1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <uapi/linux/sched.h> 5 6 #include <linux/sched/prio.h> 7 8 9 struct sched_param { 10 int sched_priority; 11 }; 12 13 #include <asm/param.h> /* for HZ */ 14 15 #include <linux/capability.h> 16 #include <linux/threads.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/timex.h> 20 #include <linux/jiffies.h> 21 #include <linux/plist.h> 22 #include <linux/rbtree.h> 23 #include <linux/thread_info.h> 24 #include <linux/cpumask.h> 25 #include <linux/errno.h> 26 #include <linux/nodemask.h> 27 #include <linux/mm_types.h> 28 #include <linux/preempt.h> 29 30 #include <asm/page.h> 31 #include <asm/ptrace.h> 32 #include <linux/cputime.h> 33 34 #include <linux/smp.h> 35 #include <linux/sem.h> 36 #include <linux/shm.h> 37 #include <linux/signal.h> 38 #include <linux/compiler.h> 39 #include <linux/completion.h> 40 #include <linux/pid.h> 41 #include <linux/percpu.h> 42 #include <linux/topology.h> 43 #include <linux/proportions.h> 44 #include <linux/seccomp.h> 45 #include <linux/rcupdate.h> 46 #include <linux/rculist.h> 47 #include <linux/rtmutex.h> 48 49 #include <linux/time.h> 50 #include <linux/param.h> 51 #include <linux/resource.h> 52 #include <linux/timer.h> 53 #include <linux/hrtimer.h> 54 #include <linux/task_io_accounting.h> 55 #include <linux/latencytop.h> 56 #include <linux/cred.h> 57 #include <linux/llist.h> 58 #include <linux/uidgid.h> 59 #include <linux/gfp.h> 60 #include <linux/magic.h> 61 #include <linux/cgroup-defs.h> 62 63 #include <asm/processor.h> 64 65 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */ 66 67 /* 68 * Extended scheduling parameters data structure. 69 * 70 * This is needed because the original struct sched_param can not be 71 * altered without introducing ABI issues with legacy applications 72 * (e.g., in sched_getparam()). 73 * 74 * However, the possibility of specifying more than just a priority for 75 * the tasks may be useful for a wide variety of application fields, e.g., 76 * multimedia, streaming, automation and control, and many others. 77 * 78 * This variant (sched_attr) is meant at describing a so-called 79 * sporadic time-constrained task. In such model a task is specified by: 80 * - the activation period or minimum instance inter-arrival time; 81 * - the maximum (or average, depending on the actual scheduling 82 * discipline) computation time of all instances, a.k.a. runtime; 83 * - the deadline (relative to the actual activation time) of each 84 * instance. 85 * Very briefly, a periodic (sporadic) task asks for the execution of 86 * some specific computation --which is typically called an instance-- 87 * (at most) every period. Moreover, each instance typically lasts no more 88 * than the runtime and must be completed by time instant t equal to 89 * the instance activation time + the deadline. 90 * 91 * This is reflected by the actual fields of the sched_attr structure: 92 * 93 * @size size of the structure, for fwd/bwd compat. 94 * 95 * @sched_policy task's scheduling policy 96 * @sched_flags for customizing the scheduler behaviour 97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH) 98 * @sched_priority task's static priority (SCHED_FIFO/RR) 99 * @sched_deadline representative of the task's deadline 100 * @sched_runtime representative of the task's runtime 101 * @sched_period representative of the task's period 102 * 103 * Given this task model, there are a multiplicity of scheduling algorithms 104 * and policies, that can be used to ensure all the tasks will make their 105 * timing constraints. 106 * 107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the 108 * only user of this new interface. More information about the algorithm 109 * available in the scheduling class file or in Documentation/. 110 */ 111 struct sched_attr { 112 u32 size; 113 114 u32 sched_policy; 115 u64 sched_flags; 116 117 /* SCHED_NORMAL, SCHED_BATCH */ 118 s32 sched_nice; 119 120 /* SCHED_FIFO, SCHED_RR */ 121 u32 sched_priority; 122 123 /* SCHED_DEADLINE */ 124 u64 sched_runtime; 125 u64 sched_deadline; 126 u64 sched_period; 127 }; 128 129 struct futex_pi_state; 130 struct robust_list_head; 131 struct bio_list; 132 struct fs_struct; 133 struct perf_event_context; 134 struct blk_plug; 135 struct filename; 136 struct nameidata; 137 138 #define VMACACHE_BITS 2 139 #define VMACACHE_SIZE (1U << VMACACHE_BITS) 140 #define VMACACHE_MASK (VMACACHE_SIZE - 1) 141 142 /* 143 * These are the constant used to fake the fixed-point load-average 144 * counting. Some notes: 145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 146 * a load-average precision of 10 bits integer + 11 bits fractional 147 * - if you want to count load-averages more often, you need more 148 * precision, or rounding will get you. With 2-second counting freq, 149 * the EXP_n values would be 1981, 2034 and 2043 if still using only 150 * 11 bit fractions. 151 */ 152 extern unsigned long avenrun[]; /* Load averages */ 153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 154 155 #define FSHIFT 11 /* nr of bits of precision */ 156 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 157 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 158 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 159 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 160 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 161 162 #define CALC_LOAD(load,exp,n) \ 163 load *= exp; \ 164 load += n*(FIXED_1-exp); \ 165 load >>= FSHIFT; 166 167 extern unsigned long total_forks; 168 extern int nr_threads; 169 DECLARE_PER_CPU(unsigned long, process_counts); 170 extern int nr_processes(void); 171 extern unsigned long nr_running(void); 172 extern bool single_task_running(void); 173 extern unsigned long nr_iowait(void); 174 extern unsigned long nr_iowait_cpu(int cpu); 175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load); 176 177 extern void calc_global_load(unsigned long ticks); 178 179 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 180 extern void update_cpu_load_nohz(int active); 181 #else 182 static inline void update_cpu_load_nohz(int active) { } 183 #endif 184 185 extern unsigned long get_parent_ip(unsigned long addr); 186 187 extern void dump_cpu_task(int cpu); 188 189 struct seq_file; 190 struct cfs_rq; 191 struct task_group; 192 #ifdef CONFIG_SCHED_DEBUG 193 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 194 extern void proc_sched_set_task(struct task_struct *p); 195 #endif 196 197 /* 198 * Task state bitmask. NOTE! These bits are also 199 * encoded in fs/proc/array.c: get_task_state(). 200 * 201 * We have two separate sets of flags: task->state 202 * is about runnability, while task->exit_state are 203 * about the task exiting. Confusing, but this way 204 * modifying one set can't modify the other one by 205 * mistake. 206 */ 207 #define TASK_RUNNING 0 208 #define TASK_INTERRUPTIBLE 1 209 #define TASK_UNINTERRUPTIBLE 2 210 #define __TASK_STOPPED 4 211 #define __TASK_TRACED 8 212 /* in tsk->exit_state */ 213 #define EXIT_DEAD 16 214 #define EXIT_ZOMBIE 32 215 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 216 /* in tsk->state again */ 217 #define TASK_DEAD 64 218 #define TASK_WAKEKILL 128 219 #define TASK_WAKING 256 220 #define TASK_PARKED 512 221 #define TASK_NOLOAD 1024 222 #define TASK_STATE_MAX 2048 223 224 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN" 225 226 extern char ___assert_task_state[1 - 2*!!( 227 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 228 229 /* Convenience macros for the sake of set_task_state */ 230 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 231 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 232 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 233 234 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 235 236 /* Convenience macros for the sake of wake_up */ 237 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 238 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 239 240 /* get_task_state() */ 241 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD) 244 245 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 246 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 247 #define task_is_stopped_or_traced(task) \ 248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 249 #define task_contributes_to_load(task) \ 250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 251 (task->flags & PF_FROZEN) == 0 && \ 252 (task->state & TASK_NOLOAD) == 0) 253 254 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 255 256 #define __set_task_state(tsk, state_value) \ 257 do { \ 258 (tsk)->task_state_change = _THIS_IP_; \ 259 (tsk)->state = (state_value); \ 260 } while (0) 261 #define set_task_state(tsk, state_value) \ 262 do { \ 263 (tsk)->task_state_change = _THIS_IP_; \ 264 smp_store_mb((tsk)->state, (state_value)); \ 265 } while (0) 266 267 /* 268 * set_current_state() includes a barrier so that the write of current->state 269 * is correctly serialised wrt the caller's subsequent test of whether to 270 * actually sleep: 271 * 272 * set_current_state(TASK_UNINTERRUPTIBLE); 273 * if (do_i_need_to_sleep()) 274 * schedule(); 275 * 276 * If the caller does not need such serialisation then use __set_current_state() 277 */ 278 #define __set_current_state(state_value) \ 279 do { \ 280 current->task_state_change = _THIS_IP_; \ 281 current->state = (state_value); \ 282 } while (0) 283 #define set_current_state(state_value) \ 284 do { \ 285 current->task_state_change = _THIS_IP_; \ 286 smp_store_mb(current->state, (state_value)); \ 287 } while (0) 288 289 #else 290 291 #define __set_task_state(tsk, state_value) \ 292 do { (tsk)->state = (state_value); } while (0) 293 #define set_task_state(tsk, state_value) \ 294 smp_store_mb((tsk)->state, (state_value)) 295 296 /* 297 * set_current_state() includes a barrier so that the write of current->state 298 * is correctly serialised wrt the caller's subsequent test of whether to 299 * actually sleep: 300 * 301 * set_current_state(TASK_UNINTERRUPTIBLE); 302 * if (do_i_need_to_sleep()) 303 * schedule(); 304 * 305 * If the caller does not need such serialisation then use __set_current_state() 306 */ 307 #define __set_current_state(state_value) \ 308 do { current->state = (state_value); } while (0) 309 #define set_current_state(state_value) \ 310 smp_store_mb(current->state, (state_value)) 311 312 #endif 313 314 /* Task command name length */ 315 #define TASK_COMM_LEN 16 316 317 #include <linux/spinlock.h> 318 319 /* 320 * This serializes "schedule()" and also protects 321 * the run-queue from deletions/modifications (but 322 * _adding_ to the beginning of the run-queue has 323 * a separate lock). 324 */ 325 extern rwlock_t tasklist_lock; 326 extern spinlock_t mmlist_lock; 327 328 struct task_struct; 329 330 #ifdef CONFIG_PROVE_RCU 331 extern int lockdep_tasklist_lock_is_held(void); 332 #endif /* #ifdef CONFIG_PROVE_RCU */ 333 334 extern void sched_init(void); 335 extern void sched_init_smp(void); 336 extern asmlinkage void schedule_tail(struct task_struct *prev); 337 extern void init_idle(struct task_struct *idle, int cpu); 338 extern void init_idle_bootup_task(struct task_struct *idle); 339 340 extern cpumask_var_t cpu_isolated_map; 341 342 extern int runqueue_is_locked(int cpu); 343 344 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 345 extern void nohz_balance_enter_idle(int cpu); 346 extern void set_cpu_sd_state_idle(void); 347 extern int get_nohz_timer_target(void); 348 #else 349 static inline void nohz_balance_enter_idle(int cpu) { } 350 static inline void set_cpu_sd_state_idle(void) { } 351 #endif 352 353 /* 354 * Only dump TASK_* tasks. (0 for all tasks) 355 */ 356 extern void show_state_filter(unsigned long state_filter); 357 358 static inline void show_state(void) 359 { 360 show_state_filter(0); 361 } 362 363 extern void show_regs(struct pt_regs *); 364 365 /* 366 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 367 * task), SP is the stack pointer of the first frame that should be shown in the back 368 * trace (or NULL if the entire call-chain of the task should be shown). 369 */ 370 extern void show_stack(struct task_struct *task, unsigned long *sp); 371 372 extern void cpu_init (void); 373 extern void trap_init(void); 374 extern void update_process_times(int user); 375 extern void scheduler_tick(void); 376 377 extern void sched_show_task(struct task_struct *p); 378 379 #ifdef CONFIG_LOCKUP_DETECTOR 380 extern void touch_softlockup_watchdog_sched(void); 381 extern void touch_softlockup_watchdog(void); 382 extern void touch_softlockup_watchdog_sync(void); 383 extern void touch_all_softlockup_watchdogs(void); 384 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 385 void __user *buffer, 386 size_t *lenp, loff_t *ppos); 387 extern unsigned int softlockup_panic; 388 extern unsigned int hardlockup_panic; 389 void lockup_detector_init(void); 390 #else 391 static inline void touch_softlockup_watchdog_sched(void) 392 { 393 } 394 static inline void touch_softlockup_watchdog(void) 395 { 396 } 397 static inline void touch_softlockup_watchdog_sync(void) 398 { 399 } 400 static inline void touch_all_softlockup_watchdogs(void) 401 { 402 } 403 static inline void lockup_detector_init(void) 404 { 405 } 406 #endif 407 408 #ifdef CONFIG_DETECT_HUNG_TASK 409 void reset_hung_task_detector(void); 410 #else 411 static inline void reset_hung_task_detector(void) 412 { 413 } 414 #endif 415 416 /* Attach to any functions which should be ignored in wchan output. */ 417 #define __sched __attribute__((__section__(".sched.text"))) 418 419 /* Linker adds these: start and end of __sched functions */ 420 extern char __sched_text_start[], __sched_text_end[]; 421 422 /* Is this address in the __sched functions? */ 423 extern int in_sched_functions(unsigned long addr); 424 425 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 426 extern signed long schedule_timeout(signed long timeout); 427 extern signed long schedule_timeout_interruptible(signed long timeout); 428 extern signed long schedule_timeout_killable(signed long timeout); 429 extern signed long schedule_timeout_uninterruptible(signed long timeout); 430 asmlinkage void schedule(void); 431 extern void schedule_preempt_disabled(void); 432 433 extern long io_schedule_timeout(long timeout); 434 435 static inline void io_schedule(void) 436 { 437 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT); 438 } 439 440 struct nsproxy; 441 struct user_namespace; 442 443 #ifdef CONFIG_MMU 444 extern void arch_pick_mmap_layout(struct mm_struct *mm); 445 extern unsigned long 446 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 447 unsigned long, unsigned long); 448 extern unsigned long 449 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 450 unsigned long len, unsigned long pgoff, 451 unsigned long flags); 452 #else 453 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 454 #endif 455 456 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */ 457 #define SUID_DUMP_USER 1 /* Dump as user of process */ 458 #define SUID_DUMP_ROOT 2 /* Dump as root */ 459 460 /* mm flags */ 461 462 /* for SUID_DUMP_* above */ 463 #define MMF_DUMPABLE_BITS 2 464 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 465 466 extern void set_dumpable(struct mm_struct *mm, int value); 467 /* 468 * This returns the actual value of the suid_dumpable flag. For things 469 * that are using this for checking for privilege transitions, it must 470 * test against SUID_DUMP_USER rather than treating it as a boolean 471 * value. 472 */ 473 static inline int __get_dumpable(unsigned long mm_flags) 474 { 475 return mm_flags & MMF_DUMPABLE_MASK; 476 } 477 478 static inline int get_dumpable(struct mm_struct *mm) 479 { 480 return __get_dumpable(mm->flags); 481 } 482 483 /* coredump filter bits */ 484 #define MMF_DUMP_ANON_PRIVATE 2 485 #define MMF_DUMP_ANON_SHARED 3 486 #define MMF_DUMP_MAPPED_PRIVATE 4 487 #define MMF_DUMP_MAPPED_SHARED 5 488 #define MMF_DUMP_ELF_HEADERS 6 489 #define MMF_DUMP_HUGETLB_PRIVATE 7 490 #define MMF_DUMP_HUGETLB_SHARED 8 491 #define MMF_DUMP_DAX_PRIVATE 9 492 #define MMF_DUMP_DAX_SHARED 10 493 494 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 495 #define MMF_DUMP_FILTER_BITS 9 496 #define MMF_DUMP_FILTER_MASK \ 497 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 498 #define MMF_DUMP_FILTER_DEFAULT \ 499 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 500 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 501 502 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 503 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 504 #else 505 # define MMF_DUMP_MASK_DEFAULT_ELF 0 506 #endif 507 /* leave room for more dump flags */ 508 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 509 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 510 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 511 512 #define MMF_HAS_UPROBES 19 /* has uprobes */ 513 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 514 515 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 516 517 struct sighand_struct { 518 atomic_t count; 519 struct k_sigaction action[_NSIG]; 520 spinlock_t siglock; 521 wait_queue_head_t signalfd_wqh; 522 }; 523 524 struct pacct_struct { 525 int ac_flag; 526 long ac_exitcode; 527 unsigned long ac_mem; 528 cputime_t ac_utime, ac_stime; 529 unsigned long ac_minflt, ac_majflt; 530 }; 531 532 struct cpu_itimer { 533 cputime_t expires; 534 cputime_t incr; 535 u32 error; 536 u32 incr_error; 537 }; 538 539 /** 540 * struct prev_cputime - snaphsot of system and user cputime 541 * @utime: time spent in user mode 542 * @stime: time spent in system mode 543 * @lock: protects the above two fields 544 * 545 * Stores previous user/system time values such that we can guarantee 546 * monotonicity. 547 */ 548 struct prev_cputime { 549 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 550 cputime_t utime; 551 cputime_t stime; 552 raw_spinlock_t lock; 553 #endif 554 }; 555 556 static inline void prev_cputime_init(struct prev_cputime *prev) 557 { 558 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 559 prev->utime = prev->stime = 0; 560 raw_spin_lock_init(&prev->lock); 561 #endif 562 } 563 564 /** 565 * struct task_cputime - collected CPU time counts 566 * @utime: time spent in user mode, in &cputime_t units 567 * @stime: time spent in kernel mode, in &cputime_t units 568 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 569 * 570 * This structure groups together three kinds of CPU time that are tracked for 571 * threads and thread groups. Most things considering CPU time want to group 572 * these counts together and treat all three of them in parallel. 573 */ 574 struct task_cputime { 575 cputime_t utime; 576 cputime_t stime; 577 unsigned long long sum_exec_runtime; 578 }; 579 580 /* Alternate field names when used to cache expirations. */ 581 #define virt_exp utime 582 #define prof_exp stime 583 #define sched_exp sum_exec_runtime 584 585 #define INIT_CPUTIME \ 586 (struct task_cputime) { \ 587 .utime = 0, \ 588 .stime = 0, \ 589 .sum_exec_runtime = 0, \ 590 } 591 592 /* 593 * This is the atomic variant of task_cputime, which can be used for 594 * storing and updating task_cputime statistics without locking. 595 */ 596 struct task_cputime_atomic { 597 atomic64_t utime; 598 atomic64_t stime; 599 atomic64_t sum_exec_runtime; 600 }; 601 602 #define INIT_CPUTIME_ATOMIC \ 603 (struct task_cputime_atomic) { \ 604 .utime = ATOMIC64_INIT(0), \ 605 .stime = ATOMIC64_INIT(0), \ 606 .sum_exec_runtime = ATOMIC64_INIT(0), \ 607 } 608 609 #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 610 611 /* 612 * Disable preemption until the scheduler is running -- use an unconditional 613 * value so that it also works on !PREEMPT_COUNT kernels. 614 * 615 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count(). 616 */ 617 #define INIT_PREEMPT_COUNT PREEMPT_OFFSET 618 619 /* 620 * Initial preempt_count value; reflects the preempt_count schedule invariant 621 * which states that during context switches: 622 * 623 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET 624 * 625 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels. 626 * Note: See finish_task_switch(). 627 */ 628 #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 629 630 /** 631 * struct thread_group_cputimer - thread group interval timer counts 632 * @cputime_atomic: atomic thread group interval timers. 633 * @running: true when there are timers running and 634 * @cputime_atomic receives updates. 635 * @checking_timer: true when a thread in the group is in the 636 * process of checking for thread group timers. 637 * 638 * This structure contains the version of task_cputime, above, that is 639 * used for thread group CPU timer calculations. 640 */ 641 struct thread_group_cputimer { 642 struct task_cputime_atomic cputime_atomic; 643 bool running; 644 bool checking_timer; 645 }; 646 647 #include <linux/rwsem.h> 648 struct autogroup; 649 650 /* 651 * NOTE! "signal_struct" does not have its own 652 * locking, because a shared signal_struct always 653 * implies a shared sighand_struct, so locking 654 * sighand_struct is always a proper superset of 655 * the locking of signal_struct. 656 */ 657 struct signal_struct { 658 atomic_t sigcnt; 659 atomic_t live; 660 int nr_threads; 661 struct list_head thread_head; 662 663 wait_queue_head_t wait_chldexit; /* for wait4() */ 664 665 /* current thread group signal load-balancing target: */ 666 struct task_struct *curr_target; 667 668 /* shared signal handling: */ 669 struct sigpending shared_pending; 670 671 /* thread group exit support */ 672 int group_exit_code; 673 /* overloaded: 674 * - notify group_exit_task when ->count is equal to notify_count 675 * - everyone except group_exit_task is stopped during signal delivery 676 * of fatal signals, group_exit_task processes the signal. 677 */ 678 int notify_count; 679 struct task_struct *group_exit_task; 680 681 /* thread group stop support, overloads group_exit_code too */ 682 int group_stop_count; 683 unsigned int flags; /* see SIGNAL_* flags below */ 684 685 /* 686 * PR_SET_CHILD_SUBREAPER marks a process, like a service 687 * manager, to re-parent orphan (double-forking) child processes 688 * to this process instead of 'init'. The service manager is 689 * able to receive SIGCHLD signals and is able to investigate 690 * the process until it calls wait(). All children of this 691 * process will inherit a flag if they should look for a 692 * child_subreaper process at exit. 693 */ 694 unsigned int is_child_subreaper:1; 695 unsigned int has_child_subreaper:1; 696 697 /* POSIX.1b Interval Timers */ 698 int posix_timer_id; 699 struct list_head posix_timers; 700 701 /* ITIMER_REAL timer for the process */ 702 struct hrtimer real_timer; 703 struct pid *leader_pid; 704 ktime_t it_real_incr; 705 706 /* 707 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 708 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 709 * values are defined to 0 and 1 respectively 710 */ 711 struct cpu_itimer it[2]; 712 713 /* 714 * Thread group totals for process CPU timers. 715 * See thread_group_cputimer(), et al, for details. 716 */ 717 struct thread_group_cputimer cputimer; 718 719 /* Earliest-expiration cache. */ 720 struct task_cputime cputime_expires; 721 722 struct list_head cpu_timers[3]; 723 724 struct pid *tty_old_pgrp; 725 726 /* boolean value for session group leader */ 727 int leader; 728 729 struct tty_struct *tty; /* NULL if no tty */ 730 731 #ifdef CONFIG_SCHED_AUTOGROUP 732 struct autogroup *autogroup; 733 #endif 734 /* 735 * Cumulative resource counters for dead threads in the group, 736 * and for reaped dead child processes forked by this group. 737 * Live threads maintain their own counters and add to these 738 * in __exit_signal, except for the group leader. 739 */ 740 seqlock_t stats_lock; 741 cputime_t utime, stime, cutime, cstime; 742 cputime_t gtime; 743 cputime_t cgtime; 744 struct prev_cputime prev_cputime; 745 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 746 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 747 unsigned long inblock, oublock, cinblock, coublock; 748 unsigned long maxrss, cmaxrss; 749 struct task_io_accounting ioac; 750 751 /* 752 * Cumulative ns of schedule CPU time fo dead threads in the 753 * group, not including a zombie group leader, (This only differs 754 * from jiffies_to_ns(utime + stime) if sched_clock uses something 755 * other than jiffies.) 756 */ 757 unsigned long long sum_sched_runtime; 758 759 /* 760 * We don't bother to synchronize most readers of this at all, 761 * because there is no reader checking a limit that actually needs 762 * to get both rlim_cur and rlim_max atomically, and either one 763 * alone is a single word that can safely be read normally. 764 * getrlimit/setrlimit use task_lock(current->group_leader) to 765 * protect this instead of the siglock, because they really 766 * have no need to disable irqs. 767 */ 768 struct rlimit rlim[RLIM_NLIMITS]; 769 770 #ifdef CONFIG_BSD_PROCESS_ACCT 771 struct pacct_struct pacct; /* per-process accounting information */ 772 #endif 773 #ifdef CONFIG_TASKSTATS 774 struct taskstats *stats; 775 #endif 776 #ifdef CONFIG_AUDIT 777 unsigned audit_tty; 778 unsigned audit_tty_log_passwd; 779 struct tty_audit_buf *tty_audit_buf; 780 #endif 781 782 oom_flags_t oom_flags; 783 short oom_score_adj; /* OOM kill score adjustment */ 784 short oom_score_adj_min; /* OOM kill score adjustment min value. 785 * Only settable by CAP_SYS_RESOURCE. */ 786 787 struct mutex cred_guard_mutex; /* guard against foreign influences on 788 * credential calculations 789 * (notably. ptrace) */ 790 }; 791 792 /* 793 * Bits in flags field of signal_struct. 794 */ 795 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 796 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 797 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 798 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 799 /* 800 * Pending notifications to parent. 801 */ 802 #define SIGNAL_CLD_STOPPED 0x00000010 803 #define SIGNAL_CLD_CONTINUED 0x00000020 804 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 805 806 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 807 808 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 809 static inline int signal_group_exit(const struct signal_struct *sig) 810 { 811 return (sig->flags & SIGNAL_GROUP_EXIT) || 812 (sig->group_exit_task != NULL); 813 } 814 815 /* 816 * Some day this will be a full-fledged user tracking system.. 817 */ 818 struct user_struct { 819 atomic_t __count; /* reference count */ 820 atomic_t processes; /* How many processes does this user have? */ 821 atomic_t sigpending; /* How many pending signals does this user have? */ 822 #ifdef CONFIG_INOTIFY_USER 823 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 824 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 825 #endif 826 #ifdef CONFIG_FANOTIFY 827 atomic_t fanotify_listeners; 828 #endif 829 #ifdef CONFIG_EPOLL 830 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 831 #endif 832 #ifdef CONFIG_POSIX_MQUEUE 833 /* protected by mq_lock */ 834 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 835 #endif 836 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 837 unsigned long unix_inflight; /* How many files in flight in unix sockets */ 838 839 #ifdef CONFIG_KEYS 840 struct key *uid_keyring; /* UID specific keyring */ 841 struct key *session_keyring; /* UID's default session keyring */ 842 #endif 843 844 /* Hash table maintenance information */ 845 struct hlist_node uidhash_node; 846 kuid_t uid; 847 848 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL) 849 atomic_long_t locked_vm; 850 #endif 851 }; 852 853 extern int uids_sysfs_init(void); 854 855 extern struct user_struct *find_user(kuid_t); 856 857 extern struct user_struct root_user; 858 #define INIT_USER (&root_user) 859 860 861 struct backing_dev_info; 862 struct reclaim_state; 863 864 #ifdef CONFIG_SCHED_INFO 865 struct sched_info { 866 /* cumulative counters */ 867 unsigned long pcount; /* # of times run on this cpu */ 868 unsigned long long run_delay; /* time spent waiting on a runqueue */ 869 870 /* timestamps */ 871 unsigned long long last_arrival,/* when we last ran on a cpu */ 872 last_queued; /* when we were last queued to run */ 873 }; 874 #endif /* CONFIG_SCHED_INFO */ 875 876 #ifdef CONFIG_TASK_DELAY_ACCT 877 struct task_delay_info { 878 spinlock_t lock; 879 unsigned int flags; /* Private per-task flags */ 880 881 /* For each stat XXX, add following, aligned appropriately 882 * 883 * struct timespec XXX_start, XXX_end; 884 * u64 XXX_delay; 885 * u32 XXX_count; 886 * 887 * Atomicity of updates to XXX_delay, XXX_count protected by 888 * single lock above (split into XXX_lock if contention is an issue). 889 */ 890 891 /* 892 * XXX_count is incremented on every XXX operation, the delay 893 * associated with the operation is added to XXX_delay. 894 * XXX_delay contains the accumulated delay time in nanoseconds. 895 */ 896 u64 blkio_start; /* Shared by blkio, swapin */ 897 u64 blkio_delay; /* wait for sync block io completion */ 898 u64 swapin_delay; /* wait for swapin block io completion */ 899 u32 blkio_count; /* total count of the number of sync block */ 900 /* io operations performed */ 901 u32 swapin_count; /* total count of the number of swapin block */ 902 /* io operations performed */ 903 904 u64 freepages_start; 905 u64 freepages_delay; /* wait for memory reclaim */ 906 u32 freepages_count; /* total count of memory reclaim */ 907 }; 908 #endif /* CONFIG_TASK_DELAY_ACCT */ 909 910 static inline int sched_info_on(void) 911 { 912 #ifdef CONFIG_SCHEDSTATS 913 return 1; 914 #elif defined(CONFIG_TASK_DELAY_ACCT) 915 extern int delayacct_on; 916 return delayacct_on; 917 #else 918 return 0; 919 #endif 920 } 921 922 enum cpu_idle_type { 923 CPU_IDLE, 924 CPU_NOT_IDLE, 925 CPU_NEWLY_IDLE, 926 CPU_MAX_IDLE_TYPES 927 }; 928 929 /* 930 * Increase resolution of cpu_capacity calculations 931 */ 932 #define SCHED_CAPACITY_SHIFT 10 933 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 934 935 /* 936 * Wake-queues are lists of tasks with a pending wakeup, whose 937 * callers have already marked the task as woken internally, 938 * and can thus carry on. A common use case is being able to 939 * do the wakeups once the corresponding user lock as been 940 * released. 941 * 942 * We hold reference to each task in the list across the wakeup, 943 * thus guaranteeing that the memory is still valid by the time 944 * the actual wakeups are performed in wake_up_q(). 945 * 946 * One per task suffices, because there's never a need for a task to be 947 * in two wake queues simultaneously; it is forbidden to abandon a task 948 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is 949 * already in a wake queue, the wakeup will happen soon and the second 950 * waker can just skip it. 951 * 952 * The WAKE_Q macro declares and initializes the list head. 953 * wake_up_q() does NOT reinitialize the list; it's expected to be 954 * called near the end of a function, where the fact that the queue is 955 * not used again will be easy to see by inspection. 956 * 957 * Note that this can cause spurious wakeups. schedule() callers 958 * must ensure the call is done inside a loop, confirming that the 959 * wakeup condition has in fact occurred. 960 */ 961 struct wake_q_node { 962 struct wake_q_node *next; 963 }; 964 965 struct wake_q_head { 966 struct wake_q_node *first; 967 struct wake_q_node **lastp; 968 }; 969 970 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01) 971 972 #define WAKE_Q(name) \ 973 struct wake_q_head name = { WAKE_Q_TAIL, &name.first } 974 975 extern void wake_q_add(struct wake_q_head *head, 976 struct task_struct *task); 977 extern void wake_up_q(struct wake_q_head *head); 978 979 /* 980 * sched-domains (multiprocessor balancing) declarations: 981 */ 982 #ifdef CONFIG_SMP 983 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 984 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 985 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 986 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 987 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 988 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 989 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */ 990 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */ 991 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 992 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 993 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 994 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 995 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 996 #define SD_NUMA 0x4000 /* cross-node balancing */ 997 998 #ifdef CONFIG_SCHED_SMT 999 static inline int cpu_smt_flags(void) 1000 { 1001 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 1002 } 1003 #endif 1004 1005 #ifdef CONFIG_SCHED_MC 1006 static inline int cpu_core_flags(void) 1007 { 1008 return SD_SHARE_PKG_RESOURCES; 1009 } 1010 #endif 1011 1012 #ifdef CONFIG_NUMA 1013 static inline int cpu_numa_flags(void) 1014 { 1015 return SD_NUMA; 1016 } 1017 #endif 1018 1019 struct sched_domain_attr { 1020 int relax_domain_level; 1021 }; 1022 1023 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 1024 .relax_domain_level = -1, \ 1025 } 1026 1027 extern int sched_domain_level_max; 1028 1029 struct sched_group; 1030 1031 struct sched_domain { 1032 /* These fields must be setup */ 1033 struct sched_domain *parent; /* top domain must be null terminated */ 1034 struct sched_domain *child; /* bottom domain must be null terminated */ 1035 struct sched_group *groups; /* the balancing groups of the domain */ 1036 unsigned long min_interval; /* Minimum balance interval ms */ 1037 unsigned long max_interval; /* Maximum balance interval ms */ 1038 unsigned int busy_factor; /* less balancing by factor if busy */ 1039 unsigned int imbalance_pct; /* No balance until over watermark */ 1040 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 1041 unsigned int busy_idx; 1042 unsigned int idle_idx; 1043 unsigned int newidle_idx; 1044 unsigned int wake_idx; 1045 unsigned int forkexec_idx; 1046 unsigned int smt_gain; 1047 1048 int nohz_idle; /* NOHZ IDLE status */ 1049 int flags; /* See SD_* */ 1050 int level; 1051 1052 /* Runtime fields. */ 1053 unsigned long last_balance; /* init to jiffies. units in jiffies */ 1054 unsigned int balance_interval; /* initialise to 1. units in ms. */ 1055 unsigned int nr_balance_failed; /* initialise to 0 */ 1056 1057 /* idle_balance() stats */ 1058 u64 max_newidle_lb_cost; 1059 unsigned long next_decay_max_lb_cost; 1060 1061 #ifdef CONFIG_SCHEDSTATS 1062 /* load_balance() stats */ 1063 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 1064 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 1065 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 1066 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 1067 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 1068 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 1069 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 1070 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 1071 1072 /* Active load balancing */ 1073 unsigned int alb_count; 1074 unsigned int alb_failed; 1075 unsigned int alb_pushed; 1076 1077 /* SD_BALANCE_EXEC stats */ 1078 unsigned int sbe_count; 1079 unsigned int sbe_balanced; 1080 unsigned int sbe_pushed; 1081 1082 /* SD_BALANCE_FORK stats */ 1083 unsigned int sbf_count; 1084 unsigned int sbf_balanced; 1085 unsigned int sbf_pushed; 1086 1087 /* try_to_wake_up() stats */ 1088 unsigned int ttwu_wake_remote; 1089 unsigned int ttwu_move_affine; 1090 unsigned int ttwu_move_balance; 1091 #endif 1092 #ifdef CONFIG_SCHED_DEBUG 1093 char *name; 1094 #endif 1095 union { 1096 void *private; /* used during construction */ 1097 struct rcu_head rcu; /* used during destruction */ 1098 }; 1099 1100 unsigned int span_weight; 1101 /* 1102 * Span of all CPUs in this domain. 1103 * 1104 * NOTE: this field is variable length. (Allocated dynamically 1105 * by attaching extra space to the end of the structure, 1106 * depending on how many CPUs the kernel has booted up with) 1107 */ 1108 unsigned long span[0]; 1109 }; 1110 1111 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1112 { 1113 return to_cpumask(sd->span); 1114 } 1115 1116 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1117 struct sched_domain_attr *dattr_new); 1118 1119 /* Allocate an array of sched domains, for partition_sched_domains(). */ 1120 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1121 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1122 1123 bool cpus_share_cache(int this_cpu, int that_cpu); 1124 1125 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 1126 typedef int (*sched_domain_flags_f)(void); 1127 1128 #define SDTL_OVERLAP 0x01 1129 1130 struct sd_data { 1131 struct sched_domain **__percpu sd; 1132 struct sched_group **__percpu sg; 1133 struct sched_group_capacity **__percpu sgc; 1134 }; 1135 1136 struct sched_domain_topology_level { 1137 sched_domain_mask_f mask; 1138 sched_domain_flags_f sd_flags; 1139 int flags; 1140 int numa_level; 1141 struct sd_data data; 1142 #ifdef CONFIG_SCHED_DEBUG 1143 char *name; 1144 #endif 1145 }; 1146 1147 extern void set_sched_topology(struct sched_domain_topology_level *tl); 1148 extern void wake_up_if_idle(int cpu); 1149 1150 #ifdef CONFIG_SCHED_DEBUG 1151 # define SD_INIT_NAME(type) .name = #type 1152 #else 1153 # define SD_INIT_NAME(type) 1154 #endif 1155 1156 #else /* CONFIG_SMP */ 1157 1158 struct sched_domain_attr; 1159 1160 static inline void 1161 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1162 struct sched_domain_attr *dattr_new) 1163 { 1164 } 1165 1166 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1167 { 1168 return true; 1169 } 1170 1171 #endif /* !CONFIG_SMP */ 1172 1173 1174 struct io_context; /* See blkdev.h */ 1175 1176 1177 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1178 extern void prefetch_stack(struct task_struct *t); 1179 #else 1180 static inline void prefetch_stack(struct task_struct *t) { } 1181 #endif 1182 1183 struct audit_context; /* See audit.c */ 1184 struct mempolicy; 1185 struct pipe_inode_info; 1186 struct uts_namespace; 1187 1188 struct load_weight { 1189 unsigned long weight; 1190 u32 inv_weight; 1191 }; 1192 1193 /* 1194 * The load_avg/util_avg accumulates an infinite geometric series. 1195 * 1) load_avg factors frequency scaling into the amount of time that a 1196 * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the 1197 * aggregated such weights of all runnable and blocked sched_entities. 1198 * 2) util_avg factors frequency and cpu scaling into the amount of time 1199 * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE]. 1200 * For cfs_rq, it is the aggregated such times of all runnable and 1201 * blocked sched_entities. 1202 * The 64 bit load_sum can: 1203 * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with 1204 * the highest weight (=88761) always runnable, we should not overflow 1205 * 2) for entity, support any load.weight always runnable 1206 */ 1207 struct sched_avg { 1208 u64 last_update_time, load_sum; 1209 u32 util_sum, period_contrib; 1210 unsigned long load_avg, util_avg; 1211 }; 1212 1213 #ifdef CONFIG_SCHEDSTATS 1214 struct sched_statistics { 1215 u64 wait_start; 1216 u64 wait_max; 1217 u64 wait_count; 1218 u64 wait_sum; 1219 u64 iowait_count; 1220 u64 iowait_sum; 1221 1222 u64 sleep_start; 1223 u64 sleep_max; 1224 s64 sum_sleep_runtime; 1225 1226 u64 block_start; 1227 u64 block_max; 1228 u64 exec_max; 1229 u64 slice_max; 1230 1231 u64 nr_migrations_cold; 1232 u64 nr_failed_migrations_affine; 1233 u64 nr_failed_migrations_running; 1234 u64 nr_failed_migrations_hot; 1235 u64 nr_forced_migrations; 1236 1237 u64 nr_wakeups; 1238 u64 nr_wakeups_sync; 1239 u64 nr_wakeups_migrate; 1240 u64 nr_wakeups_local; 1241 u64 nr_wakeups_remote; 1242 u64 nr_wakeups_affine; 1243 u64 nr_wakeups_affine_attempts; 1244 u64 nr_wakeups_passive; 1245 u64 nr_wakeups_idle; 1246 }; 1247 #endif 1248 1249 struct sched_entity { 1250 struct load_weight load; /* for load-balancing */ 1251 struct rb_node run_node; 1252 struct list_head group_node; 1253 unsigned int on_rq; 1254 1255 u64 exec_start; 1256 u64 sum_exec_runtime; 1257 u64 vruntime; 1258 u64 prev_sum_exec_runtime; 1259 1260 u64 nr_migrations; 1261 1262 #ifdef CONFIG_SCHEDSTATS 1263 struct sched_statistics statistics; 1264 #endif 1265 1266 #ifdef CONFIG_FAIR_GROUP_SCHED 1267 int depth; 1268 struct sched_entity *parent; 1269 /* rq on which this entity is (to be) queued: */ 1270 struct cfs_rq *cfs_rq; 1271 /* rq "owned" by this entity/group: */ 1272 struct cfs_rq *my_q; 1273 #endif 1274 1275 #ifdef CONFIG_SMP 1276 /* 1277 * Per entity load average tracking. 1278 * 1279 * Put into separate cache line so it does not 1280 * collide with read-mostly values above. 1281 */ 1282 struct sched_avg avg ____cacheline_aligned_in_smp; 1283 #endif 1284 }; 1285 1286 struct sched_rt_entity { 1287 struct list_head run_list; 1288 unsigned long timeout; 1289 unsigned long watchdog_stamp; 1290 unsigned int time_slice; 1291 1292 struct sched_rt_entity *back; 1293 #ifdef CONFIG_RT_GROUP_SCHED 1294 struct sched_rt_entity *parent; 1295 /* rq on which this entity is (to be) queued: */ 1296 struct rt_rq *rt_rq; 1297 /* rq "owned" by this entity/group: */ 1298 struct rt_rq *my_q; 1299 #endif 1300 }; 1301 1302 struct sched_dl_entity { 1303 struct rb_node rb_node; 1304 1305 /* 1306 * Original scheduling parameters. Copied here from sched_attr 1307 * during sched_setattr(), they will remain the same until 1308 * the next sched_setattr(). 1309 */ 1310 u64 dl_runtime; /* maximum runtime for each instance */ 1311 u64 dl_deadline; /* relative deadline of each instance */ 1312 u64 dl_period; /* separation of two instances (period) */ 1313 u64 dl_bw; /* dl_runtime / dl_deadline */ 1314 1315 /* 1316 * Actual scheduling parameters. Initialized with the values above, 1317 * they are continously updated during task execution. Note that 1318 * the remaining runtime could be < 0 in case we are in overrun. 1319 */ 1320 s64 runtime; /* remaining runtime for this instance */ 1321 u64 deadline; /* absolute deadline for this instance */ 1322 unsigned int flags; /* specifying the scheduler behaviour */ 1323 1324 /* 1325 * Some bool flags: 1326 * 1327 * @dl_throttled tells if we exhausted the runtime. If so, the 1328 * task has to wait for a replenishment to be performed at the 1329 * next firing of dl_timer. 1330 * 1331 * @dl_new tells if a new instance arrived. If so we must 1332 * start executing it with full runtime and reset its absolute 1333 * deadline; 1334 * 1335 * @dl_boosted tells if we are boosted due to DI. If so we are 1336 * outside bandwidth enforcement mechanism (but only until we 1337 * exit the critical section); 1338 * 1339 * @dl_yielded tells if task gave up the cpu before consuming 1340 * all its available runtime during the last job. 1341 */ 1342 int dl_throttled, dl_new, dl_boosted, dl_yielded; 1343 1344 /* 1345 * Bandwidth enforcement timer. Each -deadline task has its 1346 * own bandwidth to be enforced, thus we need one timer per task. 1347 */ 1348 struct hrtimer dl_timer; 1349 }; 1350 1351 union rcu_special { 1352 struct { 1353 u8 blocked; 1354 u8 need_qs; 1355 u8 exp_need_qs; 1356 u8 pad; /* Otherwise the compiler can store garbage here. */ 1357 } b; /* Bits. */ 1358 u32 s; /* Set of bits. */ 1359 }; 1360 struct rcu_node; 1361 1362 enum perf_event_task_context { 1363 perf_invalid_context = -1, 1364 perf_hw_context = 0, 1365 perf_sw_context, 1366 perf_nr_task_contexts, 1367 }; 1368 1369 /* Track pages that require TLB flushes */ 1370 struct tlbflush_unmap_batch { 1371 /* 1372 * Each bit set is a CPU that potentially has a TLB entry for one of 1373 * the PFNs being flushed. See set_tlb_ubc_flush_pending(). 1374 */ 1375 struct cpumask cpumask; 1376 1377 /* True if any bit in cpumask is set */ 1378 bool flush_required; 1379 1380 /* 1381 * If true then the PTE was dirty when unmapped. The entry must be 1382 * flushed before IO is initiated or a stale TLB entry potentially 1383 * allows an update without redirtying the page. 1384 */ 1385 bool writable; 1386 }; 1387 1388 struct task_struct { 1389 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1390 void *stack; 1391 atomic_t usage; 1392 unsigned int flags; /* per process flags, defined below */ 1393 unsigned int ptrace; 1394 1395 #ifdef CONFIG_SMP 1396 struct llist_node wake_entry; 1397 int on_cpu; 1398 unsigned int wakee_flips; 1399 unsigned long wakee_flip_decay_ts; 1400 struct task_struct *last_wakee; 1401 1402 int wake_cpu; 1403 #endif 1404 int on_rq; 1405 1406 int prio, static_prio, normal_prio; 1407 unsigned int rt_priority; 1408 const struct sched_class *sched_class; 1409 struct sched_entity se; 1410 struct sched_rt_entity rt; 1411 #ifdef CONFIG_CGROUP_SCHED 1412 struct task_group *sched_task_group; 1413 #endif 1414 struct sched_dl_entity dl; 1415 1416 #ifdef CONFIG_PREEMPT_NOTIFIERS 1417 /* list of struct preempt_notifier: */ 1418 struct hlist_head preempt_notifiers; 1419 #endif 1420 1421 #ifdef CONFIG_BLK_DEV_IO_TRACE 1422 unsigned int btrace_seq; 1423 #endif 1424 1425 unsigned int policy; 1426 int nr_cpus_allowed; 1427 cpumask_t cpus_allowed; 1428 1429 #ifdef CONFIG_PREEMPT_RCU 1430 int rcu_read_lock_nesting; 1431 union rcu_special rcu_read_unlock_special; 1432 struct list_head rcu_node_entry; 1433 struct rcu_node *rcu_blocked_node; 1434 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1435 #ifdef CONFIG_TASKS_RCU 1436 unsigned long rcu_tasks_nvcsw; 1437 bool rcu_tasks_holdout; 1438 struct list_head rcu_tasks_holdout_list; 1439 int rcu_tasks_idle_cpu; 1440 #endif /* #ifdef CONFIG_TASKS_RCU */ 1441 1442 #ifdef CONFIG_SCHED_INFO 1443 struct sched_info sched_info; 1444 #endif 1445 1446 struct list_head tasks; 1447 #ifdef CONFIG_SMP 1448 struct plist_node pushable_tasks; 1449 struct rb_node pushable_dl_tasks; 1450 #endif 1451 1452 struct mm_struct *mm, *active_mm; 1453 /* per-thread vma caching */ 1454 u32 vmacache_seqnum; 1455 struct vm_area_struct *vmacache[VMACACHE_SIZE]; 1456 #if defined(SPLIT_RSS_COUNTING) 1457 struct task_rss_stat rss_stat; 1458 #endif 1459 /* task state */ 1460 int exit_state; 1461 int exit_code, exit_signal; 1462 int pdeath_signal; /* The signal sent when the parent dies */ 1463 unsigned long jobctl; /* JOBCTL_*, siglock protected */ 1464 1465 /* Used for emulating ABI behavior of previous Linux versions */ 1466 unsigned int personality; 1467 1468 /* scheduler bits, serialized by scheduler locks */ 1469 unsigned sched_reset_on_fork:1; 1470 unsigned sched_contributes_to_load:1; 1471 unsigned sched_migrated:1; 1472 unsigned :0; /* force alignment to the next boundary */ 1473 1474 /* unserialized, strictly 'current' */ 1475 unsigned in_execve:1; /* bit to tell LSMs we're in execve */ 1476 unsigned in_iowait:1; 1477 #ifdef CONFIG_MEMCG 1478 unsigned memcg_may_oom:1; 1479 #endif 1480 #ifdef CONFIG_MEMCG_KMEM 1481 unsigned memcg_kmem_skip_account:1; 1482 #endif 1483 #ifdef CONFIG_COMPAT_BRK 1484 unsigned brk_randomized:1; 1485 #endif 1486 1487 unsigned long atomic_flags; /* Flags needing atomic access. */ 1488 1489 struct restart_block restart_block; 1490 1491 pid_t pid; 1492 pid_t tgid; 1493 1494 #ifdef CONFIG_CC_STACKPROTECTOR 1495 /* Canary value for the -fstack-protector gcc feature */ 1496 unsigned long stack_canary; 1497 #endif 1498 /* 1499 * pointers to (original) parent process, youngest child, younger sibling, 1500 * older sibling, respectively. (p->father can be replaced with 1501 * p->real_parent->pid) 1502 */ 1503 struct task_struct __rcu *real_parent; /* real parent process */ 1504 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1505 /* 1506 * children/sibling forms the list of my natural children 1507 */ 1508 struct list_head children; /* list of my children */ 1509 struct list_head sibling; /* linkage in my parent's children list */ 1510 struct task_struct *group_leader; /* threadgroup leader */ 1511 1512 /* 1513 * ptraced is the list of tasks this task is using ptrace on. 1514 * This includes both natural children and PTRACE_ATTACH targets. 1515 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1516 */ 1517 struct list_head ptraced; 1518 struct list_head ptrace_entry; 1519 1520 /* PID/PID hash table linkage. */ 1521 struct pid_link pids[PIDTYPE_MAX]; 1522 struct list_head thread_group; 1523 struct list_head thread_node; 1524 1525 struct completion *vfork_done; /* for vfork() */ 1526 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1527 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1528 1529 cputime_t utime, stime, utimescaled, stimescaled; 1530 cputime_t gtime; 1531 struct prev_cputime prev_cputime; 1532 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1533 seqcount_t vtime_seqcount; 1534 unsigned long long vtime_snap; 1535 enum { 1536 /* Task is sleeping or running in a CPU with VTIME inactive */ 1537 VTIME_INACTIVE = 0, 1538 /* Task runs in userspace in a CPU with VTIME active */ 1539 VTIME_USER, 1540 /* Task runs in kernelspace in a CPU with VTIME active */ 1541 VTIME_SYS, 1542 } vtime_snap_whence; 1543 #endif 1544 unsigned long nvcsw, nivcsw; /* context switch counts */ 1545 u64 start_time; /* monotonic time in nsec */ 1546 u64 real_start_time; /* boot based time in nsec */ 1547 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1548 unsigned long min_flt, maj_flt; 1549 1550 struct task_cputime cputime_expires; 1551 struct list_head cpu_timers[3]; 1552 1553 /* process credentials */ 1554 const struct cred __rcu *real_cred; /* objective and real subjective task 1555 * credentials (COW) */ 1556 const struct cred __rcu *cred; /* effective (overridable) subjective task 1557 * credentials (COW) */ 1558 char comm[TASK_COMM_LEN]; /* executable name excluding path 1559 - access with [gs]et_task_comm (which lock 1560 it with task_lock()) 1561 - initialized normally by setup_new_exec */ 1562 /* file system info */ 1563 struct nameidata *nameidata; 1564 #ifdef CONFIG_SYSVIPC 1565 /* ipc stuff */ 1566 struct sysv_sem sysvsem; 1567 struct sysv_shm sysvshm; 1568 #endif 1569 #ifdef CONFIG_DETECT_HUNG_TASK 1570 /* hung task detection */ 1571 unsigned long last_switch_count; 1572 #endif 1573 /* filesystem information */ 1574 struct fs_struct *fs; 1575 /* open file information */ 1576 struct files_struct *files; 1577 /* namespaces */ 1578 struct nsproxy *nsproxy; 1579 /* signal handlers */ 1580 struct signal_struct *signal; 1581 struct sighand_struct *sighand; 1582 1583 sigset_t blocked, real_blocked; 1584 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1585 struct sigpending pending; 1586 1587 unsigned long sas_ss_sp; 1588 size_t sas_ss_size; 1589 1590 struct callback_head *task_works; 1591 1592 struct audit_context *audit_context; 1593 #ifdef CONFIG_AUDITSYSCALL 1594 kuid_t loginuid; 1595 unsigned int sessionid; 1596 #endif 1597 struct seccomp seccomp; 1598 1599 /* Thread group tracking */ 1600 u32 parent_exec_id; 1601 u32 self_exec_id; 1602 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1603 * mempolicy */ 1604 spinlock_t alloc_lock; 1605 1606 /* Protection of the PI data structures: */ 1607 raw_spinlock_t pi_lock; 1608 1609 struct wake_q_node wake_q; 1610 1611 #ifdef CONFIG_RT_MUTEXES 1612 /* PI waiters blocked on a rt_mutex held by this task */ 1613 struct rb_root pi_waiters; 1614 struct rb_node *pi_waiters_leftmost; 1615 /* Deadlock detection and priority inheritance handling */ 1616 struct rt_mutex_waiter *pi_blocked_on; 1617 #endif 1618 1619 #ifdef CONFIG_DEBUG_MUTEXES 1620 /* mutex deadlock detection */ 1621 struct mutex_waiter *blocked_on; 1622 #endif 1623 #ifdef CONFIG_TRACE_IRQFLAGS 1624 unsigned int irq_events; 1625 unsigned long hardirq_enable_ip; 1626 unsigned long hardirq_disable_ip; 1627 unsigned int hardirq_enable_event; 1628 unsigned int hardirq_disable_event; 1629 int hardirqs_enabled; 1630 int hardirq_context; 1631 unsigned long softirq_disable_ip; 1632 unsigned long softirq_enable_ip; 1633 unsigned int softirq_disable_event; 1634 unsigned int softirq_enable_event; 1635 int softirqs_enabled; 1636 int softirq_context; 1637 #endif 1638 #ifdef CONFIG_LOCKDEP 1639 # define MAX_LOCK_DEPTH 48UL 1640 u64 curr_chain_key; 1641 int lockdep_depth; 1642 unsigned int lockdep_recursion; 1643 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1644 gfp_t lockdep_reclaim_gfp; 1645 #endif 1646 1647 /* journalling filesystem info */ 1648 void *journal_info; 1649 1650 /* stacked block device info */ 1651 struct bio_list *bio_list; 1652 1653 #ifdef CONFIG_BLOCK 1654 /* stack plugging */ 1655 struct blk_plug *plug; 1656 #endif 1657 1658 /* VM state */ 1659 struct reclaim_state *reclaim_state; 1660 1661 struct backing_dev_info *backing_dev_info; 1662 1663 struct io_context *io_context; 1664 1665 unsigned long ptrace_message; 1666 siginfo_t *last_siginfo; /* For ptrace use. */ 1667 struct task_io_accounting ioac; 1668 #if defined(CONFIG_TASK_XACCT) 1669 u64 acct_rss_mem1; /* accumulated rss usage */ 1670 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1671 cputime_t acct_timexpd; /* stime + utime since last update */ 1672 #endif 1673 #ifdef CONFIG_CPUSETS 1674 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1675 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1676 int cpuset_mem_spread_rotor; 1677 int cpuset_slab_spread_rotor; 1678 #endif 1679 #ifdef CONFIG_CGROUPS 1680 /* Control Group info protected by css_set_lock */ 1681 struct css_set __rcu *cgroups; 1682 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1683 struct list_head cg_list; 1684 #endif 1685 #ifdef CONFIG_FUTEX 1686 struct robust_list_head __user *robust_list; 1687 #ifdef CONFIG_COMPAT 1688 struct compat_robust_list_head __user *compat_robust_list; 1689 #endif 1690 struct list_head pi_state_list; 1691 struct futex_pi_state *pi_state_cache; 1692 #endif 1693 #ifdef CONFIG_PERF_EVENTS 1694 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1695 struct mutex perf_event_mutex; 1696 struct list_head perf_event_list; 1697 #endif 1698 #ifdef CONFIG_DEBUG_PREEMPT 1699 unsigned long preempt_disable_ip; 1700 #endif 1701 #ifdef CONFIG_NUMA 1702 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1703 short il_next; 1704 short pref_node_fork; 1705 #endif 1706 #ifdef CONFIG_NUMA_BALANCING 1707 int numa_scan_seq; 1708 unsigned int numa_scan_period; 1709 unsigned int numa_scan_period_max; 1710 int numa_preferred_nid; 1711 unsigned long numa_migrate_retry; 1712 u64 node_stamp; /* migration stamp */ 1713 u64 last_task_numa_placement; 1714 u64 last_sum_exec_runtime; 1715 struct callback_head numa_work; 1716 1717 struct list_head numa_entry; 1718 struct numa_group *numa_group; 1719 1720 /* 1721 * numa_faults is an array split into four regions: 1722 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1723 * in this precise order. 1724 * 1725 * faults_memory: Exponential decaying average of faults on a per-node 1726 * basis. Scheduling placement decisions are made based on these 1727 * counts. The values remain static for the duration of a PTE scan. 1728 * faults_cpu: Track the nodes the process was running on when a NUMA 1729 * hinting fault was incurred. 1730 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1731 * during the current scan window. When the scan completes, the counts 1732 * in faults_memory and faults_cpu decay and these values are copied. 1733 */ 1734 unsigned long *numa_faults; 1735 unsigned long total_numa_faults; 1736 1737 /* 1738 * numa_faults_locality tracks if faults recorded during the last 1739 * scan window were remote/local or failed to migrate. The task scan 1740 * period is adapted based on the locality of the faults with different 1741 * weights depending on whether they were shared or private faults 1742 */ 1743 unsigned long numa_faults_locality[3]; 1744 1745 unsigned long numa_pages_migrated; 1746 #endif /* CONFIG_NUMA_BALANCING */ 1747 1748 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 1749 struct tlbflush_unmap_batch tlb_ubc; 1750 #endif 1751 1752 struct rcu_head rcu; 1753 1754 /* 1755 * cache last used pipe for splice 1756 */ 1757 struct pipe_inode_info *splice_pipe; 1758 1759 struct page_frag task_frag; 1760 1761 #ifdef CONFIG_TASK_DELAY_ACCT 1762 struct task_delay_info *delays; 1763 #endif 1764 #ifdef CONFIG_FAULT_INJECTION 1765 int make_it_fail; 1766 #endif 1767 /* 1768 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1769 * balance_dirty_pages() for some dirty throttling pause 1770 */ 1771 int nr_dirtied; 1772 int nr_dirtied_pause; 1773 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1774 1775 #ifdef CONFIG_LATENCYTOP 1776 int latency_record_count; 1777 struct latency_record latency_record[LT_SAVECOUNT]; 1778 #endif 1779 /* 1780 * time slack values; these are used to round up poll() and 1781 * select() etc timeout values. These are in nanoseconds. 1782 */ 1783 unsigned long timer_slack_ns; 1784 unsigned long default_timer_slack_ns; 1785 1786 #ifdef CONFIG_KASAN 1787 unsigned int kasan_depth; 1788 #endif 1789 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1790 /* Index of current stored address in ret_stack */ 1791 int curr_ret_stack; 1792 /* Stack of return addresses for return function tracing */ 1793 struct ftrace_ret_stack *ret_stack; 1794 /* time stamp for last schedule */ 1795 unsigned long long ftrace_timestamp; 1796 /* 1797 * Number of functions that haven't been traced 1798 * because of depth overrun. 1799 */ 1800 atomic_t trace_overrun; 1801 /* Pause for the tracing */ 1802 atomic_t tracing_graph_pause; 1803 #endif 1804 #ifdef CONFIG_TRACING 1805 /* state flags for use by tracers */ 1806 unsigned long trace; 1807 /* bitmask and counter of trace recursion */ 1808 unsigned long trace_recursion; 1809 #endif /* CONFIG_TRACING */ 1810 #ifdef CONFIG_MEMCG 1811 struct mem_cgroup *memcg_in_oom; 1812 gfp_t memcg_oom_gfp_mask; 1813 int memcg_oom_order; 1814 1815 /* number of pages to reclaim on returning to userland */ 1816 unsigned int memcg_nr_pages_over_high; 1817 #endif 1818 #ifdef CONFIG_UPROBES 1819 struct uprobe_task *utask; 1820 #endif 1821 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1822 unsigned int sequential_io; 1823 unsigned int sequential_io_avg; 1824 #endif 1825 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1826 unsigned long task_state_change; 1827 #endif 1828 int pagefault_disabled; 1829 /* CPU-specific state of this task */ 1830 struct thread_struct thread; 1831 /* 1832 * WARNING: on x86, 'thread_struct' contains a variable-sized 1833 * structure. It *MUST* be at the end of 'task_struct'. 1834 * 1835 * Do not put anything below here! 1836 */ 1837 }; 1838 1839 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1840 extern int arch_task_struct_size __read_mostly; 1841 #else 1842 # define arch_task_struct_size (sizeof(struct task_struct)) 1843 #endif 1844 1845 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1846 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1847 1848 #define TNF_MIGRATED 0x01 1849 #define TNF_NO_GROUP 0x02 1850 #define TNF_SHARED 0x04 1851 #define TNF_FAULT_LOCAL 0x08 1852 #define TNF_MIGRATE_FAIL 0x10 1853 1854 #ifdef CONFIG_NUMA_BALANCING 1855 extern void task_numa_fault(int last_node, int node, int pages, int flags); 1856 extern pid_t task_numa_group_id(struct task_struct *p); 1857 extern void set_numabalancing_state(bool enabled); 1858 extern void task_numa_free(struct task_struct *p); 1859 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page, 1860 int src_nid, int dst_cpu); 1861 #else 1862 static inline void task_numa_fault(int last_node, int node, int pages, 1863 int flags) 1864 { 1865 } 1866 static inline pid_t task_numa_group_id(struct task_struct *p) 1867 { 1868 return 0; 1869 } 1870 static inline void set_numabalancing_state(bool enabled) 1871 { 1872 } 1873 static inline void task_numa_free(struct task_struct *p) 1874 { 1875 } 1876 static inline bool should_numa_migrate_memory(struct task_struct *p, 1877 struct page *page, int src_nid, int dst_cpu) 1878 { 1879 return true; 1880 } 1881 #endif 1882 1883 static inline struct pid *task_pid(struct task_struct *task) 1884 { 1885 return task->pids[PIDTYPE_PID].pid; 1886 } 1887 1888 static inline struct pid *task_tgid(struct task_struct *task) 1889 { 1890 return task->group_leader->pids[PIDTYPE_PID].pid; 1891 } 1892 1893 /* 1894 * Without tasklist or rcu lock it is not safe to dereference 1895 * the result of task_pgrp/task_session even if task == current, 1896 * we can race with another thread doing sys_setsid/sys_setpgid. 1897 */ 1898 static inline struct pid *task_pgrp(struct task_struct *task) 1899 { 1900 return task->group_leader->pids[PIDTYPE_PGID].pid; 1901 } 1902 1903 static inline struct pid *task_session(struct task_struct *task) 1904 { 1905 return task->group_leader->pids[PIDTYPE_SID].pid; 1906 } 1907 1908 struct pid_namespace; 1909 1910 /* 1911 * the helpers to get the task's different pids as they are seen 1912 * from various namespaces 1913 * 1914 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1915 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1916 * current. 1917 * task_xid_nr_ns() : id seen from the ns specified; 1918 * 1919 * set_task_vxid() : assigns a virtual id to a task; 1920 * 1921 * see also pid_nr() etc in include/linux/pid.h 1922 */ 1923 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1924 struct pid_namespace *ns); 1925 1926 static inline pid_t task_pid_nr(struct task_struct *tsk) 1927 { 1928 return tsk->pid; 1929 } 1930 1931 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1932 struct pid_namespace *ns) 1933 { 1934 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1935 } 1936 1937 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1938 { 1939 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1940 } 1941 1942 1943 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1944 { 1945 return tsk->tgid; 1946 } 1947 1948 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1949 1950 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1951 { 1952 return pid_vnr(task_tgid(tsk)); 1953 } 1954 1955 1956 static inline int pid_alive(const struct task_struct *p); 1957 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1958 { 1959 pid_t pid = 0; 1960 1961 rcu_read_lock(); 1962 if (pid_alive(tsk)) 1963 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1964 rcu_read_unlock(); 1965 1966 return pid; 1967 } 1968 1969 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1970 { 1971 return task_ppid_nr_ns(tsk, &init_pid_ns); 1972 } 1973 1974 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1975 struct pid_namespace *ns) 1976 { 1977 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1978 } 1979 1980 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1981 { 1982 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1983 } 1984 1985 1986 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1987 struct pid_namespace *ns) 1988 { 1989 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1990 } 1991 1992 static inline pid_t task_session_vnr(struct task_struct *tsk) 1993 { 1994 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1995 } 1996 1997 /* obsolete, do not use */ 1998 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1999 { 2000 return task_pgrp_nr_ns(tsk, &init_pid_ns); 2001 } 2002 2003 /** 2004 * pid_alive - check that a task structure is not stale 2005 * @p: Task structure to be checked. 2006 * 2007 * Test if a process is not yet dead (at most zombie state) 2008 * If pid_alive fails, then pointers within the task structure 2009 * can be stale and must not be dereferenced. 2010 * 2011 * Return: 1 if the process is alive. 0 otherwise. 2012 */ 2013 static inline int pid_alive(const struct task_struct *p) 2014 { 2015 return p->pids[PIDTYPE_PID].pid != NULL; 2016 } 2017 2018 /** 2019 * is_global_init - check if a task structure is init. Since init 2020 * is free to have sub-threads we need to check tgid. 2021 * @tsk: Task structure to be checked. 2022 * 2023 * Check if a task structure is the first user space task the kernel created. 2024 * 2025 * Return: 1 if the task structure is init. 0 otherwise. 2026 */ 2027 static inline int is_global_init(struct task_struct *tsk) 2028 { 2029 return task_tgid_nr(tsk) == 1; 2030 } 2031 2032 extern struct pid *cad_pid; 2033 2034 extern void free_task(struct task_struct *tsk); 2035 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 2036 2037 extern void __put_task_struct(struct task_struct *t); 2038 2039 static inline void put_task_struct(struct task_struct *t) 2040 { 2041 if (atomic_dec_and_test(&t->usage)) 2042 __put_task_struct(t); 2043 } 2044 2045 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2046 extern void task_cputime(struct task_struct *t, 2047 cputime_t *utime, cputime_t *stime); 2048 extern void task_cputime_scaled(struct task_struct *t, 2049 cputime_t *utimescaled, cputime_t *stimescaled); 2050 extern cputime_t task_gtime(struct task_struct *t); 2051 #else 2052 static inline void task_cputime(struct task_struct *t, 2053 cputime_t *utime, cputime_t *stime) 2054 { 2055 if (utime) 2056 *utime = t->utime; 2057 if (stime) 2058 *stime = t->stime; 2059 } 2060 2061 static inline void task_cputime_scaled(struct task_struct *t, 2062 cputime_t *utimescaled, 2063 cputime_t *stimescaled) 2064 { 2065 if (utimescaled) 2066 *utimescaled = t->utimescaled; 2067 if (stimescaled) 2068 *stimescaled = t->stimescaled; 2069 } 2070 2071 static inline cputime_t task_gtime(struct task_struct *t) 2072 { 2073 return t->gtime; 2074 } 2075 #endif 2076 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2077 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2078 2079 /* 2080 * Per process flags 2081 */ 2082 #define PF_EXITING 0x00000004 /* getting shut down */ 2083 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 2084 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 2085 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 2086 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 2087 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 2088 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 2089 #define PF_DUMPCORE 0x00000200 /* dumped core */ 2090 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 2091 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 2092 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 2093 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 2094 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 2095 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 2096 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 2097 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 2098 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 2099 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 2100 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 2101 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 2102 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 2103 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 2104 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 2105 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 2106 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 2107 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 2108 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ 2109 2110 /* 2111 * Only the _current_ task can read/write to tsk->flags, but other 2112 * tasks can access tsk->flags in readonly mode for example 2113 * with tsk_used_math (like during threaded core dumping). 2114 * There is however an exception to this rule during ptrace 2115 * or during fork: the ptracer task is allowed to write to the 2116 * child->flags of its traced child (same goes for fork, the parent 2117 * can write to the child->flags), because we're guaranteed the 2118 * child is not running and in turn not changing child->flags 2119 * at the same time the parent does it. 2120 */ 2121 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 2122 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 2123 #define clear_used_math() clear_stopped_child_used_math(current) 2124 #define set_used_math() set_stopped_child_used_math(current) 2125 #define conditional_stopped_child_used_math(condition, child) \ 2126 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 2127 #define conditional_used_math(condition) \ 2128 conditional_stopped_child_used_math(condition, current) 2129 #define copy_to_stopped_child_used_math(child) \ 2130 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 2131 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 2132 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 2133 #define used_math() tsk_used_math(current) 2134 2135 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags 2136 * __GFP_FS is also cleared as it implies __GFP_IO. 2137 */ 2138 static inline gfp_t memalloc_noio_flags(gfp_t flags) 2139 { 2140 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 2141 flags &= ~(__GFP_IO | __GFP_FS); 2142 return flags; 2143 } 2144 2145 static inline unsigned int memalloc_noio_save(void) 2146 { 2147 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 2148 current->flags |= PF_MEMALLOC_NOIO; 2149 return flags; 2150 } 2151 2152 static inline void memalloc_noio_restore(unsigned int flags) 2153 { 2154 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 2155 } 2156 2157 /* Per-process atomic flags. */ 2158 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 2159 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 2160 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 2161 2162 2163 #define TASK_PFA_TEST(name, func) \ 2164 static inline bool task_##func(struct task_struct *p) \ 2165 { return test_bit(PFA_##name, &p->atomic_flags); } 2166 #define TASK_PFA_SET(name, func) \ 2167 static inline void task_set_##func(struct task_struct *p) \ 2168 { set_bit(PFA_##name, &p->atomic_flags); } 2169 #define TASK_PFA_CLEAR(name, func) \ 2170 static inline void task_clear_##func(struct task_struct *p) \ 2171 { clear_bit(PFA_##name, &p->atomic_flags); } 2172 2173 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 2174 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 2175 2176 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 2177 TASK_PFA_SET(SPREAD_PAGE, spread_page) 2178 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 2179 2180 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 2181 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 2182 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 2183 2184 /* 2185 * task->jobctl flags 2186 */ 2187 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 2188 2189 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 2190 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 2191 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 2192 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 2193 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 2194 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 2195 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 2196 2197 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT) 2198 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT) 2199 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT) 2200 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT) 2201 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT) 2202 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT) 2203 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT) 2204 2205 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 2206 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 2207 2208 extern bool task_set_jobctl_pending(struct task_struct *task, 2209 unsigned long mask); 2210 extern void task_clear_jobctl_trapping(struct task_struct *task); 2211 extern void task_clear_jobctl_pending(struct task_struct *task, 2212 unsigned long mask); 2213 2214 static inline void rcu_copy_process(struct task_struct *p) 2215 { 2216 #ifdef CONFIG_PREEMPT_RCU 2217 p->rcu_read_lock_nesting = 0; 2218 p->rcu_read_unlock_special.s = 0; 2219 p->rcu_blocked_node = NULL; 2220 INIT_LIST_HEAD(&p->rcu_node_entry); 2221 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 2222 #ifdef CONFIG_TASKS_RCU 2223 p->rcu_tasks_holdout = false; 2224 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 2225 p->rcu_tasks_idle_cpu = -1; 2226 #endif /* #ifdef CONFIG_TASKS_RCU */ 2227 } 2228 2229 static inline void tsk_restore_flags(struct task_struct *task, 2230 unsigned long orig_flags, unsigned long flags) 2231 { 2232 task->flags &= ~flags; 2233 task->flags |= orig_flags & flags; 2234 } 2235 2236 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, 2237 const struct cpumask *trial); 2238 extern int task_can_attach(struct task_struct *p, 2239 const struct cpumask *cs_cpus_allowed); 2240 #ifdef CONFIG_SMP 2241 extern void do_set_cpus_allowed(struct task_struct *p, 2242 const struct cpumask *new_mask); 2243 2244 extern int set_cpus_allowed_ptr(struct task_struct *p, 2245 const struct cpumask *new_mask); 2246 #else 2247 static inline void do_set_cpus_allowed(struct task_struct *p, 2248 const struct cpumask *new_mask) 2249 { 2250 } 2251 static inline int set_cpus_allowed_ptr(struct task_struct *p, 2252 const struct cpumask *new_mask) 2253 { 2254 if (!cpumask_test_cpu(0, new_mask)) 2255 return -EINVAL; 2256 return 0; 2257 } 2258 #endif 2259 2260 #ifdef CONFIG_NO_HZ_COMMON 2261 void calc_load_enter_idle(void); 2262 void calc_load_exit_idle(void); 2263 #else 2264 static inline void calc_load_enter_idle(void) { } 2265 static inline void calc_load_exit_idle(void) { } 2266 #endif /* CONFIG_NO_HZ_COMMON */ 2267 2268 /* 2269 * Do not use outside of architecture code which knows its limitations. 2270 * 2271 * sched_clock() has no promise of monotonicity or bounded drift between 2272 * CPUs, use (which you should not) requires disabling IRQs. 2273 * 2274 * Please use one of the three interfaces below. 2275 */ 2276 extern unsigned long long notrace sched_clock(void); 2277 /* 2278 * See the comment in kernel/sched/clock.c 2279 */ 2280 extern u64 cpu_clock(int cpu); 2281 extern u64 local_clock(void); 2282 extern u64 running_clock(void); 2283 extern u64 sched_clock_cpu(int cpu); 2284 2285 2286 extern void sched_clock_init(void); 2287 2288 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2289 static inline void sched_clock_tick(void) 2290 { 2291 } 2292 2293 static inline void sched_clock_idle_sleep_event(void) 2294 { 2295 } 2296 2297 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 2298 { 2299 } 2300 #else 2301 /* 2302 * Architectures can set this to 1 if they have specified 2303 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 2304 * but then during bootup it turns out that sched_clock() 2305 * is reliable after all: 2306 */ 2307 extern int sched_clock_stable(void); 2308 extern void set_sched_clock_stable(void); 2309 extern void clear_sched_clock_stable(void); 2310 2311 extern void sched_clock_tick(void); 2312 extern void sched_clock_idle_sleep_event(void); 2313 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2314 #endif 2315 2316 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2317 /* 2318 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 2319 * The reason for this explicit opt-in is not to have perf penalty with 2320 * slow sched_clocks. 2321 */ 2322 extern void enable_sched_clock_irqtime(void); 2323 extern void disable_sched_clock_irqtime(void); 2324 #else 2325 static inline void enable_sched_clock_irqtime(void) {} 2326 static inline void disable_sched_clock_irqtime(void) {} 2327 #endif 2328 2329 extern unsigned long long 2330 task_sched_runtime(struct task_struct *task); 2331 2332 /* sched_exec is called by processes performing an exec */ 2333 #ifdef CONFIG_SMP 2334 extern void sched_exec(void); 2335 #else 2336 #define sched_exec() {} 2337 #endif 2338 2339 extern void sched_clock_idle_sleep_event(void); 2340 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2341 2342 #ifdef CONFIG_HOTPLUG_CPU 2343 extern void idle_task_exit(void); 2344 #else 2345 static inline void idle_task_exit(void) {} 2346 #endif 2347 2348 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 2349 extern void wake_up_nohz_cpu(int cpu); 2350 #else 2351 static inline void wake_up_nohz_cpu(int cpu) { } 2352 #endif 2353 2354 #ifdef CONFIG_NO_HZ_FULL 2355 extern bool sched_can_stop_tick(void); 2356 extern u64 scheduler_tick_max_deferment(void); 2357 #else 2358 static inline bool sched_can_stop_tick(void) { return false; } 2359 #endif 2360 2361 #ifdef CONFIG_SCHED_AUTOGROUP 2362 extern void sched_autogroup_create_attach(struct task_struct *p); 2363 extern void sched_autogroup_detach(struct task_struct *p); 2364 extern void sched_autogroup_fork(struct signal_struct *sig); 2365 extern void sched_autogroup_exit(struct signal_struct *sig); 2366 #ifdef CONFIG_PROC_FS 2367 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2368 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2369 #endif 2370 #else 2371 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2372 static inline void sched_autogroup_detach(struct task_struct *p) { } 2373 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2374 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2375 #endif 2376 2377 extern int yield_to(struct task_struct *p, bool preempt); 2378 extern void set_user_nice(struct task_struct *p, long nice); 2379 extern int task_prio(const struct task_struct *p); 2380 /** 2381 * task_nice - return the nice value of a given task. 2382 * @p: the task in question. 2383 * 2384 * Return: The nice value [ -20 ... 0 ... 19 ]. 2385 */ 2386 static inline int task_nice(const struct task_struct *p) 2387 { 2388 return PRIO_TO_NICE((p)->static_prio); 2389 } 2390 extern int can_nice(const struct task_struct *p, const int nice); 2391 extern int task_curr(const struct task_struct *p); 2392 extern int idle_cpu(int cpu); 2393 extern int sched_setscheduler(struct task_struct *, int, 2394 const struct sched_param *); 2395 extern int sched_setscheduler_nocheck(struct task_struct *, int, 2396 const struct sched_param *); 2397 extern int sched_setattr(struct task_struct *, 2398 const struct sched_attr *); 2399 extern struct task_struct *idle_task(int cpu); 2400 /** 2401 * is_idle_task - is the specified task an idle task? 2402 * @p: the task in question. 2403 * 2404 * Return: 1 if @p is an idle task. 0 otherwise. 2405 */ 2406 static inline bool is_idle_task(const struct task_struct *p) 2407 { 2408 return p->pid == 0; 2409 } 2410 extern struct task_struct *curr_task(int cpu); 2411 extern void set_curr_task(int cpu, struct task_struct *p); 2412 2413 void yield(void); 2414 2415 union thread_union { 2416 struct thread_info thread_info; 2417 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2418 }; 2419 2420 #ifndef __HAVE_ARCH_KSTACK_END 2421 static inline int kstack_end(void *addr) 2422 { 2423 /* Reliable end of stack detection: 2424 * Some APM bios versions misalign the stack 2425 */ 2426 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2427 } 2428 #endif 2429 2430 extern union thread_union init_thread_union; 2431 extern struct task_struct init_task; 2432 2433 extern struct mm_struct init_mm; 2434 2435 extern struct pid_namespace init_pid_ns; 2436 2437 /* 2438 * find a task by one of its numerical ids 2439 * 2440 * find_task_by_pid_ns(): 2441 * finds a task by its pid in the specified namespace 2442 * find_task_by_vpid(): 2443 * finds a task by its virtual pid 2444 * 2445 * see also find_vpid() etc in include/linux/pid.h 2446 */ 2447 2448 extern struct task_struct *find_task_by_vpid(pid_t nr); 2449 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2450 struct pid_namespace *ns); 2451 2452 /* per-UID process charging. */ 2453 extern struct user_struct * alloc_uid(kuid_t); 2454 static inline struct user_struct *get_uid(struct user_struct *u) 2455 { 2456 atomic_inc(&u->__count); 2457 return u; 2458 } 2459 extern void free_uid(struct user_struct *); 2460 2461 #include <asm/current.h> 2462 2463 extern void xtime_update(unsigned long ticks); 2464 2465 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2466 extern int wake_up_process(struct task_struct *tsk); 2467 extern void wake_up_new_task(struct task_struct *tsk); 2468 #ifdef CONFIG_SMP 2469 extern void kick_process(struct task_struct *tsk); 2470 #else 2471 static inline void kick_process(struct task_struct *tsk) { } 2472 #endif 2473 extern int sched_fork(unsigned long clone_flags, struct task_struct *p); 2474 extern void sched_dead(struct task_struct *p); 2475 2476 extern void proc_caches_init(void); 2477 extern void flush_signals(struct task_struct *); 2478 extern void ignore_signals(struct task_struct *); 2479 extern void flush_signal_handlers(struct task_struct *, int force_default); 2480 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2481 2482 static inline int kernel_dequeue_signal(siginfo_t *info) 2483 { 2484 struct task_struct *tsk = current; 2485 siginfo_t __info; 2486 int ret; 2487 2488 spin_lock_irq(&tsk->sighand->siglock); 2489 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info); 2490 spin_unlock_irq(&tsk->sighand->siglock); 2491 2492 return ret; 2493 } 2494 2495 static inline void kernel_signal_stop(void) 2496 { 2497 spin_lock_irq(¤t->sighand->siglock); 2498 if (current->jobctl & JOBCTL_STOP_DEQUEUED) 2499 __set_current_state(TASK_STOPPED); 2500 spin_unlock_irq(¤t->sighand->siglock); 2501 2502 schedule(); 2503 } 2504 2505 extern void release_task(struct task_struct * p); 2506 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2507 extern int force_sigsegv(int, struct task_struct *); 2508 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2509 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2510 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2511 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2512 const struct cred *, u32); 2513 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2514 extern int kill_pid(struct pid *pid, int sig, int priv); 2515 extern int kill_proc_info(int, struct siginfo *, pid_t); 2516 extern __must_check bool do_notify_parent(struct task_struct *, int); 2517 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2518 extern void force_sig(int, struct task_struct *); 2519 extern int send_sig(int, struct task_struct *, int); 2520 extern int zap_other_threads(struct task_struct *p); 2521 extern struct sigqueue *sigqueue_alloc(void); 2522 extern void sigqueue_free(struct sigqueue *); 2523 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2524 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2525 2526 static inline void restore_saved_sigmask(void) 2527 { 2528 if (test_and_clear_restore_sigmask()) 2529 __set_current_blocked(¤t->saved_sigmask); 2530 } 2531 2532 static inline sigset_t *sigmask_to_save(void) 2533 { 2534 sigset_t *res = ¤t->blocked; 2535 if (unlikely(test_restore_sigmask())) 2536 res = ¤t->saved_sigmask; 2537 return res; 2538 } 2539 2540 static inline int kill_cad_pid(int sig, int priv) 2541 { 2542 return kill_pid(cad_pid, sig, priv); 2543 } 2544 2545 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2546 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2547 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2548 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2549 2550 /* 2551 * True if we are on the alternate signal stack. 2552 */ 2553 static inline int on_sig_stack(unsigned long sp) 2554 { 2555 #ifdef CONFIG_STACK_GROWSUP 2556 return sp >= current->sas_ss_sp && 2557 sp - current->sas_ss_sp < current->sas_ss_size; 2558 #else 2559 return sp > current->sas_ss_sp && 2560 sp - current->sas_ss_sp <= current->sas_ss_size; 2561 #endif 2562 } 2563 2564 static inline int sas_ss_flags(unsigned long sp) 2565 { 2566 if (!current->sas_ss_size) 2567 return SS_DISABLE; 2568 2569 return on_sig_stack(sp) ? SS_ONSTACK : 0; 2570 } 2571 2572 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2573 { 2574 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2575 #ifdef CONFIG_STACK_GROWSUP 2576 return current->sas_ss_sp; 2577 #else 2578 return current->sas_ss_sp + current->sas_ss_size; 2579 #endif 2580 return sp; 2581 } 2582 2583 /* 2584 * Routines for handling mm_structs 2585 */ 2586 extern struct mm_struct * mm_alloc(void); 2587 2588 /* mmdrop drops the mm and the page tables */ 2589 extern void __mmdrop(struct mm_struct *); 2590 static inline void mmdrop(struct mm_struct * mm) 2591 { 2592 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2593 __mmdrop(mm); 2594 } 2595 2596 /* mmput gets rid of the mappings and all user-space */ 2597 extern void mmput(struct mm_struct *); 2598 /* Grab a reference to a task's mm, if it is not already going away */ 2599 extern struct mm_struct *get_task_mm(struct task_struct *task); 2600 /* 2601 * Grab a reference to a task's mm, if it is not already going away 2602 * and ptrace_may_access with the mode parameter passed to it 2603 * succeeds. 2604 */ 2605 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2606 /* Remove the current tasks stale references to the old mm_struct */ 2607 extern void mm_release(struct task_struct *, struct mm_struct *); 2608 2609 #ifdef CONFIG_HAVE_COPY_THREAD_TLS 2610 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long, 2611 struct task_struct *, unsigned long); 2612 #else 2613 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2614 struct task_struct *); 2615 2616 /* Architectures that haven't opted into copy_thread_tls get the tls argument 2617 * via pt_regs, so ignore the tls argument passed via C. */ 2618 static inline int copy_thread_tls( 2619 unsigned long clone_flags, unsigned long sp, unsigned long arg, 2620 struct task_struct *p, unsigned long tls) 2621 { 2622 return copy_thread(clone_flags, sp, arg, p); 2623 } 2624 #endif 2625 extern void flush_thread(void); 2626 extern void exit_thread(void); 2627 2628 extern void exit_files(struct task_struct *); 2629 extern void __cleanup_sighand(struct sighand_struct *); 2630 2631 extern void exit_itimers(struct signal_struct *); 2632 extern void flush_itimer_signals(void); 2633 2634 extern void do_group_exit(int); 2635 2636 extern int do_execve(struct filename *, 2637 const char __user * const __user *, 2638 const char __user * const __user *); 2639 extern int do_execveat(int, struct filename *, 2640 const char __user * const __user *, 2641 const char __user * const __user *, 2642 int); 2643 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long); 2644 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2645 struct task_struct *fork_idle(int); 2646 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2647 2648 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 2649 static inline void set_task_comm(struct task_struct *tsk, const char *from) 2650 { 2651 __set_task_comm(tsk, from, false); 2652 } 2653 extern char *get_task_comm(char *to, struct task_struct *tsk); 2654 2655 #ifdef CONFIG_SMP 2656 void scheduler_ipi(void); 2657 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2658 #else 2659 static inline void scheduler_ipi(void) { } 2660 static inline unsigned long wait_task_inactive(struct task_struct *p, 2661 long match_state) 2662 { 2663 return 1; 2664 } 2665 #endif 2666 2667 #define tasklist_empty() \ 2668 list_empty(&init_task.tasks) 2669 2670 #define next_task(p) \ 2671 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2672 2673 #define for_each_process(p) \ 2674 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2675 2676 extern bool current_is_single_threaded(void); 2677 2678 /* 2679 * Careful: do_each_thread/while_each_thread is a double loop so 2680 * 'break' will not work as expected - use goto instead. 2681 */ 2682 #define do_each_thread(g, t) \ 2683 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2684 2685 #define while_each_thread(g, t) \ 2686 while ((t = next_thread(t)) != g) 2687 2688 #define __for_each_thread(signal, t) \ 2689 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 2690 2691 #define for_each_thread(p, t) \ 2692 __for_each_thread((p)->signal, t) 2693 2694 /* Careful: this is a double loop, 'break' won't work as expected. */ 2695 #define for_each_process_thread(p, t) \ 2696 for_each_process(p) for_each_thread(p, t) 2697 2698 static inline int get_nr_threads(struct task_struct *tsk) 2699 { 2700 return tsk->signal->nr_threads; 2701 } 2702 2703 static inline bool thread_group_leader(struct task_struct *p) 2704 { 2705 return p->exit_signal >= 0; 2706 } 2707 2708 /* Do to the insanities of de_thread it is possible for a process 2709 * to have the pid of the thread group leader without actually being 2710 * the thread group leader. For iteration through the pids in proc 2711 * all we care about is that we have a task with the appropriate 2712 * pid, we don't actually care if we have the right task. 2713 */ 2714 static inline bool has_group_leader_pid(struct task_struct *p) 2715 { 2716 return task_pid(p) == p->signal->leader_pid; 2717 } 2718 2719 static inline 2720 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 2721 { 2722 return p1->signal == p2->signal; 2723 } 2724 2725 static inline struct task_struct *next_thread(const struct task_struct *p) 2726 { 2727 return list_entry_rcu(p->thread_group.next, 2728 struct task_struct, thread_group); 2729 } 2730 2731 static inline int thread_group_empty(struct task_struct *p) 2732 { 2733 return list_empty(&p->thread_group); 2734 } 2735 2736 #define delay_group_leader(p) \ 2737 (thread_group_leader(p) && !thread_group_empty(p)) 2738 2739 /* 2740 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2741 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2742 * pins the final release of task.io_context. Also protects ->cpuset and 2743 * ->cgroup.subsys[]. And ->vfork_done. 2744 * 2745 * Nests both inside and outside of read_lock(&tasklist_lock). 2746 * It must not be nested with write_lock_irq(&tasklist_lock), 2747 * neither inside nor outside. 2748 */ 2749 static inline void task_lock(struct task_struct *p) 2750 { 2751 spin_lock(&p->alloc_lock); 2752 } 2753 2754 static inline void task_unlock(struct task_struct *p) 2755 { 2756 spin_unlock(&p->alloc_lock); 2757 } 2758 2759 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2760 unsigned long *flags); 2761 2762 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2763 unsigned long *flags) 2764 { 2765 struct sighand_struct *ret; 2766 2767 ret = __lock_task_sighand(tsk, flags); 2768 (void)__cond_lock(&tsk->sighand->siglock, ret); 2769 return ret; 2770 } 2771 2772 static inline void unlock_task_sighand(struct task_struct *tsk, 2773 unsigned long *flags) 2774 { 2775 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2776 } 2777 2778 /** 2779 * threadgroup_change_begin - mark the beginning of changes to a threadgroup 2780 * @tsk: task causing the changes 2781 * 2782 * All operations which modify a threadgroup - a new thread joining the 2783 * group, death of a member thread (the assertion of PF_EXITING) and 2784 * exec(2) dethreading the process and replacing the leader - are wrapped 2785 * by threadgroup_change_{begin|end}(). This is to provide a place which 2786 * subsystems needing threadgroup stability can hook into for 2787 * synchronization. 2788 */ 2789 static inline void threadgroup_change_begin(struct task_struct *tsk) 2790 { 2791 might_sleep(); 2792 cgroup_threadgroup_change_begin(tsk); 2793 } 2794 2795 /** 2796 * threadgroup_change_end - mark the end of changes to a threadgroup 2797 * @tsk: task causing the changes 2798 * 2799 * See threadgroup_change_begin(). 2800 */ 2801 static inline void threadgroup_change_end(struct task_struct *tsk) 2802 { 2803 cgroup_threadgroup_change_end(tsk); 2804 } 2805 2806 #ifndef __HAVE_THREAD_FUNCTIONS 2807 2808 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2809 #define task_stack_page(task) ((task)->stack) 2810 2811 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2812 { 2813 *task_thread_info(p) = *task_thread_info(org); 2814 task_thread_info(p)->task = p; 2815 } 2816 2817 /* 2818 * Return the address of the last usable long on the stack. 2819 * 2820 * When the stack grows down, this is just above the thread 2821 * info struct. Going any lower will corrupt the threadinfo. 2822 * 2823 * When the stack grows up, this is the highest address. 2824 * Beyond that position, we corrupt data on the next page. 2825 */ 2826 static inline unsigned long *end_of_stack(struct task_struct *p) 2827 { 2828 #ifdef CONFIG_STACK_GROWSUP 2829 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1; 2830 #else 2831 return (unsigned long *)(task_thread_info(p) + 1); 2832 #endif 2833 } 2834 2835 #endif 2836 #define task_stack_end_corrupted(task) \ 2837 (*(end_of_stack(task)) != STACK_END_MAGIC) 2838 2839 static inline int object_is_on_stack(void *obj) 2840 { 2841 void *stack = task_stack_page(current); 2842 2843 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2844 } 2845 2846 extern void thread_info_cache_init(void); 2847 2848 #ifdef CONFIG_DEBUG_STACK_USAGE 2849 static inline unsigned long stack_not_used(struct task_struct *p) 2850 { 2851 unsigned long *n = end_of_stack(p); 2852 2853 do { /* Skip over canary */ 2854 n++; 2855 } while (!*n); 2856 2857 return (unsigned long)n - (unsigned long)end_of_stack(p); 2858 } 2859 #endif 2860 extern void set_task_stack_end_magic(struct task_struct *tsk); 2861 2862 /* set thread flags in other task's structures 2863 * - see asm/thread_info.h for TIF_xxxx flags available 2864 */ 2865 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2866 { 2867 set_ti_thread_flag(task_thread_info(tsk), flag); 2868 } 2869 2870 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2871 { 2872 clear_ti_thread_flag(task_thread_info(tsk), flag); 2873 } 2874 2875 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2876 { 2877 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2878 } 2879 2880 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2881 { 2882 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2883 } 2884 2885 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2886 { 2887 return test_ti_thread_flag(task_thread_info(tsk), flag); 2888 } 2889 2890 static inline void set_tsk_need_resched(struct task_struct *tsk) 2891 { 2892 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2893 } 2894 2895 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2896 { 2897 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2898 } 2899 2900 static inline int test_tsk_need_resched(struct task_struct *tsk) 2901 { 2902 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2903 } 2904 2905 static inline int restart_syscall(void) 2906 { 2907 set_tsk_thread_flag(current, TIF_SIGPENDING); 2908 return -ERESTARTNOINTR; 2909 } 2910 2911 static inline int signal_pending(struct task_struct *p) 2912 { 2913 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2914 } 2915 2916 static inline int __fatal_signal_pending(struct task_struct *p) 2917 { 2918 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2919 } 2920 2921 static inline int fatal_signal_pending(struct task_struct *p) 2922 { 2923 return signal_pending(p) && __fatal_signal_pending(p); 2924 } 2925 2926 static inline int signal_pending_state(long state, struct task_struct *p) 2927 { 2928 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2929 return 0; 2930 if (!signal_pending(p)) 2931 return 0; 2932 2933 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2934 } 2935 2936 /* 2937 * cond_resched() and cond_resched_lock(): latency reduction via 2938 * explicit rescheduling in places that are safe. The return 2939 * value indicates whether a reschedule was done in fact. 2940 * cond_resched_lock() will drop the spinlock before scheduling, 2941 * cond_resched_softirq() will enable bhs before scheduling. 2942 */ 2943 extern int _cond_resched(void); 2944 2945 #define cond_resched() ({ \ 2946 ___might_sleep(__FILE__, __LINE__, 0); \ 2947 _cond_resched(); \ 2948 }) 2949 2950 extern int __cond_resched_lock(spinlock_t *lock); 2951 2952 #define cond_resched_lock(lock) ({ \ 2953 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 2954 __cond_resched_lock(lock); \ 2955 }) 2956 2957 extern int __cond_resched_softirq(void); 2958 2959 #define cond_resched_softirq() ({ \ 2960 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2961 __cond_resched_softirq(); \ 2962 }) 2963 2964 static inline void cond_resched_rcu(void) 2965 { 2966 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 2967 rcu_read_unlock(); 2968 cond_resched(); 2969 rcu_read_lock(); 2970 #endif 2971 } 2972 2973 /* 2974 * Does a critical section need to be broken due to another 2975 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2976 * but a general need for low latency) 2977 */ 2978 static inline int spin_needbreak(spinlock_t *lock) 2979 { 2980 #ifdef CONFIG_PREEMPT 2981 return spin_is_contended(lock); 2982 #else 2983 return 0; 2984 #endif 2985 } 2986 2987 /* 2988 * Idle thread specific functions to determine the need_resched 2989 * polling state. 2990 */ 2991 #ifdef TIF_POLLING_NRFLAG 2992 static inline int tsk_is_polling(struct task_struct *p) 2993 { 2994 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 2995 } 2996 2997 static inline void __current_set_polling(void) 2998 { 2999 set_thread_flag(TIF_POLLING_NRFLAG); 3000 } 3001 3002 static inline bool __must_check current_set_polling_and_test(void) 3003 { 3004 __current_set_polling(); 3005 3006 /* 3007 * Polling state must be visible before we test NEED_RESCHED, 3008 * paired by resched_curr() 3009 */ 3010 smp_mb__after_atomic(); 3011 3012 return unlikely(tif_need_resched()); 3013 } 3014 3015 static inline void __current_clr_polling(void) 3016 { 3017 clear_thread_flag(TIF_POLLING_NRFLAG); 3018 } 3019 3020 static inline bool __must_check current_clr_polling_and_test(void) 3021 { 3022 __current_clr_polling(); 3023 3024 /* 3025 * Polling state must be visible before we test NEED_RESCHED, 3026 * paired by resched_curr() 3027 */ 3028 smp_mb__after_atomic(); 3029 3030 return unlikely(tif_need_resched()); 3031 } 3032 3033 #else 3034 static inline int tsk_is_polling(struct task_struct *p) { return 0; } 3035 static inline void __current_set_polling(void) { } 3036 static inline void __current_clr_polling(void) { } 3037 3038 static inline bool __must_check current_set_polling_and_test(void) 3039 { 3040 return unlikely(tif_need_resched()); 3041 } 3042 static inline bool __must_check current_clr_polling_and_test(void) 3043 { 3044 return unlikely(tif_need_resched()); 3045 } 3046 #endif 3047 3048 static inline void current_clr_polling(void) 3049 { 3050 __current_clr_polling(); 3051 3052 /* 3053 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit. 3054 * Once the bit is cleared, we'll get IPIs with every new 3055 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also 3056 * fold. 3057 */ 3058 smp_mb(); /* paired with resched_curr() */ 3059 3060 preempt_fold_need_resched(); 3061 } 3062 3063 static __always_inline bool need_resched(void) 3064 { 3065 return unlikely(tif_need_resched()); 3066 } 3067 3068 /* 3069 * Thread group CPU time accounting. 3070 */ 3071 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 3072 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 3073 3074 /* 3075 * Reevaluate whether the task has signals pending delivery. 3076 * Wake the task if so. 3077 * This is required every time the blocked sigset_t changes. 3078 * callers must hold sighand->siglock. 3079 */ 3080 extern void recalc_sigpending_and_wake(struct task_struct *t); 3081 extern void recalc_sigpending(void); 3082 3083 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 3084 3085 static inline void signal_wake_up(struct task_struct *t, bool resume) 3086 { 3087 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 3088 } 3089 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 3090 { 3091 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 3092 } 3093 3094 /* 3095 * Wrappers for p->thread_info->cpu access. No-op on UP. 3096 */ 3097 #ifdef CONFIG_SMP 3098 3099 static inline unsigned int task_cpu(const struct task_struct *p) 3100 { 3101 return task_thread_info(p)->cpu; 3102 } 3103 3104 static inline int task_node(const struct task_struct *p) 3105 { 3106 return cpu_to_node(task_cpu(p)); 3107 } 3108 3109 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 3110 3111 #else 3112 3113 static inline unsigned int task_cpu(const struct task_struct *p) 3114 { 3115 return 0; 3116 } 3117 3118 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 3119 { 3120 } 3121 3122 #endif /* CONFIG_SMP */ 3123 3124 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 3125 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 3126 3127 #ifdef CONFIG_CGROUP_SCHED 3128 extern struct task_group root_task_group; 3129 #endif /* CONFIG_CGROUP_SCHED */ 3130 3131 extern int task_can_switch_user(struct user_struct *up, 3132 struct task_struct *tsk); 3133 3134 #ifdef CONFIG_TASK_XACCT 3135 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3136 { 3137 tsk->ioac.rchar += amt; 3138 } 3139 3140 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3141 { 3142 tsk->ioac.wchar += amt; 3143 } 3144 3145 static inline void inc_syscr(struct task_struct *tsk) 3146 { 3147 tsk->ioac.syscr++; 3148 } 3149 3150 static inline void inc_syscw(struct task_struct *tsk) 3151 { 3152 tsk->ioac.syscw++; 3153 } 3154 #else 3155 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3156 { 3157 } 3158 3159 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3160 { 3161 } 3162 3163 static inline void inc_syscr(struct task_struct *tsk) 3164 { 3165 } 3166 3167 static inline void inc_syscw(struct task_struct *tsk) 3168 { 3169 } 3170 #endif 3171 3172 #ifndef TASK_SIZE_OF 3173 #define TASK_SIZE_OF(tsk) TASK_SIZE 3174 #endif 3175 3176 #ifdef CONFIG_MEMCG 3177 extern void mm_update_next_owner(struct mm_struct *mm); 3178 #else 3179 static inline void mm_update_next_owner(struct mm_struct *mm) 3180 { 3181 } 3182 #endif /* CONFIG_MEMCG */ 3183 3184 static inline unsigned long task_rlimit(const struct task_struct *tsk, 3185 unsigned int limit) 3186 { 3187 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur); 3188 } 3189 3190 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 3191 unsigned int limit) 3192 { 3193 return READ_ONCE(tsk->signal->rlim[limit].rlim_max); 3194 } 3195 3196 static inline unsigned long rlimit(unsigned int limit) 3197 { 3198 return task_rlimit(current, limit); 3199 } 3200 3201 static inline unsigned long rlimit_max(unsigned int limit) 3202 { 3203 return task_rlimit_max(current, limit); 3204 } 3205 3206 #endif 3207