_sum;
1275 	u32 util_sum, period_contrib;
1276 	unsigned long load_avg, util_avg;
1277 };
1278 
1279 #ifdef CONFIG_SCHEDSTATS
1280 struct sched_statistics {
1281 	u64			wait_start;
1282 	u64			wait_max;
1283 	u64			wait_count;
1284 	u64			wait_sum;
1285 	u64			iowait_count;
1286 	u64			iowait_sum;
1287 
1288 	u64			sleep_start;
1289 	u64			sleep_max;
1290 	s64			sum_sleep_runtime;
1291 
1292 	u64			block_start;
1293 	u64			block_max;
1294 	u64			exec_max;
1295 	u64			slice_max;
1296 
1297 	u64			nr_migrations_cold;
1298 	u64			nr_failed_migrations_affine;
1299 	u64			nr_failed_migrations_running;
1300 	u64			nr_failed_migrations_hot;
1301 	u64			nr_forced_migrations;
1302 
1303 	u64			nr_wakeups;
1304 	u64			nr_wakeups_sync;
1305 	u64			nr_wakeups_migrate;
1306 	u64			nr_wakeups_local;
1307 	u64			nr_wakeups_remote;
1308 	u64			nr_wakeups_affine;
1309 	u64			nr_wakeups_affine_attempts;
1310 	u64			nr_wakeups_passive;
1311 	u64			nr_wakeups_idle;
1312 };
1313 #endif
1314 
1315 struct sched_entity {
1316 	struct load_weight	load;		/* for load-balancing */
1317 	struct rb_node		run_node;
1318 	struct list_head	group_node;
1319 	unsigned int		on_rq;
1320 
1321 	u64			exec_start;
1322 	u64			sum_exec_runtime;
1323 	u64			vruntime;
1324 	u64			prev_sum_exec_runtime;
1325 
1326 	u64			nr_migrations;
1327 
1328 #ifdef CONFIG_SCHEDSTATS
1329 	struct sched_statistics statistics;
1330 #endif
1331 
1332 #ifdef CONFIG_FAIR_GROUP_SCHED
1333 	int			depth;
1334 	struct sched_entity	*parent;
1335 	/* rq on which this entity is (to be) queued: */
1336 	struct cfs_rq		*cfs_rq;
1337 	/* rq "owned" by this entity/group: */
1338 	struct cfs_rq		*my_q;
1339 #endif
1340 
1341 #ifdef CONFIG_SMP
1342 	/*
1343 	 * Per entity load average tracking.
1344 	 *
1345 	 * Put into separate cache line so it does not
1346 	 * collide with read-mostly values above.
1347 	 */
1348 	struct sched_avg	avg ____cacheline_aligned_in_smp;
1349 #endif
1350 };
1351 
1352 struct sched_rt_entity {
1353 	struct list_head run_list;
1354 	unsigned long timeout;
1355 	unsigned long watchdog_stamp;
1356 	unsigned int time_slice;
1357 	unsigned short on_rq;
1358 	unsigned short on_list;
1359 
1360 	struct sched_rt_entity *back;
1361 #ifdef CONFIG_RT_GROUP_SCHED
1362 	struct sched_rt_entity	*parent;
1363 	/* rq on which this entity is (to be) queued: */
1364 	struct rt_rq		*rt_rq;
1365 	/* rq "owned" by this entity/group: */
1366 	struct rt_rq		*my_q;
1367 #endif
1368 };
1369 
1370 struct sched_dl_entity {
1371 	struct rb_node	rb_node;
1372 
1373 	/*
1374 	 * Original scheduling parameters. Copied here from sched_attr
1375 	 * during sched_setattr(), they will remain the same until
1376 	 * the next sched_setattr().
1377 	 */
1378 	u64 dl_runtime;		/* maximum runtime for each instance	*/
1379 	u64 dl_deadline;	/* relative deadline of each instance	*/
1380 	u64 dl_period;		/* separation of two instances (period) */
1381 	u64 dl_bw;		/* dl_runtime / dl_deadline		*/
1382 
1383 	/*
1384 	 * Actual scheduling parameters. Initialized with the values above,
1385 	 * they are continously updated during task execution. Note that
1386 	 * the remaining runtime could be < 0 in case we are in overrun.
1387 	 */
1388 	s64 runtime;		/* remaining runtime for this instance	*/
1389 	u64 deadline;		/* absolute deadline for this instance	*/
1390 	unsigned int flags;	/* specifying the scheduler behaviour	*/
1391 
1392 	/*
1393 	 * Some bool flags:
1394 	 *
1395 	 * @dl_throttled tells if we exhausted the runtime. If so, the
1396 	 * task has to wait for a replenishment to be performed at the
1397 	 * next firing of dl_timer.
1398 	 *
1399 	 * @dl_boosted tells if we are boosted due to DI. If so we are
1400 	 * outside bandwidth enforcement mechanism (but only until we
1401 	 * exit the critical section);
1402 	 *
1403 	 * @dl_yielded tells if task gave up the cpu before consuming
1404 	 * all its available runtime during the last job.
1405 	 */
1406 	int dl_throttled, dl_boosted, dl_yielded;
1407 
1408 	/*
1409 	 * Bandwidth enforcement timer. Each -deadline task has its
1410 	 * own bandwidth to be enforced, thus we need one timer per task.
1411 	 */
1412 	struct hrtimer dl_timer;
1413 };
1414 
1415 union rcu_special {
1416 	struct {
1417 		u8 blocked;
1418 		u8 need_qs;
1419 		u8 exp_need_qs;
1420 		u8 pad;	/* Otherwise the compiler can store garbage here. */
1421 	} b; /* Bits. */
1422 	u32 s; /* Set of bits. */
1423 };
1424 struct rcu_node;
1425 
1426 enum perf_event_task_context {
1427 	perf_invalid_context = -1,
1428 	perf_hw_context = 0,
1429 	perf_sw_context,
1430 	perf_nr_task_contexts,
1431 };
1432 
1433 /* Track pages that require TLB flushes */
1434 struct tlbflush_unmap_batch {
1435 	/*
1436 	 * Each bit set is a CPU that potentially has a TLB entry for one of
1437 	 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1438 	 */
1439 	struct cpumask cpumask;
1440 
1441 	/* True if any bit in cpumask is set */
1442 	bool flush_required;
1443 
1444 	/*
1445 	 * If true then the PTE was dirty when unmapped. The entry must be
1446 	 * flushed before IO is initiated or a stale TLB entry potentially
1447 	 * allows an update without redirtying the page.
1448 	 */
1449 	bool writable;
1450 };
1451 
1452 struct task_struct {
1453 	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1454 	void *stack;
1455 	atomic_t usage;
1456 	unsigned int flags;	/* per process flags, defined below */
1457 	unsigned int ptrace;
1458 
1459 #ifdef CONFIG_SMP
1460 	struct llist_node wake_entry;
1461 	int on_cpu;
1462 	unsigned int wakee_flips;
1463 	unsigned long wakee_flip_decay_ts;
1464 	struct task_struct *last_wakee;
1465 
1466 	int wake_cpu;
1467 #endif
1468 	int on_rq;
1469 
1470 	int prio, static_prio, normal_prio;
1471 	unsigned int rt_priority;
1472 	const struct sched_class *sched_class;
1473 	struct sched_entity se;
1474 	struct sched_rt_entity rt;
1475 #ifdef CONFIG_CGROUP_SCHED
1476 	struct task_group *sched_task_group;
1477 #endif
1478 	struct sched_dl_entity dl;
1479 
1480 #ifdef CONFIG_PREEMPT_NOTIFIERS
1481 	/* list of struct preempt_notifier: */
1482 	struct hlist_head preempt_notifiers;
1483 #endif
1484 
1485 #ifdef CONFIG_BLK_DEV_IO_TRACE
1486 	unsigned int btrace_seq;
1487 #endif
1488 
1489 	unsigned int policy;
1490 	int nr_cpus_allowed;
1491 	cpumask_t cpus_allowed;
1492 
1493 #ifdef CONFIG_PREEMPT_RCU
1494 	int rcu_read_lock_nesting;
1495 	union rcu_special rcu_read_unlock_special;
1496 	struct list_head rcu_node_entry;
1497 	struct rcu_node *rcu_blocked_node;
1498 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1499 #ifdef CONFIG_TASKS_RCU
1500 	unsigned long rcu_tasks_nvcsw;
1501 	bool rcu_tasks_holdout;
1502 	struct list_head rcu_tasks_holdout_list;
1503 	int rcu_tasks_idle_cpu;
1504 #endif /* #ifdef CONFIG_TASKS_RCU */
1505 
1506 #ifdef CONFIG_SCHED_INFO
1507 	struct sched_info sched_info;
1508 #endif
1509 
1510 	struct list_head tasks;
1511 #ifdef CONFIG_SMP
1512 	struct plist_node pushable_tasks;
1513 	struct rb_node pushable_dl_tasks;
1514 #endif
1515 
1516 	struct mm_struct *mm, *active_mm;
1517 	/* per-thread vma caching */
1518 	u32 vmacache_seqnum;
1519 	struct vm_area_struct *vmacache[VMACACHE_SIZE];
1520 #if defined(SPLIT_RSS_COUNTING)
1521 	struct task_rss_stat	rss_stat;
1522 #endif
1523 /* task state */
1524 	int exit_state;
1525 	int exit_code, exit_signal;
1526 	int pdeath_signal;  /*  The signal sent when the parent dies  */
1527 	unsigned long jobctl;	/* JOBCTL_*, siglock protected */
1528 
1529 	/* Used for emulating ABI behavior of previous Linux versions */
1530 	unsigned int personality;
1531 
1532 	/* scheduler bits, serialized by scheduler locks */
1533 	unsigned sched_reset_on_fork:1;
1534 	unsigned sched_contributes_to_load:1;
1535 	unsigned sched_migrated:1;
1536 	unsigned :0; /* force alignment to the next boundary */
1537 
1538 	/* unserialized, strictly 'current' */
1539 	unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1540 	unsigned in_iowait:1;
1541 #ifdef CONFIG_MEMCG
1542 	unsigned memcg_may_oom:1;
1543 #ifndef CONFIG_SLOB
1544 	unsigned memcg_kmem_skip_account:1;
1545 #endif
1546 #endif
1547 #ifdef CONFIG_COMPAT_BRK
1548 	unsigned brk_randomized:1;
1549 #endif
1550 
1551 	unsigned long atomic_flags; /* Flags needing atomic access. */
1552 
1553 	struct restart_block restart_block;
1554 
1555 	pid_t pid;
1556 	pid_t tgid;
1557 
1558 #ifdef CONFIG_CC_STACKPROTECTOR
1559 	/* Canary value for the -fstack-protector gcc feature */
1560 	unsigned long stack_canary;
1561 #endif
1562 	/*
1563 	 * pointers to (original) parent process, youngest child, younger sibling,
1564 	 * older sibling, respectively.  (p->father can be replaced with
1565 	 * p->real_parent->pid)
1566 	 */
1567 	struct task_struct __rcu *real_parent; /* real parent process */
1568 	struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1569 	/*
1570 	 * children/sibling forms the list of my natural children
1571 	 */
1572 	struct list_head children;	/* list of my children */
1573 	struct list_head sibling;	/* linkage in my parent's children list */
1574 	struct task_struct *group_leader;	/* threadgroup leader */
1575 
1576 	/*
1577 	 * ptraced is the list of tasks this task is using ptrace on.
1578 	 * This includes both natural children and PTRACE_ATTACH targets.
1579 	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1580 	 */
1581 	struct list_head ptraced;
1582 	struct list_head ptrace_entry;
1583 
1584 	/* PID/PID hash table linkage. */
1585 	struct pid_link pids[PIDTYPE_MAX];
1586 	struct list_head thread_group;
1587 	struct list_head thread_node;
1588 
1589 	struct completion *vfork_done;		/* for vfork() */
1590 	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1591 	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1592 
1593 	cputime_t utime, stime, utimescaled, stimescaled;
1594 	cputime_t gtime;
1595 	struct prev_cputime prev_cputime;
1596 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1597 	seqcount_t vtime_seqcount;
1598 	unsigned long long vtime_snap;
1599 	enum {
1600 		/* Task is sleeping or running in a CPU with VTIME inactive */
1601 		VTIME_INACTIVE = 0,
1602 		/* Task runs in userspace in a CPU with VTIME active */
1603 		VTIME_USER,
1604 		/* Task runs in kernelspace in a CPU with VTIME active */
1605 		VTIME_SYS,
1606 	} vtime_snap_whence;
1607 #endif
1608 
1609 #ifdef CONFIG_NO_HZ_FULL
1610 	atomic_t tick_dep_mask;
1611 #endif
1612 	unsigned long nvcsw, nivcsw; /* context switch counts */
1613 	u64 start_time;		/* monotonic time in nsec */
1614 	u64 real_start_time;	/* boot based time in nsec */
1615 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1616 	unsigned long min_flt, maj_flt;
1617 
1618 	struct task_cputime cputime_expires;
1619 	struct list_head cpu_timers[3];
1620 
1621 /* process credentials */
1622 	const struct cred __rcu *real_cred; /* objective and real subjective task
1623 					 * credentials (COW) */
1624 	const struct cred __rcu *cred;	/* effective (overridable) subjective task
1625 					 * credentials (COW) */
1626 	char comm[TASK_COMM_LEN]; /* executable name excluding path
1627 				     - access with [gs]et_task_comm (which lock
1628 				       it with task_lock())
1629 				     - initialized normally by setup_new_exec */
1630 /* file system info */
1631 	struct nameidata *nameidata;
1632 #ifdef CONFIG_SYSVIPC
1633 /* ipc stuff */
1634 	struct sysv_sem sysvsem;
1635 	struct sysv_shm sysvshm;
1636 #endif
1637 #ifdef CONFIG_DETECT_HUNG_TASK
1638 /* hung task detection */
1639 	unsigned long last_switch_count;
1640 #endif
1641 /* filesystem information */
1642 	struct fs_struct *fs;
1643 /* open file information */
1644 	struct files_struct *files;
1645 /* namespaces */
1646 	struct nsproxy *nsproxy;
1647 /* signal handlers */
1648 	struct signal_struct *signal;
1649 	struct sighand_struct *sighand;
1650 
1651 	sigset_t blocked, real_blocked;
1652 	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1653 	struct sigpending pending;
1654 
1655 	unsigned long sas_ss_sp;
1656 	size_t sas_ss_size;
1657 	unsigned sas_ss_flags;
1658 
1659 	struct callback_head *task_works;
1660 
1661 	struct audit_context *audit_context;
1662 #ifdef CONFIG_AUDITSYSCALL
1663 	kuid_t loginuid;
1664 	unsigned int sessionid;
1665 #endif
1666 	struct seccomp seccomp;
1667 
1668 /* Thread group tracking */
1669    	u32 parent_exec_id;
1670    	u32 self_exec_id;
1671 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1672  * mempolicy */
1673 	spinlock_t alloc_lock;
1674 
1675 	/* Protection of the PI data structures: */
1676 	raw_spinlock_t pi_lock;
1677 
1678 	struct wake_q_node wake_q;
1679 
1680 #ifdef CONFIG_RT_MUTEXES
1681 	/* PI waiters blocked on a rt_mutex held by this task */
1682 	struct rb_root pi_waiters;
1683 	struct rb_node *pi_waiters_leftmost;
1684 	/* Deadlock detection and priority inheritance handling */
1685 	struct rt_mutex_waiter *pi_blocked_on;
1686 #endif
1687 
1688 #ifdef CONFIG_DEBUG_MUTEXES
1689 	/* mutex deadlock detection */
1690 	struct mutex_waiter *blocked_on;
1691 #endif
1692 #ifdef CONFIG_TRACE_IRQFLAGS
1693 	unsigned int irq_events;
1694 	unsigned long hardirq_enable_ip;
1695 	unsigned long hardirq_disable_ip;
1696 	unsigned int hardirq_enable_event;
1697 	unsigned int hardirq_disable_event;
1698 	int hardirqs_enabled;
1699 	int hardirq_context;
1700 	unsigned long softirq_disable_ip;
1701 	unsigned long softirq_enable_ip;
1702 	unsigned int softirq_disable_event;
1703 	unsigned int softirq_enable_event;
1704 	int softirqs_enabled;
1705 	int softirq_context;
1706 #endif
1707 #ifdef CONFIG_LOCKDEP
1708 # define MAX_LOCK_DEPTH 48UL
1709 	u64 curr_chain_key;
1710 	int lockdep_depth;
1711 	unsigned int lockdep_recursion;
1712 	struct held_lock held_locks[MAX_LOCK_DEPTH];
1713 	gfp_t lockdep_reclaim_gfp;
1714 #endif
1715 #ifdef CONFIG_UBSAN
1716 	unsigned int in_ubsan;
1717 #endif
1718 
1719 /* journalling filesystem info */
1720 	void *journal_info;
1721 
1722 /* stacked block device info */
1723 	struct bio_list *bio_list;
1724 
1725 #ifdef CONFIG_BLOCK
1726 /* stack plugging */
1727 	struct blk_plug *plug;
1728 #endif
1729 
1730 /* VM state */
1731 	struct reclaim_state *reclaim_state;
1732 
1733 	struct backing_dev_info *backing_dev_info;
1734 
1735 	struct io_context *io_context;
1736 
1737 	unsigned long ptrace_message;
1738 	siginfo_t *last_siginfo; /* For ptrace use.  */
1739 	struct task_io_accounting ioac;
1740 #if defined(CONFIG_TASK_XACCT)
1741 	u64 acct_rss_mem1;	/* accumulated rss usage */
1742 	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1743 	cputime_t acct_timexpd;	/* stime + utime since last update */
1744 #endif
1745 #ifdef CONFIG_CPUSETS
1746 	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1747 	seqcount_t mems_allowed_seq;	/* Seqence no to catch updates */
1748 	int cpuset_mem_spread_rotor;
1749 	int cpuset_slab_spread_rotor;
1750 #endif
1751 #ifdef CONFIG_CGROUPS
1752 	/* Control Group info protected by css_set_lock */
1753 	struct css_set __rcu *cgroups;
1754 	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1755 	struct list_head cg_list;
1756 #endif
1757 #ifdef CONFIG_FUTEX
1758 	struct robust_list_head __user *robust_list;
1759 #ifdef CONFIG_COMPAT
1760 	struct compat_robust_list_head __user *compat_robust_list;
1761 #endif
1762 	struct list_head pi_state_list;
1763 	struct futex_pi_state *pi_state_cache;
1764 #endif
1765 #ifdef CONFIG_PERF_EVENTS
1766 	struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1767 	struct mutex perf_event_mutex;
1768 	struct list_head perf_event_list;
1769 #endif
1770 #ifdef CONFIG_DEBUG_PREEMPT
1771 	unsigned long preempt_disable_ip;
1772 #endif
1773 #ifdef CONFIG_NUMA
1774 	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1775 	short il_next;
1776 	short pref_node_fork;
1777 #endif
1778 #ifdef CONFIG_NUMA_BALANCING
1779 	int numa_scan_seq;
1780 	unsigned int numa_scan_period;
1781 	unsigned int numa_scan_period_max;
1782 	int numa_preferred_nid;
1783 	unsigned long numa_migrate_retry;
1784 	u64 node_stamp;			/* migration stamp  */
1785 	u64 last_task_numa_placement;
1786 	u64 last_sum_exec_runtime;
1787 	struct callback_head numa_work;
1788 
1789 	struct list_head numa_entry;
1790 	struct numa_group *numa_group;
1791 
1792 	/*
1793 	 * numa_faults is an array split into four regions:
1794 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1795 	 * in this precise order.
1796 	 *
1797 	 * faults_memory: Exponential decaying average of faults on a per-node
1798 	 * basis. Scheduling placement decisions are made based on these
1799 	 * counts. The values remain static for the duration of a PTE scan.
1800 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1801 	 * hinting fault was incurred.
1802 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1803 	 * during the current scan window. When the scan completes, the counts
1804 	 * in faults_memory and faults_cpu decay and these values are copied.
1805 	 */
1806 	unsigned long *numa_faults;
1807 	unsigned long total_numa_faults;
1808 
1809 	/*
1810 	 * numa_faults_locality tracks if faults recorded during the last
1811 	 * scan window were remote/local or failed to migrate. The task scan
1812 	 * period is adapted based on the locality of the faults with different
1813 	 * weights depending on whether they were shared or private faults
1814 	 */
1815 	unsigned long numa_faults_locality[3];
1816 
1817 	unsigned long numa_pages_migrated;
1818 #endif /* CONFIG_NUMA_BALANCING */
1819 
1820 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1821 	struct tlbflush_unmap_batch tlb_ubc;
1822 #endif
1823 
1824 	struct rcu_head rcu;
1825 
1826 	/*
1827 	 * cache last used pipe for splice
1828 	 */
1829 	struct pipe_inode_info *splice_pipe;
1830 
1831 	struct page_frag task_frag;
1832 
1833 #ifdef	CONFIG_TASK_DELAY_ACCT
1834 	struct task_delay_info *delays;
1835 #endif
1836 #ifdef CONFIG_FAULT_INJECTION
1837 	int make_it_fail;
1838 #endif
1839 	/*
1840 	 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1841 	 * balance_dirty_pages() for some dirty throttling pause
1842 	 */
1843 	int nr_dirtied;
1844 	int nr_dirtied_pause;
1845 	unsigned long dirty_paused_when; /* start of a write-and-pause period */
1846 
1847 #ifdef CONFIG_LATENCYTOP
1848 	int latency_record_count;
1849 	struct latency_record latency_record[LT_SAVECOUNT];
1850 #endif
1851 	/*
1852 	 * time slack values; these are used to round up poll() and
1853 	 * select() etc timeout values. These are in nanoseconds.
1854 	 */
1855 	u64 timer_slack_ns;
1856 	u64 default_timer_slack_ns;
1857 
1858 #ifdef CONFIG_KASAN
1859 	unsigned int kasan_depth;
1860 #endif
1861 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1862 	/* Index of current stored address in ret_stack */
1863 	int curr_ret_stack;
1864 	/* Stack of return addresses for return function tracing */
1865 	struct ftrace_ret_stack	*ret_stack;
1866 	/* time stamp for last schedule */
1867 	unsigned long long ftrace_timestamp;
1868 	/*
1869 	 * Number of functions that haven't been traced
1870 	 * because of depth overrun.
1871 	 */
1872 	atomic_t trace_overrun;
1873 	/* Pause for the tracing */
1874 	atomic_t tracing_graph_pause;
1875 #endif
1876 #ifdef CONFIG_TRACING
1877 	/* state flags for use by tracers */
1878 	unsigned long trace;
1879 	/* bitmask and counter of trace recursion */
1880 	unsigned long trace_recursion;
1881 #endif /* CONFIG_TRACING */
1882 #ifdef CONFIG_KCOV
1883 	/* Coverage collection mode enabled for this task (0 if disabled). */
1884 	enum kcov_mode kcov_mode;
1885 	/* Size of the kcov_area. */
1886 	unsigned	kcov_size;
1887 	/* Buffer for coverage collection. */
1888 	void		*kcov_area;
1889 	/* kcov desciptor wired with this task or NULL. */
1890 	struct kcov	*kcov;
1891 #endif
1892 #ifdef CONFIG_MEMCG
1893 	struct mem_cgroup *memcg_in_oom;
1894 	gfp_t memcg_oom_gfp_mask;
1895 	int memcg_oom_order;
1896 
1897 	/* number of pages to reclaim on returning to userland */
1898 	unsigned int memcg_nr_pages_over_high;
1899 #endif
1900 #ifdef CONFIG_UPROBES
1901 	struct uprobe_task *utask;
1902 #endif
1903 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1904 	unsigned int	sequential_io;
1905 	unsigned int	sequential_io_avg;
1906 #endif
1907 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1908 	unsigned long	task_state_change;
1909 #endif
1910 	int pagefault_disabled;
1911 #ifdef CONFIG_MMU
1912 	struct task_struct *oom_reaper_list;
1913 #endif
1914 /* CPU-specific state of this task */
1915 	struct thread_struct thread;
1916 /*
1917  * WARNING: on x86, 'thread_struct' contains a variable-sized
1918  * structure.  It *MUST* be at the end of 'task_struct'.
1919  *
1920  * Do not put anything below here!
1921  */
1922 };
1923 
1924 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1925 extern int arch_task_struct_size __read_mostly;
1926 #else
1927 # define arch_task_struct_size (sizeof(struct task_struct))
1928 #endif
1929 
1930 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1931 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1932 
1933 static inline int tsk_nr_cpus_allowed(struct task_struct *p)
1934 {
1935 	return p->nr_cpus_allowed;
1936 }
1937 
1938 #define TNF_MIGRATED	0x01
1939 #define TNF_NO_GROUP	0x02
1940 #define TNF_SHARED	0x04
1941 #define TNF_FAULT_LOCAL	0x08
1942 #define TNF_MIGRATE_FAIL 0x10
1943 
1944 #ifdef CONFIG_NUMA_BALANCING
1945 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1946 extern pid_t task_numa_group_id(struct task_struct *p);
1947 extern void set_numabalancing_state(bool enabled);
1948 extern void task_numa_free(struct task_struct *p);
1949 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1950 					int src_nid, int dst_cpu);
1951 #else
1952 static inline void task_numa_fault(int last_node, int node, int pages,
1953 				   int flags)
1954 {
1955 }
1956 static inline pid_t task_numa_group_id(struct task_struct *p)
1957 {
1958 	return 0;
1959 }
1960 static inline void set_numabalancing_state(bool enabled)
1961 {
1962 }
1963 static inline void task_numa_free(struct task_struct *p)
1964 {
1965 }
1966 static inline bool should_numa_migrate_memory(struct task_struct *p,
1967 				struct page *page, int src_nid, int dst_cpu)
1968 {
1969 	return true;
1970 }
1971 #endif
1972 
1973 static inline struct pid *task_pid(struct task_struct *task)
1974 {
1975 	return task->pids[PIDTYPE_PID].pid;
1976 }
1977 
1978 static inline struct pid *task_tgid(struct task_struct *task)
1979 {
1980 	return task->group_leader->pids[PIDTYPE_PID].pid;
1981 }
1982 
1983 /*
1984  * Without tasklist or rcu lock it is not safe to dereference
1985  * the result of task_pgrp/task_session even if task == current,
1986  * we can race with another thread doing sys_setsid/sys_setpgid.
1987  */
1988 static inline struct pid *task_pgrp(struct task_struct *task)
1989 {
1990 	return task->group_leader->pids[PIDTYPE_PGID].pid;
1991 }
1992 
1993 static inline struct pid *task_session(struct task_struct *task)
1994 {
1995 	return task->group_leader->pids[PIDTYPE_SID].pid;
1996 }
1997 
1998 struct pid_namespace;
1999 
2000 /*
2001  * the helpers to get the task's different pids as they are seen
2002  * from various namespaces
2003  *
2004  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
2005  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
2006  *                     current.
2007  * task_xid_nr_ns()  : id seen from the ns specified;
2008  *
2009  * set_task_vxid()   : assigns a virtual id to a task;
2010  *
2011  * see also pid_nr() etc in include/linux/pid.h
2012  */
2013 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
2014 			struct pid_namespace *ns);
2015 
2016 static inline pid_t task_pid_nr(struct task_struct *tsk)
2017 {
2018 	return tsk->pid;
2019 }
2020 
2021 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
2022 					struct pid_namespace *ns)
2023 {
2024 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
2025 }
2026 
2027 static inline pid_t task_pid_vnr(struct task_struct *tsk)
2028 {
2029 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
2030 }
2031 
2032 
2033 static inline pid_t task_tgid_nr(struct task_struct *tsk)
2034 {
2035 	return tsk->tgid;
2036 }
2037 
2038 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
2039 
2040 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
2041 {
2042 	return pid_vnr(task_tgid(tsk));
2043 }
2044 
2045 
2046 static inline int pid_alive(const struct task_struct *p);
2047 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
2048 {
2049 	pid_t pid = 0;
2050 
2051 	rcu_read_lock();
2052 	if (pid_alive(tsk))
2053 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
2054 	rcu_read_unlock();
2055 
2056 	return pid;
2057 }
2058 
2059 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
2060 {
2061 	return task_ppid_nr_ns(tsk, &init_pid_ns);
2062 }
2063 
2064 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2065 					struct pid_namespace *ns)
2066 {
2067 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
2068 }
2069 
2070 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2071 {
2072 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
2073 }
2074 
2075 
2076 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2077 					struct pid_namespace *ns)
2078 {
2079 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
2080 }
2081 
2082 static inline pid_t task_session_vnr(struct task_struct *tsk)
2083 {
2084 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
2085 }
2086 
2087 /* obsolete, do not use */
2088 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2089 {
2090 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
2091 }
2092 
2093 /**
2094  * pid_alive - check that a task structure is not stale
2095  * @p: Task structure to be checked.
2096  *
2097  * Test if a process is not yet dead (at most zombie state)
2098  * If pid_alive fails, then pointers within the task structure
2099  * can be stale and must not be dereferenced.
2100  *
2101  * Return: 1 if the process is alive. 0 otherwise.
2102  */
2103 static inline int pid_alive(const struct task_struct *p)
2104 {
2105 	return p->pids[PIDTYPE_PID].pid != NULL;
2106 }
2107 
2108 /**
2109  * is_global_init - check if a task structure is init. Since init
2110  * is free to have sub-threads we need to check tgid.
2111  * @tsk: Task structure to be checked.
2112  *
2113  * Check if a task structure is the first user space task the kernel created.
2114  *
2115  * Return: 1 if the task structure is init. 0 otherwise.
2116  */
2117 static inline int is_global_init(struct task_struct *tsk)
2118 {
2119 	return task_tgid_nr(tsk) == 1;
2120 }
2121 
2122 extern struct pid *cad_pid;
2123 
2124 extern void free_task(struct task_struct *tsk);
2125 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
2126 
2127 extern void __put_task_struct(struct task_struct *t);
2128 
2129 static inline void put_task_struct(struct task_struct *t)
2130 {
2131 	if (atomic_dec_and_test(&t->usage))
2132 		__put_task_struct(t);
2133 }
2134 
2135 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2136 extern void task_cputime(struct task_struct *t,
2137 			 cputime_t *utime, cputime_t *stime);
2138 extern void task_cputime_scaled(struct task_struct *t,
2139 				cputime_t *utimescaled, cputime_t *stimescaled);
2140 extern cputime_t task_gtime(struct task_struct *t);
2141 #else
2142 static inline void task_cputime(struct task_struct *t,
2143 				cputime_t *utime, cputime_t *stime)
2144 {
2145 	if (utime)
2146 		*utime = t->utime;
2147 	if (stime)
2148 		*stime = t->stime;
2149 }
2150 
2151 static inline void task_cputime_scaled(struct task_struct *t,
2152 				       cputime_t *utimescaled,
2153 				       cputime_t *stimescaled)
2154 {
2155 	if (utimescaled)
2156 		*utimescaled = t->utimescaled;
2157 	if (stimescaled)
2158 		*stimescaled = t->stimescaled;
2159 }
2160 
2161 static inline cputime_t task_gtime(struct task_struct *t)
2162 {
2163 	return t->gtime;
2164 }
2165 #endif
2166 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2167 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2168 
2169 /*
2170  * Per process flags
2171  */
2172 #define PF_EXITING	0x00000004	/* getting shut down */
2173 #define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
2174 #define PF_VCPU		0x00000010	/* I'm a virtual CPU */
2175 #define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */
2176 #define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
2177 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
2178 #define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
2179 #define PF_DUMPCORE	0x00000200	/* dumped core */
2180 #define PF_SIGNALED	0x00000400	/* killed by a signal */
2181 #define PF_MEMALLOC	0x00000800	/* Allocating memory */
2182 #define PF_NPROC_EXCEEDED 0x00001000	/* set_user noticed that RLIMIT_NPROC was exceeded */
2183 #define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
2184 #define PF_USED_ASYNC	0x00004000	/* used async_schedule*(), used by module init */
2185 #define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
2186 #define PF_FROZEN	0x00010000	/* frozen for system suspend */
2187 #define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
2188 #define PF_KSWAPD	0x00040000	/* I am kswapd */
2189 #define PF_MEMALLOC_NOIO 0x00080000	/* Allocating memory without IO involved */
2190 #define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
2191 #define PF_KTHREAD	0x00200000	/* I am a kernel thread */
2192 #define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
2193 #define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
2194 #define PF_NO_SETAFFINITY 0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
2195 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
2196 #define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
2197 #define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezable */
2198 #define PF_SUSPEND_TASK 0x80000000      /* this thread called freeze_processes and should not be frozen */
2199 
2200 /*
2201  * Only the _current_ task can read/write to tsk->flags, but other
2202  * tasks can access tsk->flags in readonly mode for example
2203  * with tsk_used_math (like during threaded core dumping).
2204  * There is however an exception to this rule during ptrace
2205  * or during fork: the ptracer task is allowed to write to the
2206  * child->flags of its traced child (same goes for fork, the parent
2207  * can write to the child->flags), because we're guaranteed the
2208  * child is not running and in turn not changing child->flags
2209  * at the same time the parent does it.
2210  */
2211 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2212 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2213 #define clear_used_math() clear_stopped_child_used_math(current)
2214 #define set_used_math() set_stopped_child_used_math(current)
2215 #define conditional_stopped_child_used_math(condition, child) \
2216 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2217 #define conditional_used_math(condition) \
2218 	conditional_stopped_child_used_math(condition, current)
2219 #define copy_to_stopped_child_used_math(child) \
2220 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2221 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2222 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2223 #define used_math() tsk_used_math(current)
2224 
2225 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2226  * __GFP_FS is also cleared as it implies __GFP_IO.
2227  */
2228 static inline gfp_t memalloc_noio_flags(gfp_t flags)
2229 {
2230 	if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2231 		flags &= ~(__GFP_IO | __GFP_FS);
2232 	return flags;
2233 }
2234 
2235 static inline unsigned int memalloc_noio_save(void)
2236 {
2237 	unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2238 	current->flags |= PF_MEMALLOC_NOIO;
2239 	return flags;
2240 }
2241 
2242 static inline void memalloc_noio_restore(unsigned int flags)
2243 {
2244 	current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2245 }
2246 
2247 /* Per-process atomic flags. */
2248 #define PFA_NO_NEW_PRIVS 0	/* May not gain new privileges. */
2249 #define PFA_SPREAD_PAGE  1      /* Spread page cache over cpuset */
2250 #define PFA_SPREAD_SLAB  2      /* Spread some slab caches over cpuset */
2251 
2252 
2253 #define TASK_PFA_TEST(name, func)					\
2254 	static inline bool task_##func(struct task_struct *p)		\
2255 	{ return test_bit(PFA_##name, &p->atomic_flags); }
2256 #define TASK_PFA_SET(name, func)					\
2257 	static inline void task_set_##func(struct task_struct *p)	\
2258 	{ set_bit(PFA_##name, &p->atomic_flags); }
2259 #define TASK_PFA_CLEAR(name, func)					\
2260 	static inline void task_clear_##func(struct task_struct *p)	\
2261 	{ clear_bit(PFA_##name, &p->atomic_flags); }
2262 
2263 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2264 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2265 
2266 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2267 TASK_PFA_SET(SPREAD_PAGE, spread_page)
2268 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2269 
2270 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2271 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2272 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2273 
2274 /*
2275  * task->jobctl flags
2276  */
2277 #define JOBCTL_STOP_SIGMASK	0xffff	/* signr of the last group stop */
2278 
2279 #define JOBCTL_STOP_DEQUEUED_BIT 16	/* stop signal dequeued */
2280 #define JOBCTL_STOP_PENDING_BIT	17	/* task should stop for group stop */
2281 #define JOBCTL_STOP_CONSUME_BIT	18	/* consume group stop count */
2282 #define JOBCTL_TRAP_STOP_BIT	19	/* trap for STOP */
2283 #define JOBCTL_TRAP_NOTIFY_BIT	20	/* trap for NOTIFY */
2284 #define JOBCTL_TRAPPING_BIT	21	/* switching to TRACED */
2285 #define JOBCTL_LISTENING_BIT	22	/* ptracer is listening for events */
2286 
2287 #define JOBCTL_STOP_DEQUEUED	(1UL << JOBCTL_STOP_DEQUEUED_BIT)
2288 #define JOBCTL_STOP_PENDING	(1UL << JOBCTL_STOP_PENDING_BIT)
2289 #define JOBCTL_STOP_CONSUME	(1UL << JOBCTL_STOP_CONSUME_BIT)
2290 #define JOBCTL_TRAP_STOP	(1UL << JOBCTL_TRAP_STOP_BIT)
2291 #define JOBCTL_TRAP_NOTIFY	(1UL << JOBCTL_TRAP_NOTIFY_BIT)
2292 #define JOBCTL_TRAPPING		(1UL << JOBCTL_TRAPPING_BIT)
2293 #define JOBCTL_LISTENING	(1UL << JOBCTL_LISTENING_BIT)
2294 
2295 #define JOBCTL_TRAP_MASK	(JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2296 #define JOBCTL_PENDING_MASK	(JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2297 
2298 extern bool task_set_jobctl_pending(struct task_struct *task,
2299 				    unsigned long mask);
2300 extern void task_clear_jobctl_trapping(struct task_struct *task);
2301 extern void task_clear_jobctl_pending(struct task_struct *task,
2302 				      unsigned long mask);
2303 
2304 static inline void rcu_copy_process(struct task_struct *p)
2305 {
2306 #ifdef CONFIG_PREEMPT_RCU
2307 	p->rcu_read_lock_nesting = 0;
2308 	p->rcu_read_unlock_special.s = 0;
2309 	p->rcu_blocked_node = NULL;
2310 	INIT_LIST_HEAD(&p->rcu_node_entry);
2311 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2312 #ifdef CONFIG_TASKS_RCU
2313 	p->rcu_tasks_holdout = false;
2314 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2315 	p->rcu_tasks_idle_cpu = -1;
2316 #endif /* #ifdef CONFIG_TASKS_RCU */
2317 }
2318 
2319 static inline void tsk_restore_flags(struct task_struct *task,
2320 				unsigned long orig_flags, unsigned long flags)
2321 {
2322 	task->flags &= ~flags;
2323 	task->flags |= orig_flags & flags;
2324 }
2325 
2326 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2327 				     const struct cpumask *trial);
2328 extern int task_can_attach(struct task_struct *p,
2329 			   const struct cpumask *cs_cpus_allowed);
2330 #ifdef CONFIG_SMP
2331 extern void do_set_cpus_allowed(struct task_struct *p,
2332 			       const struct cpumask *new_mask);
2333 
2334 extern int set_cpus_allowed_ptr(struct task_struct *p,
2335 				const struct cpumask *new_mask);
2336 #else
2337 static inline void do_set_cpus_allowed(struct task_struct *p,
2338 				      const struct cpumask *new_mask)
2339 {
2340 }
2341 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2342 				       const struct cpumask *new_mask)
2343 {
2344 	if (!cpumask_test_cpu(0, new_mask))
2345 		return -EINVAL;
2346 	return 0;
2347 }
2348 #endif
2349 
2350 #ifdef CONFIG_NO_HZ_COMMON
2351 void calc_load_enter_idle(void);
2352 void calc_load_exit_idle(void);
2353 #else
2354 static inline void calc_load_enter_idle(void) { }
2355 static inline void calc_load_exit_idle(void) { }
2356 #endif /* CONFIG_NO_HZ_COMMON */
2357 
2358 /*
2359  * Do not use outside of architecture code which knows its limitations.
2360  *
2361  * sched_clock() has no promise of monotonicity or bounded drift between
2362  * CPUs, use (which you should not) requires disabling IRQs.
2363  *
2364  * Please use one of the three interfaces below.
2365  */
2366 extern unsigned long long notrace sched_clock(void);
2367 /*
2368  * See the comment in kernel/sched/clock.c
2369  */
2370 extern u64 running_clock(void);
2371 extern u64 sched_clock_cpu(int cpu);
2372 
2373 
2374 extern void sched_clock_init(void);
2375 
2376 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2377 static inline void sched_clock_tick(void)
2378 {
2379 }
2380 
2381 static inline void sched_clock_idle_sleep_event(void)
2382 {
2383 }
2384 
2385 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2386 {
2387 }
2388 
2389 static inline u64 cpu_clock(int cpu)
2390 {
2391 	return sched_clock();
2392 }
2393 
2394 static inline u64 local_clock(void)
2395 {
2396 	return sched_clock();
2397 }
2398 #else
2399 /*
2400  * Architectures can set this to 1 if they have specified
2401  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2402  * but then during bootup it turns out that sched_clock()
2403  * is reliable after all:
2404  */
2405 extern int sched_clock_stable(void);
2406 extern void set_sched_clock_stable(void);
2407 extern void clear_sched_clock_stable(void);
2408 
2409 extern void sched_clock_tick(void);
2410 extern void sched_clock_idle_sleep_event(void);
2411 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2412 
2413 /*
2414  * As outlined in clock.c, provides a fast, high resolution, nanosecond
2415  * time source that is monotonic per cpu argument and has bounded drift
2416  * between cpus.
2417  *
2418  * ######################### BIG FAT WARNING ##########################
2419  * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
2420  * # go backwards !!                                                  #
2421  * ####################################################################
2422  */
2423 static inline u64 cpu_clock(int cpu)
2424 {
2425 	return sched_clock_cpu(cpu);
2426 }
2427 
2428 static inline u64 local_clock(void)
2429 {
2430 	return sched_clock_cpu(raw_smp_processor_id());
2431 }
2432 #endif
2433 
2434 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2435 /*
2436  * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2437  * The reason for this explicit opt-in is not to have perf penalty with
2438  * slow sched_clocks.
2439  */
2440 extern void enable_sched_clock_irqtime(void);
2441 extern void disable_sched_clock_irqtime(void);
2442 #else
2443 static inline void enable_sched_clock_irqtime(void) {}
2444 static inline void disable_sched_clock_irqtime(void) {}
2445 #endif
2446 
2447 extern unsigned long long
2448 task_sched_runtime(struct task_struct *task);
2449 
2450 /* sched_exec is called by processes performing an exec */
2451 #ifdef CONFIG_SMP
2452 extern void sched_exec(void);
2453 #else
2454 #define sched_exec()   {}
2455 #endif
2456 
2457 extern void sched_clock_idle_sleep_event(void);
2458 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2459 
2460 #ifdef CONFIG_HOTPLUG_CPU
2461 extern void idle_task_exit(void);
2462 #else
2463 static inline void idle_task_exit(void) {}
2464 #endif
2465 
2466 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2467 extern void wake_up_nohz_cpu(int cpu);
2468 #else
2469 static inline void wake_up_nohz_cpu(int cpu) { }
2470 #endif
2471 
2472 #ifdef CONFIG_NO_HZ_FULL
2473 extern u64 scheduler_tick_max_deferment(void);
2474 #endif
2475 
2476 #ifdef CONFIG_SCHED_AUTOGROUP
2477 extern void sched_autogroup_create_attach(struct task_struct *p);
2478 extern void sched_autogroup_detach(struct task_struct *p);
2479 extern void sched_autogroup_fork(struct signal_struct *sig);
2480 extern void sched_autogroup_exit(struct signal_struct *sig);
2481 #ifdef CONFIG_PROC_FS
2482 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2483 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2484 #endif
2485 #else
2486 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2487 static inline void sched_autogroup_detach(struct task_struct *p) { }
2488 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2489 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2490 #endif
2491 
2492 extern int yield_to(struct task_struct *p, bool preempt);
2493 extern void set_user_nice(struct task_struct *p, long nice);
2494 extern int task_prio(const struct task_struct *p);
2495 /**
2496  * task_nice - return the nice value of a given task.
2497  * @p: the task in question.
2498  *
2499  * Return: The nice value [ -20 ... 0 ... 19 ].
2500  */
2501 static inline int task_nice(const struct task_struct *p)
2502 {
2503 	return PRIO_TO_NICE((p)->static_prio);
2504 }
2505 extern int can_nice(const struct task_struct *p, const int nice);
2506 extern int task_curr(const struct task_struct *p);
2507 extern int idle_cpu(int cpu);
2508 extern int sched_setscheduler(struct task_struct *, int,
2509 			      const struct sched_param *);
2510 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2511 				      const struct sched_param *);
2512 extern int sched_setattr(struct task_struct *,
2513 			 const struct sched_attr *);
2514 extern struct task_struct *idle_task(int cpu);
2515 /**
2516  * is_idle_task - is the specified task an idle task?
2517  * @p: the task in question.
2518  *
2519  * Return: 1 if @p is an idle task. 0 otherwise.
2520  */
2521 static inline bool is_idle_task(const struct task_struct *p)
2522 {
2523 	return p->pid == 0;
2524 }
2525 extern struct task_struct *curr_task(int cpu);
2526 extern void set_curr_task(int cpu, struct task_struct *p);
2527 
2528 void yield(void);
2529 
2530 union thread_union {
2531 	struct thread_info thread_info;
2532 	unsigned long stack[THREAD_SIZE/sizeof(long)];
2533 };
2534 
2535 #ifndef __HAVE_ARCH_KSTACK_END
2536 static inline int kstack_end(void *addr)
2537 {
2538 	/* Reliable end of stack detection:
2539 	 * Some APM bios versions misalign the stack
2540 	 */
2541 	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2542 }
2543 #endif
2544 
2545 extern union thread_union init_thread_union;
2546 extern struct task_struct init_task;
2547 
2548 extern struct   mm_struct init_mm;
2549 
2550 extern struct pid_namespace init_pid_ns;
2551 
2552 /*
2553  * find a task by one of its numerical ids
2554  *
2555  * find_task_by_pid_ns():
2556  *      finds a task by its pid in the specified namespace
2557  * find_task_by_vpid():
2558  *      finds a task by its virtual pid
2559  *
2560  * see also find_vpid() etc in include/linux/pid.h
2561  */
2562 
2563 extern struct task_struct *find_task_by_vpid(pid_t nr);
2564 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2565 		struct pid_namespace *ns);
2566 
2567 /* per-UID process charging. */
2568 extern struct user_struct * alloc_uid(kuid_t);
2569 static inline struct user_struct *get_uid(struct user_struct *u)
2570 {
2571 	atomic_inc(&u->__count);
2572 	return u;
2573 }
2574 extern void free_uid(struct user_struct *);
2575 
2576 #include <asm/current.h>
2577 
2578 extern void xtime_update(unsigned long ticks);
2579 
2580 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2581 extern int wake_up_process(struct task_struct *tsk);
2582 extern void wake_up_new_task(struct task_struct *tsk);
2583 #ifdef CONFIG_SMP
2584  extern void kick_process(struct task_struct *tsk);
2585 #else
2586  static inline void kick_process(struct task_struct *tsk) { }
2587 #endif
2588 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2589 extern void sched_dead(struct task_struct *p);
2590 
2591 extern void proc_caches_init(void);
2592 extern void flush_signals(struct task_struct *);
2593 extern void ignore_signals(struct task_struct *);
2594 extern void flush_signal_handlers(struct task_struct *, int force_default);
2595 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2596 
2597 static inline int kernel_dequeue_signal(siginfo_t *info)
2598 {
2599 	struct task_struct *tsk = current;
2600 	siginfo_t __info;
2601 	int ret;
2602 
2603 	spin_lock_irq(&tsk->sighand->siglock);
2604 	ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2605 	spin_unlock_irq(&tsk->sighand->siglock);
2606 
2607 	return ret;
2608 }
2609 
2610 static inline void kernel_signal_stop(void)
2611 {
2612 	spin_lock_irq(&current->sighand->siglock);
2613 	if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2614 		__set_current_state(TASK_STOPPED);
2615 	spin_unlock_irq(&current->sighand->siglock);
2616 
2617 	schedule();
2618 }
2619 
2620 extern void release_task(struct task_struct * p);
2621 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2622 extern int force_sigsegv(int, struct task_struct *);
2623 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2624 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2625 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2626 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2627 				const struct cred *, u32);
2628 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2629 extern int kill_pid(struct pid *pid, int sig, int priv);
2630 extern int kill_proc_info(int, struct siginfo *, pid_t);
2631 extern __must_check bool do_notify_parent(struct task_struct *, int);
2632 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2633 extern void force_sig(int, struct task_struct *);
2634 extern int send_sig(int, struct task_struct *, int);
2635 extern int zap_other_threads(struct task_struct *p);
2636 extern struct sigqueue *sigqueue_alloc(void);
2637 extern void sigqueue_free(struct sigqueue *);
2638 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2639 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2640 
2641 static inline void restore_saved_sigmask(void)
2642 {
2643 	if (test_and_clear_restore_sigmask())
2644 		__set_current_blocked(&current->saved_sigmask);
2645 }
2646 
2647 static inline sigset_t *sigmask_to_save(void)
2648 {
2649 	sigset_t *res = &current->blocked;
2650 	if (unlikely(test_restore_sigmask()))
2651 		res = &current->saved_sigmask;
2652 	return res;
2653 }
2654 
2655 static inline int kill_cad_pid(int sig, int priv)
2656 {
2657 	return kill_pid(cad_pid, sig, priv);
2658 }
2659 
2660 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2661 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2662 #define SEND_SIG_PRIV	((struct siginfo *) 1)
2663 #define SEND_SIG_FORCED	((struct siginfo *) 2)
2664 
2665 /*
2666  * True if we are on the alternate signal stack.
2667  */
2668 static inline int on_sig_stack(unsigned long sp)
2669 {
2670 	/*
2671 	 * If the signal stack is SS_AUTODISARM then, by construction, we
2672 	 * can't be on the signal stack unless user code deliberately set
2673 	 * SS_AUTODISARM when we were already on it.
2674 	 *
2675 	 * This improves reliability: if user state gets corrupted such that
2676 	 * the stack pointer points very close to the end of the signal stack,
2677 	 * then this check will enable the signal to be handled anyway.
2678 	 */
2679 	if (current->sas_ss_flags & SS_AUTODISARM)
2680 		return 0;
2681 
2682 #ifdef CONFIG_STACK_GROWSUP
2683 	return sp >= current->sas_ss_sp &&
2684 		sp - current->sas_ss_sp < current->sas_ss_size;
2685 #else
2686 	return sp > current->sas_ss_sp &&
2687 		sp - current->sas_ss_sp <= current->sas_ss_size;
2688 #endif
2689 }
2690 
2691 static inline int sas_ss_flags(unsigned long sp)
2692 {
2693 	if (!current->sas_ss_size)
2694 		return SS_DISABLE;
2695 
2696 	return on_sig_stack(sp) ? SS_ONSTACK : 0;
2697 }
2698 
2699 static inline void sas_ss_reset(struct task_struct *p)
2700 {
2701 	p->sas_ss_sp = 0;
2702 	p->sas_ss_size = 0;
2703 	p->sas_ss_flags = SS_DISABLE;
2704 }
2705 
2706 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2707 {
2708 	if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2709 #ifdef CONFIG_STACK_GROWSUP
2710 		return current->sas_ss_sp;
2711 #else
2712 		return current->sas_ss_sp + current->sas_ss_size;
2713 #endif
2714 	return sp;
2715 }
2716 
2717 /*
2718  * Routines for handling mm_structs
2719  */
2720 extern struct mm_struct * mm_alloc(void);
2721 
2722 /* mmdrop drops the mm and the page tables */
2723 extern void __mmdrop(struct mm_struct *);
2724 static inline void mmdrop(struct mm_struct * mm)
2725 {
2726 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2727 		__mmdrop(mm);
2728 }
2729 
2730 /* mmput gets rid of the mappings and all user-space */
2731 extern void mmput(struct mm_struct *);
2732 /* Grab a reference to a task's mm, if it is not already going away */
2733 extern struct mm_struct *get_task_mm(struct task_struct *task);
2734 /*
2735  * Grab a reference to a task's mm, if it is not already going away
2736  * and ptrace_may_access with the mode parameter passed to it
2737  * succeeds.
2738  */
2739 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2740 /* Remove the current tasks stale references to the old mm_struct */
2741 extern void mm_release(struct task_struct *, struct mm_struct *);
2742 
2743 #ifdef CONFIG_HAVE_COPY_THREAD_TLS
2744 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2745 			struct task_struct *, unsigned long);
2746 #else
2747 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2748 			struct task_struct *);
2749 
2750 /* Architectures that haven't opted into copy_thread_tls get the tls argument
2751  * via pt_regs, so ignore the tls argument passed via C. */
2752 static inline int copy_thread_tls(
2753 		unsigned long clone_flags, unsigned long sp, unsigned long arg,
2754 		struct task_struct *p, unsigned long tls)
2755 {
2756 	return copy_thread(clone_flags, sp, arg, p);
2757 }
2758 #endif
2759 extern void flush_thread(void);
2760 extern void exit_thread(void);
2761 
2762 extern void exit_files(struct task_struct *);
2763 extern void __cleanup_sighand(struct sighand_struct *);
2764 
2765 extern void exit_itimers(struct signal_struct *);
2766 extern void flush_itimer_signals(void);
2767 
2768 extern void do_group_exit(int);
2769 
2770 extern int do_execve(struct filename *,
2771 		     const char __user * const __user *,
2772 		     const char __user * const __user *);
2773 extern int do_execveat(int, struct filename *,
2774 		       const char __user * const __user *,
2775 		       const char __user * const __user *,
2776 		       int);
2777 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
2778 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2779 struct task_struct *fork_idle(int);
2780 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2781 
2782 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2783 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2784 {
2785 	__set_task_comm(tsk, from, false);
2786 }
2787 extern char *get_task_comm(char *to, struct task_struct *tsk);
2788 
2789 #ifdef CONFIG_SMP
2790 void scheduler_ipi(void);
2791 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2792 #else
2793 static inline void scheduler_ipi(void) { }
2794 static inline unsigned long wait_task_inactive(struct task_struct *p,
2795 					       long match_state)
2796 {
2797 	return 1;
2798 }
2799 #endif
2800 
2801 #define tasklist_empty() \
2802 	list_empty(&init_task.tasks)
2803 
2804 #define next_task(p) \
2805 	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2806 
2807 #define for_each_process(p) \
2808 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2809 
2810 extern bool current_is_single_threaded(void);
2811 
2812 /*
2813  * Careful: do_each_thread/while_each_thread is a double loop so
2814  *          'break' will not work as expected - use goto instead.
2815  */
2816 #define do_each_thread(g, t) \
2817 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2818 
2819 #define while_each_thread(g, t) \
2820 	while ((t = next_thread(t)) != g)
2821 
2822 #define __for_each_thread(signal, t)	\
2823 	list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2824 
2825 #define for_each_thread(p, t)		\
2826 	__for_each_thread((p)->signal, t)
2827 
2828 /* Careful: this is a double loop, 'break' won't work as expected. */
2829 #define for_each_process_thread(p, t)	\
2830 	for_each_process(p) for_each_thread(p, t)
2831 
2832 static inline int get_nr_threads(struct task_struct *tsk)
2833 {
2834 	return tsk->signal->nr_threads;
2835 }
2836 
2837 static inline bool thread_group_leader(struct task_struct *p)
2838 {
2839 	return p->exit_signal >= 0;
2840 }
2841 
2842 /* Do to the insanities of de_thread it is possible for a process
2843  * to have the pid of the thread group leader without actually being
2844  * the thread group leader.  For iteration through the pids in proc
2845  * all we care about is that we have a task with the appropriate
2846  * pid, we don't actually care if we have the right task.
2847  */
2848 static inline bool has_group_leader_pid(struct task_struct *p)
2849 {
2850 	return task_pid(p) == p->signal->leader_pid;
2851 }
2852 
2853 static inline
2854 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2855 {
2856 	return p1->signal == p2->signal;
2857 }
2858 
2859 static inline struct task_struct *next_thread(const struct task_struct *p)
2860 {
2861 	return list_entry_rcu(p->thread_group.next,
2862 			      struct task_struct, thread_group);
2863 }
2864 
2865 static inline int thread_group_empty(struct task_struct *p)
2866 {
2867 	return list_empty(&p->thread_group);
2868 }
2869 
2870 #define delay_group_leader(p) \
2871 		(thread_group_leader(p) && !thread_group_empty(p))
2872 
2873 /*
2874  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2875  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2876  * pins the final release of task.io_context.  Also protects ->cpuset and
2877  * ->cgroup.subsys[]. And ->vfork_done.
2878  *
2879  * Nests both inside and outside of read_lock(&tasklist_lock).
2880  * It must not be nested with write_lock_irq(&tasklist_lock),
2881  * neither inside nor outside.
2882  */
2883 static inline void task_lock(struct task_struct *p)
2884 {
2885 	spin_lock(&p->alloc_lock);
2886 }
2887 
2888 static inline void task_unlock(struct task_struct *p)
2889 {
2890 	spin_unlock(&p->alloc_lock);
2891 }
2892 
2893 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2894 							unsigned long *flags);
2895 
2896 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2897 						       unsigned long *flags)
2898 {
2899 	struct sighand_struct *ret;
2900 
2901 	ret = __lock_task_sighand(tsk, flags);
2902 	(void)__cond_lock(&tsk->sighand->siglock, ret);
2903 	return ret;
2904 }
2905 
2906 static inline void unlock_task_sighand(struct task_struct *tsk,
2907 						unsigned long *flags)
2908 {
2909 	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2910 }
2911 
2912 /**
2913  * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2914  * @tsk: task causing the changes
2915  *
2916  * All operations which modify a threadgroup - a new thread joining the
2917  * group, death of a member thread (the assertion of PF_EXITING) and
2918  * exec(2) dethreading the process and replacing the leader - are wrapped
2919  * by threadgroup_change_{begin|end}().  This is to provide a place which
2920  * subsystems needing threadgroup stability can hook into for
2921  * synchronization.
2922  */
2923 static inline void threadgroup_change_begin(struct task_struct *tsk)
2924 {
2925 	might_sleep();
2926 	cgroup_threadgroup_change_begin(tsk);
2927 }
2928 
2929 /**
2930  * threadgroup_change_end - mark the end of changes to a threadgroup
2931  * @tsk: task causing the changes
2932  *
2933  * See threadgroup_change_begin().
2934  */
2935 static inline void threadgroup_change_end(struct task_struct *tsk)
2936 {
2937 	cgroup_threadgroup_change_end(tsk);
2938 }
2939 
2940 #ifndef __HAVE_THREAD_FUNCTIONS
2941 
2942 #define task_thread_info(task)	((struct thread_info *)(task)->stack)
2943 #define task_stack_page(task)	((task)->stack)
2944 
2945 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2946 {
2947 	*task_thread_info(p) = *task_thread_info(org);
2948 	task_thread_info(p)->task = p;
2949 }
2950 
2951 /*
2952  * Return the address of the last usable long on the stack.
2953  *
2954  * When the stack grows down, this is just above the thread
2955  * info struct. Going any lower will corrupt the threadinfo.
2956  *
2957  * When the stack grows up, this is the highest address.
2958  * Beyond that position, we corrupt data on the next page.
2959  */
2960 static inline unsigned long *end_of_stack(struct task_struct *p)
2961 {
2962 #ifdef CONFIG_STACK_GROWSUP
2963 	return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2964 #else
2965 	return (unsigned long *)(task_thread_info(p) + 1);
2966 #endif
2967 }
2968 
2969 #endif
2970 #define task_stack_end_corrupted(task) \
2971 		(*(end_of_stack(task)) != STACK_END_MAGIC)
2972 
2973 static inline int object_is_on_stack(void *obj)
2974 {
2975 	void *stack = task_stack_page(current);
2976 
2977 	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2978 }
2979 
2980 extern void thread_info_cache_init(void);
2981 
2982 #ifdef CONFIG_DEBUG_STACK_USAGE
2983 static inline unsigned long stack_not_used(struct task_struct *p)
2984 {
2985 	unsigned long *n = end_of_stack(p);
2986 
2987 	do { 	/* Skip over canary */
2988 # ifdef CONFIG_STACK_GROWSUP
2989 		n--;
2990 # else
2991 		n++;
2992 # endif
2993 	} while (!*n);
2994 
2995 # ifdef CONFIG_STACK_GROWSUP
2996 	return (unsigned long)end_of_stack(p) - (unsigned long)n;
2997 # else
2998 	return (unsigned long)n - (unsigned long)end_of_stack(p);
2999 # endif
3000 }
3001 #endif
3002 extern void set_task_stack_end_magic(struct task_struct *tsk);
3003 
3004 /* set thread flags in other task's structures
3005  * - see asm/thread_info.h for TIF_xxxx flags available
3006  */
3007 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
3008 {
3009 	set_ti_thread_flag(task_thread_info(tsk), flag);
3010 }
3011 
3012 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3013 {
3014 	clear_ti_thread_flag(task_thread_info(tsk), flag);
3015 }
3016 
3017 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
3018 {
3019 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
3020 }
3021 
3022 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3023 {
3024 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
3025 }
3026 
3027 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
3028 {
3029 	return test_ti_thread_flag(task_thread_info(tsk), flag);
3030 }
3031 
3032 static inline void set_tsk_need_resched(struct task_struct *tsk)
3033 {
3034 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3035 }
3036 
3037 static inline void clear_tsk_need_resched(struct task_struct *tsk)
3038 {
3039 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3040 }
3041 
3042 static inline int test_tsk_need_resched(struct task_struct *tsk)
3043 {
3044 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
3045 }
3046 
3047 static inline int restart_syscall(void)
3048 {
3049 	set_tsk_thread_flag(current, TIF_SIGPENDING);
3050 	return -ERESTARTNOINTR;
3051 }
3052 
3053 static inline int signal_pending(struct task_struct *p)
3054 {
3055 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
3056 }
3057 
3058 static inline int __fatal_signal_pending(struct task_struct *p)
3059 {
3060 	return unlikely(sigismember(&p->pending.signal, SIGKILL));
3061 }
3062 
3063 static inline int fatal_signal_pending(struct task_struct *p)
3064 {
3065 	return signal_pending(p) && __fatal_signal_pending(p);
3066 }
3067 
3068 static inline int signal_pending_state(long state, struct task_struct *p)
3069 {
3070 	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
3071 		return 0;
3072 	if (!signal_pending(p))
3073 		return 0;
3074 
3075 	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
3076 }
3077 
3078 /*
3079  * cond_resched() and cond_resched_lock(): latency reduction via
3080  * explicit rescheduling in places that are safe. The return
3081  * value indicates whether a reschedule was done in fact.
3082  * cond_resched_lock() will drop the spinlock before scheduling,
3083  * cond_resched_softirq() will enable bhs before scheduling.
3084  */
3085 extern int _cond_resched(void);
3086 
3087 #define cond_resched() ({			\
3088 	___might_sleep(__FILE__, __LINE__, 0);	\
3089 	_cond_resched();			\
3090 })
3091 
3092 extern int __cond_resched_lock(spinlock_t *lock);
3093 
3094 #define cond_resched_lock(lock) ({				\
3095 	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
3096 	__cond_resched_lock(lock);				\
3097 })
3098 
3099 extern int __cond_resched_softirq(void);
3100 
3101 #define cond_resched_softirq() ({					\
3102 	___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
3103 	__cond_resched_softirq();					\
3104 })
3105 
3106 static inline void cond_resched_rcu(void)
3107 {
3108 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
3109 	rcu_read_unlock();
3110 	cond_resched();
3111 	rcu_read_lock();
3112 #endif
3113 }
3114 
3115 /*
3116  * Does a critical section need to be broken due to another
3117  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3118  * but a general need for low latency)
3119  */
3120 static inline int spin_needbreak(spinlock_t *lock)
3121 {
3122 #ifdef CONFIG_PREEMPT
3123 	return spin_is_contended(lock);
3124 #else
3125 	return 0;
3126 #endif
3127 }
3128 
3129 /*
3130  * Idle thread specific functions to determine the need_resched
3131  * polling state.
3132  */
3133 #ifdef TIF_POLLING_NRFLAG
3134 static inline int tsk_is_polling(struct task_struct *p)
3135 {
3136 	return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3137 }
3138 
3139 static inline void __current_set_polling(void)
3140 {
3141 	set_thread_flag(TIF_POLLING_NRFLAG);
3142 }
3143 
3144 static inline bool __must_check current_set_polling_and_test(void)
3145 {
3146 	__current_set_polling();
3147 
3148 	/*
3149 	 * Polling state must be visible before we test NEED_RESCHED,
3150 	 * paired by resched_curr()
3151 	 */
3152 	smp_mb__after_atomic();
3153 
3154 	return unlikely(tif_need_resched());
3155 }
3156 
3157 static inline void __current_clr_polling(void)
3158 {
3159 	clear_thread_flag(TIF_POLLING_NRFLAG);
3160 }
3161 
3162 static inline bool __must_check current_clr_polling_and_test(void)
3163 {
3164 	__current_clr_polling();
3165 
3166 	/*
3167 	 * Polling state must be visible before we test NEED_RESCHED,
3168 	 * paired by resched_curr()
3169 	 */
3170 	smp_mb__after_atomic();
3171 
3172 	return unlikely(tif_need_resched());
3173 }
3174 
3175 #else
3176 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
3177 static inline void __current_set_polling(void) { }
3178 static inline void __current_clr_polling(void) { }
3179 
3180 static inline bool __must_check current_set_polling_and_test(void)
3181 {
3182 	return unlikely(tif_need_resched());
3183 }
3184 static inline bool __must_check current_clr_polling_and_test(void)
3185 {
3186 	return unlikely(tif_need_resched());
3187 }
3188 #endif
3189 
3190 static inline void current_clr_polling(void)
3191 {
3192 	__current_clr_polling();
3193 
3194 	/*
3195 	 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3196 	 * Once the bit is cleared, we'll get IPIs with every new
3197 	 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3198 	 * fold.
3199 	 */
3200 	smp_mb(); /* paired with resched_curr() */
3201 
3202 	preempt_fold_need_resched();
3203 }
3204 
3205 static __always_inline bool need_resched(void)
3206 {
3207 	return unlikely(tif_need_resched());
3208 }
3209 
3210 /*
3211  * Thread group CPU time accounting.
3212  */
3213 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3214 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3215 
3216 /*
3217  * Reevaluate whether the task has signals pending delivery.
3218  * Wake the task if so.
3219  * This is required every time the blocked sigset_t changes.
3220  * callers must hold sighand->siglock.
3221  */
3222 extern void recalc_sigpending_and_wake(struct task_struct *t);
3223 extern void recalc_sigpending(void);
3224 
3225 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3226 
3227 static inline void signal_wake_up(struct task_struct *t, bool resume)
3228 {
3229 	signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3230 }
3231 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3232 {
3233 	signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3234 }
3235 
3236 /*
3237  * Wrappers for p->thread_info->cpu access. No-op on UP.
3238  */
3239 #ifdef CONFIG_SMP
3240 
3241 static inline unsigned int task_cpu(const struct task_struct *p)
3242 {
3243 	return task_thread_info(p)->cpu;
3244 }
3245 
3246 static inline int task_node(const struct task_struct *p)
3247 {
3248 	return cpu_to_node(task_cpu(p));
3249 }
3250 
3251 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3252 
3253 #else
3254 
3255 static inline unsigned int task_cpu(const struct task_struct *p)
3256 {
3257 	return 0;
3258 }
3259 
3260 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3261 {
3262 }
3263 
3264 #endif /* CONFIG_SMP */
3265 
3266 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3267 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3268 
3269 #ifdef CONFIG_CGROUP_SCHED
3270 extern struct task_group root_task_group;
3271 #endif /* CONFIG_CGROUP_SCHED */
3272 
3273 extern int task_can_switch_user(struct user_struct *up,
3274 					struct task_struct *tsk);
3275 
3276 #ifdef CONFIG_TASK_XACCT
3277 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3278 {
3279 	tsk->ioac.rchar += amt;
3280 }
3281 
3282 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3283 {
3284 	tsk->ioac.wchar += amt;
3285 }
3286 
3287 static inline void inc_syscr(struct task_struct *tsk)
3288 {
3289 	tsk->ioac.syscr++;
3290 }
3291 
3292 static inline void inc_syscw(struct task_struct *tsk)
3293 {
3294 	tsk->ioac.syscw++;
3295 }
3296 #else
3297 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3298 {
3299 }
3300 
3301 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3302 {
3303 }
3304 
3305 static inline void inc_syscr(struct task_struct *tsk)
3306 {
3307 }
3308 
3309 static inline void inc_syscw(struct task_struct *tsk)
3310 {
3311 }
3312 #endif
3313 
3314 #ifndef TASK_SIZE_OF
3315 #define TASK_SIZE_OF(tsk)	TASK_SIZE
3316 #endif
3317 
3318 #ifdef CONFIG_MEMCG
3319 extern void mm_update_next_owner(struct mm_struct *mm);
3320 #else
3321 static inline void mm_update_next_owner(struct mm_struct *mm)
3322 {
3323 }
3324 #endif /* CONFIG_MEMCG */
3325 
3326 static inline unsigned long task_rlimit(const struct task_struct *tsk,
3327 		unsigned int limit)
3328 {
3329 	return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3330 }
3331 
3332 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3333 		unsigned int limit)
3334 {
3335 	return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3336 }
3337 
3338 static inline unsigned long rlimit(unsigned int limit)
3339 {
3340 	return task_rlimit(current, limit);
3341 }
3342 
3343 static inline unsigned long rlimit_max(unsigned int limit)
3344 {
3345 	return task_rlimit_max(current, limit);
3346 }
3347 
3348 #ifdef CONFIG_CPU_FREQ
3349 struct update_util_data {
3350 	void (*func)(struct update_util_data *data,
3351 		     u64 time, unsigned long util, unsigned long max);
3352 };
3353 
3354 void cpufreq_set_update_util_data(int cpu, struct update_util_data *data);
3355 #endif /* CONFIG_CPU_FREQ */
3356 
3357 #endif
3358