xref: /linux-6.15/include/linux/sched.h (revision 055d752f)
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3 
4 #include <uapi/linux/sched.h>
5 
6 
7 struct sched_param {
8 	int sched_priority;
9 };
10 
11 #include <asm/param.h>	/* for HZ */
12 
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25 
26 #include <asm/page.h>
27 #include <asm/ptrace.h>
28 #include <asm/cputime.h>
29 
30 #include <linux/smp.h>
31 #include <linux/sem.h>
32 #include <linux/signal.h>
33 #include <linux/compiler.h>
34 #include <linux/completion.h>
35 #include <linux/pid.h>
36 #include <linux/percpu.h>
37 #include <linux/topology.h>
38 #include <linux/proportions.h>
39 #include <linux/seccomp.h>
40 #include <linux/rcupdate.h>
41 #include <linux/rculist.h>
42 #include <linux/rtmutex.h>
43 
44 #include <linux/time.h>
45 #include <linux/param.h>
46 #include <linux/resource.h>
47 #include <linux/timer.h>
48 #include <linux/hrtimer.h>
49 #include <linux/task_io_accounting.h>
50 #include <linux/latencytop.h>
51 #include <linux/cred.h>
52 #include <linux/llist.h>
53 #include <linux/uidgid.h>
54 #include <linux/gfp.h>
55 
56 #include <asm/processor.h>
57 
58 struct exec_domain;
59 struct futex_pi_state;
60 struct robust_list_head;
61 struct bio_list;
62 struct fs_struct;
63 struct perf_event_context;
64 struct blk_plug;
65 
66 /*
67  * List of flags we want to share for kernel threads,
68  * if only because they are not used by them anyway.
69  */
70 #define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
71 
72 /*
73  * These are the constant used to fake the fixed-point load-average
74  * counting. Some notes:
75  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
76  *    a load-average precision of 10 bits integer + 11 bits fractional
77  *  - if you want to count load-averages more often, you need more
78  *    precision, or rounding will get you. With 2-second counting freq,
79  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
80  *    11 bit fractions.
81  */
82 extern unsigned long avenrun[];		/* Load averages */
83 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
84 
85 #define FSHIFT		11		/* nr of bits of precision */
86 #define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
87 #define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
88 #define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
89 #define EXP_5		2014		/* 1/exp(5sec/5min) */
90 #define EXP_15		2037		/* 1/exp(5sec/15min) */
91 
92 #define CALC_LOAD(load,exp,n) \
93 	load *= exp; \
94 	load += n*(FIXED_1-exp); \
95 	load >>= FSHIFT;
96 
97 extern unsigned long total_forks;
98 extern int nr_threads;
99 DECLARE_PER_CPU(unsigned long, process_counts);
100 extern int nr_processes(void);
101 extern unsigned long nr_running(void);
102 extern unsigned long nr_iowait(void);
103 extern unsigned long nr_iowait_cpu(int cpu);
104 extern unsigned long this_cpu_load(void);
105 
106 
107 extern void calc_global_load(unsigned long ticks);
108 extern void update_cpu_load_nohz(void);
109 
110 /* Notifier for when a task gets migrated to a new CPU */
111 struct task_migration_notifier {
112 	struct task_struct *task;
113 	int from_cpu;
114 	int to_cpu;
115 };
116 extern void register_task_migration_notifier(struct notifier_block *n);
117 
118 extern unsigned long get_parent_ip(unsigned long addr);
119 
120 extern void dump_cpu_task(int cpu);
121 
122 struct seq_file;
123 struct cfs_rq;
124 struct task_group;
125 #ifdef CONFIG_SCHED_DEBUG
126 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
127 extern void proc_sched_set_task(struct task_struct *p);
128 extern void
129 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
130 #else
131 static inline void
132 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
133 {
134 }
135 static inline void proc_sched_set_task(struct task_struct *p)
136 {
137 }
138 static inline void
139 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
140 {
141 }
142 #endif
143 
144 /*
145  * Task state bitmask. NOTE! These bits are also
146  * encoded in fs/proc/array.c: get_task_state().
147  *
148  * We have two separate sets of flags: task->state
149  * is about runnability, while task->exit_state are
150  * about the task exiting. Confusing, but this way
151  * modifying one set can't modify the other one by
152  * mistake.
153  */
154 #define TASK_RUNNING		0
155 #define TASK_INTERRUPTIBLE	1
156 #define TASK_UNINTERRUPTIBLE	2
157 #define __TASK_STOPPED		4
158 #define __TASK_TRACED		8
159 /* in tsk->exit_state */
160 #define EXIT_ZOMBIE		16
161 #define EXIT_DEAD		32
162 /* in tsk->state again */
163 #define TASK_DEAD		64
164 #define TASK_WAKEKILL		128
165 #define TASK_WAKING		256
166 #define TASK_STATE_MAX		512
167 
168 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
169 
170 extern char ___assert_task_state[1 - 2*!!(
171 		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
172 
173 /* Convenience macros for the sake of set_task_state */
174 #define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
175 #define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
176 #define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
177 
178 /* Convenience macros for the sake of wake_up */
179 #define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
180 #define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
181 
182 /* get_task_state() */
183 #define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
184 				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
185 				 __TASK_TRACED)
186 
187 #define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
188 #define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
189 #define task_is_dead(task)	((task)->exit_state != 0)
190 #define task_is_stopped_or_traced(task)	\
191 			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
192 #define task_contributes_to_load(task)	\
193 				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
194 				 (task->flags & PF_FROZEN) == 0)
195 
196 #define __set_task_state(tsk, state_value)		\
197 	do { (tsk)->state = (state_value); } while (0)
198 #define set_task_state(tsk, state_value)		\
199 	set_mb((tsk)->state, (state_value))
200 
201 /*
202  * set_current_state() includes a barrier so that the write of current->state
203  * is correctly serialised wrt the caller's subsequent test of whether to
204  * actually sleep:
205  *
206  *	set_current_state(TASK_UNINTERRUPTIBLE);
207  *	if (do_i_need_to_sleep())
208  *		schedule();
209  *
210  * If the caller does not need such serialisation then use __set_current_state()
211  */
212 #define __set_current_state(state_value)			\
213 	do { current->state = (state_value); } while (0)
214 #define set_current_state(state_value)		\
215 	set_mb(current->state, (state_value))
216 
217 /* Task command name length */
218 #define TASK_COMM_LEN 16
219 
220 #include <linux/spinlock.h>
221 
222 /*
223  * This serializes "schedule()" and also protects
224  * the run-queue from deletions/modifications (but
225  * _adding_ to the beginning of the run-queue has
226  * a separate lock).
227  */
228 extern rwlock_t tasklist_lock;
229 extern spinlock_t mmlist_lock;
230 
231 struct task_struct;
232 
233 #ifdef CONFIG_PROVE_RCU
234 extern int lockdep_tasklist_lock_is_held(void);
235 #endif /* #ifdef CONFIG_PROVE_RCU */
236 
237 extern void sched_init(void);
238 extern void sched_init_smp(void);
239 extern asmlinkage void schedule_tail(struct task_struct *prev);
240 extern void init_idle(struct task_struct *idle, int cpu);
241 extern void init_idle_bootup_task(struct task_struct *idle);
242 
243 extern int runqueue_is_locked(int cpu);
244 
245 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
246 extern void nohz_balance_enter_idle(int cpu);
247 extern void set_cpu_sd_state_idle(void);
248 extern int get_nohz_timer_target(void);
249 #else
250 static inline void nohz_balance_enter_idle(int cpu) { }
251 static inline void set_cpu_sd_state_idle(void) { }
252 #endif
253 
254 /*
255  * Only dump TASK_* tasks. (0 for all tasks)
256  */
257 extern void show_state_filter(unsigned long state_filter);
258 
259 static inline void show_state(void)
260 {
261 	show_state_filter(0);
262 }
263 
264 extern void show_regs(struct pt_regs *);
265 
266 /*
267  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
268  * task), SP is the stack pointer of the first frame that should be shown in the back
269  * trace (or NULL if the entire call-chain of the task should be shown).
270  */
271 extern void show_stack(struct task_struct *task, unsigned long *sp);
272 
273 void io_schedule(void);
274 long io_schedule_timeout(long timeout);
275 
276 extern void cpu_init (void);
277 extern void trap_init(void);
278 extern void update_process_times(int user);
279 extern void scheduler_tick(void);
280 
281 extern void sched_show_task(struct task_struct *p);
282 
283 #ifdef CONFIG_LOCKUP_DETECTOR
284 extern void touch_softlockup_watchdog(void);
285 extern void touch_softlockup_watchdog_sync(void);
286 extern void touch_all_softlockup_watchdogs(void);
287 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
288 				  void __user *buffer,
289 				  size_t *lenp, loff_t *ppos);
290 extern unsigned int  softlockup_panic;
291 void lockup_detector_init(void);
292 #else
293 static inline void touch_softlockup_watchdog(void)
294 {
295 }
296 static inline void touch_softlockup_watchdog_sync(void)
297 {
298 }
299 static inline void touch_all_softlockup_watchdogs(void)
300 {
301 }
302 static inline void lockup_detector_init(void)
303 {
304 }
305 #endif
306 
307 /* Attach to any functions which should be ignored in wchan output. */
308 #define __sched		__attribute__((__section__(".sched.text")))
309 
310 /* Linker adds these: start and end of __sched functions */
311 extern char __sched_text_start[], __sched_text_end[];
312 
313 /* Is this address in the __sched functions? */
314 extern int in_sched_functions(unsigned long addr);
315 
316 #define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
317 extern signed long schedule_timeout(signed long timeout);
318 extern signed long schedule_timeout_interruptible(signed long timeout);
319 extern signed long schedule_timeout_killable(signed long timeout);
320 extern signed long schedule_timeout_uninterruptible(signed long timeout);
321 asmlinkage void schedule(void);
322 extern void schedule_preempt_disabled(void);
323 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
324 
325 struct nsproxy;
326 struct user_namespace;
327 
328 #include <linux/aio.h>
329 
330 #ifdef CONFIG_MMU
331 extern void arch_pick_mmap_layout(struct mm_struct *mm);
332 extern unsigned long
333 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
334 		       unsigned long, unsigned long);
335 extern unsigned long
336 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
337 			  unsigned long len, unsigned long pgoff,
338 			  unsigned long flags);
339 extern void arch_unmap_area(struct mm_struct *, unsigned long);
340 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
341 #else
342 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
343 #endif
344 
345 
346 extern void set_dumpable(struct mm_struct *mm, int value);
347 extern int get_dumpable(struct mm_struct *mm);
348 
349 /* mm flags */
350 /* dumpable bits */
351 #define MMF_DUMPABLE      0  /* core dump is permitted */
352 #define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
353 
354 #define MMF_DUMPABLE_BITS 2
355 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
356 
357 /* coredump filter bits */
358 #define MMF_DUMP_ANON_PRIVATE	2
359 #define MMF_DUMP_ANON_SHARED	3
360 #define MMF_DUMP_MAPPED_PRIVATE	4
361 #define MMF_DUMP_MAPPED_SHARED	5
362 #define MMF_DUMP_ELF_HEADERS	6
363 #define MMF_DUMP_HUGETLB_PRIVATE 7
364 #define MMF_DUMP_HUGETLB_SHARED  8
365 
366 #define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
367 #define MMF_DUMP_FILTER_BITS	7
368 #define MMF_DUMP_FILTER_MASK \
369 	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
370 #define MMF_DUMP_FILTER_DEFAULT \
371 	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
372 	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
373 
374 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
375 # define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
376 #else
377 # define MMF_DUMP_MASK_DEFAULT_ELF	0
378 #endif
379 					/* leave room for more dump flags */
380 #define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
381 #define MMF_VM_HUGEPAGE		17	/* set when VM_HUGEPAGE is set on vma */
382 #define MMF_EXE_FILE_CHANGED	18	/* see prctl_set_mm_exe_file() */
383 
384 #define MMF_HAS_UPROBES		19	/* has uprobes */
385 #define MMF_RECALC_UPROBES	20	/* MMF_HAS_UPROBES can be wrong */
386 
387 #define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
388 
389 struct sighand_struct {
390 	atomic_t		count;
391 	struct k_sigaction	action[_NSIG];
392 	spinlock_t		siglock;
393 	wait_queue_head_t	signalfd_wqh;
394 };
395 
396 struct pacct_struct {
397 	int			ac_flag;
398 	long			ac_exitcode;
399 	unsigned long		ac_mem;
400 	cputime_t		ac_utime, ac_stime;
401 	unsigned long		ac_minflt, ac_majflt;
402 };
403 
404 struct cpu_itimer {
405 	cputime_t expires;
406 	cputime_t incr;
407 	u32 error;
408 	u32 incr_error;
409 };
410 
411 /**
412  * struct cputime - snaphsot of system and user cputime
413  * @utime: time spent in user mode
414  * @stime: time spent in system mode
415  *
416  * Gathers a generic snapshot of user and system time.
417  */
418 struct cputime {
419 	cputime_t utime;
420 	cputime_t stime;
421 };
422 
423 /**
424  * struct task_cputime - collected CPU time counts
425  * @utime:		time spent in user mode, in &cputime_t units
426  * @stime:		time spent in kernel mode, in &cputime_t units
427  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
428  *
429  * This is an extension of struct cputime that includes the total runtime
430  * spent by the task from the scheduler point of view.
431  *
432  * As a result, this structure groups together three kinds of CPU time
433  * that are tracked for threads and thread groups.  Most things considering
434  * CPU time want to group these counts together and treat all three
435  * of them in parallel.
436  */
437 struct task_cputime {
438 	cputime_t utime;
439 	cputime_t stime;
440 	unsigned long long sum_exec_runtime;
441 };
442 /* Alternate field names when used to cache expirations. */
443 #define prof_exp	stime
444 #define virt_exp	utime
445 #define sched_exp	sum_exec_runtime
446 
447 #define INIT_CPUTIME	\
448 	(struct task_cputime) {					\
449 		.utime = 0,					\
450 		.stime = 0,					\
451 		.sum_exec_runtime = 0,				\
452 	}
453 
454 /*
455  * Disable preemption until the scheduler is running.
456  * Reset by start_kernel()->sched_init()->init_idle().
457  *
458  * We include PREEMPT_ACTIVE to avoid cond_resched() from working
459  * before the scheduler is active -- see should_resched().
460  */
461 #define INIT_PREEMPT_COUNT	(1 + PREEMPT_ACTIVE)
462 
463 /**
464  * struct thread_group_cputimer - thread group interval timer counts
465  * @cputime:		thread group interval timers.
466  * @running:		non-zero when there are timers running and
467  * 			@cputime receives updates.
468  * @lock:		lock for fields in this struct.
469  *
470  * This structure contains the version of task_cputime, above, that is
471  * used for thread group CPU timer calculations.
472  */
473 struct thread_group_cputimer {
474 	struct task_cputime cputime;
475 	int running;
476 	raw_spinlock_t lock;
477 };
478 
479 #include <linux/rwsem.h>
480 struct autogroup;
481 
482 /*
483  * NOTE! "signal_struct" does not have its own
484  * locking, because a shared signal_struct always
485  * implies a shared sighand_struct, so locking
486  * sighand_struct is always a proper superset of
487  * the locking of signal_struct.
488  */
489 struct signal_struct {
490 	atomic_t		sigcnt;
491 	atomic_t		live;
492 	int			nr_threads;
493 
494 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
495 
496 	/* current thread group signal load-balancing target: */
497 	struct task_struct	*curr_target;
498 
499 	/* shared signal handling: */
500 	struct sigpending	shared_pending;
501 
502 	/* thread group exit support */
503 	int			group_exit_code;
504 	/* overloaded:
505 	 * - notify group_exit_task when ->count is equal to notify_count
506 	 * - everyone except group_exit_task is stopped during signal delivery
507 	 *   of fatal signals, group_exit_task processes the signal.
508 	 */
509 	int			notify_count;
510 	struct task_struct	*group_exit_task;
511 
512 	/* thread group stop support, overloads group_exit_code too */
513 	int			group_stop_count;
514 	unsigned int		flags; /* see SIGNAL_* flags below */
515 
516 	/*
517 	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
518 	 * manager, to re-parent orphan (double-forking) child processes
519 	 * to this process instead of 'init'. The service manager is
520 	 * able to receive SIGCHLD signals and is able to investigate
521 	 * the process until it calls wait(). All children of this
522 	 * process will inherit a flag if they should look for a
523 	 * child_subreaper process at exit.
524 	 */
525 	unsigned int		is_child_subreaper:1;
526 	unsigned int		has_child_subreaper:1;
527 
528 	/* POSIX.1b Interval Timers */
529 	struct list_head posix_timers;
530 
531 	/* ITIMER_REAL timer for the process */
532 	struct hrtimer real_timer;
533 	struct pid *leader_pid;
534 	ktime_t it_real_incr;
535 
536 	/*
537 	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
538 	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
539 	 * values are defined to 0 and 1 respectively
540 	 */
541 	struct cpu_itimer it[2];
542 
543 	/*
544 	 * Thread group totals for process CPU timers.
545 	 * See thread_group_cputimer(), et al, for details.
546 	 */
547 	struct thread_group_cputimer cputimer;
548 
549 	/* Earliest-expiration cache. */
550 	struct task_cputime cputime_expires;
551 
552 	struct list_head cpu_timers[3];
553 
554 	struct pid *tty_old_pgrp;
555 
556 	/* boolean value for session group leader */
557 	int leader;
558 
559 	struct tty_struct *tty; /* NULL if no tty */
560 
561 #ifdef CONFIG_SCHED_AUTOGROUP
562 	struct autogroup *autogroup;
563 #endif
564 	/*
565 	 * Cumulative resource counters for dead threads in the group,
566 	 * and for reaped dead child processes forked by this group.
567 	 * Live threads maintain their own counters and add to these
568 	 * in __exit_signal, except for the group leader.
569 	 */
570 	cputime_t utime, stime, cutime, cstime;
571 	cputime_t gtime;
572 	cputime_t cgtime;
573 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
574 	struct cputime prev_cputime;
575 #endif
576 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
577 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
578 	unsigned long inblock, oublock, cinblock, coublock;
579 	unsigned long maxrss, cmaxrss;
580 	struct task_io_accounting ioac;
581 
582 	/*
583 	 * Cumulative ns of schedule CPU time fo dead threads in the
584 	 * group, not including a zombie group leader, (This only differs
585 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
586 	 * other than jiffies.)
587 	 */
588 	unsigned long long sum_sched_runtime;
589 
590 	/*
591 	 * We don't bother to synchronize most readers of this at all,
592 	 * because there is no reader checking a limit that actually needs
593 	 * to get both rlim_cur and rlim_max atomically, and either one
594 	 * alone is a single word that can safely be read normally.
595 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
596 	 * protect this instead of the siglock, because they really
597 	 * have no need to disable irqs.
598 	 */
599 	struct rlimit rlim[RLIM_NLIMITS];
600 
601 #ifdef CONFIG_BSD_PROCESS_ACCT
602 	struct pacct_struct pacct;	/* per-process accounting information */
603 #endif
604 #ifdef CONFIG_TASKSTATS
605 	struct taskstats *stats;
606 #endif
607 #ifdef CONFIG_AUDIT
608 	unsigned audit_tty;
609 	struct tty_audit_buf *tty_audit_buf;
610 #endif
611 #ifdef CONFIG_CGROUPS
612 	/*
613 	 * group_rwsem prevents new tasks from entering the threadgroup and
614 	 * member tasks from exiting,a more specifically, setting of
615 	 * PF_EXITING.  fork and exit paths are protected with this rwsem
616 	 * using threadgroup_change_begin/end().  Users which require
617 	 * threadgroup to remain stable should use threadgroup_[un]lock()
618 	 * which also takes care of exec path.  Currently, cgroup is the
619 	 * only user.
620 	 */
621 	struct rw_semaphore group_rwsem;
622 #endif
623 
624 	oom_flags_t oom_flags;
625 	short oom_score_adj;		/* OOM kill score adjustment */
626 	short oom_score_adj_min;	/* OOM kill score adjustment min value.
627 					 * Only settable by CAP_SYS_RESOURCE. */
628 
629 	struct mutex cred_guard_mutex;	/* guard against foreign influences on
630 					 * credential calculations
631 					 * (notably. ptrace) */
632 };
633 
634 /*
635  * Bits in flags field of signal_struct.
636  */
637 #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
638 #define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
639 #define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
640 /*
641  * Pending notifications to parent.
642  */
643 #define SIGNAL_CLD_STOPPED	0x00000010
644 #define SIGNAL_CLD_CONTINUED	0x00000020
645 #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
646 
647 #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
648 
649 /* If true, all threads except ->group_exit_task have pending SIGKILL */
650 static inline int signal_group_exit(const struct signal_struct *sig)
651 {
652 	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
653 		(sig->group_exit_task != NULL);
654 }
655 
656 /*
657  * Some day this will be a full-fledged user tracking system..
658  */
659 struct user_struct {
660 	atomic_t __count;	/* reference count */
661 	atomic_t processes;	/* How many processes does this user have? */
662 	atomic_t files;		/* How many open files does this user have? */
663 	atomic_t sigpending;	/* How many pending signals does this user have? */
664 #ifdef CONFIG_INOTIFY_USER
665 	atomic_t inotify_watches; /* How many inotify watches does this user have? */
666 	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
667 #endif
668 #ifdef CONFIG_FANOTIFY
669 	atomic_t fanotify_listeners;
670 #endif
671 #ifdef CONFIG_EPOLL
672 	atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
673 #endif
674 #ifdef CONFIG_POSIX_MQUEUE
675 	/* protected by mq_lock	*/
676 	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
677 #endif
678 	unsigned long locked_shm; /* How many pages of mlocked shm ? */
679 
680 #ifdef CONFIG_KEYS
681 	struct key *uid_keyring;	/* UID specific keyring */
682 	struct key *session_keyring;	/* UID's default session keyring */
683 #endif
684 
685 	/* Hash table maintenance information */
686 	struct hlist_node uidhash_node;
687 	kuid_t uid;
688 
689 #ifdef CONFIG_PERF_EVENTS
690 	atomic_long_t locked_vm;
691 #endif
692 };
693 
694 extern int uids_sysfs_init(void);
695 
696 extern struct user_struct *find_user(kuid_t);
697 
698 extern struct user_struct root_user;
699 #define INIT_USER (&root_user)
700 
701 
702 struct backing_dev_info;
703 struct reclaim_state;
704 
705 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
706 struct sched_info {
707 	/* cumulative counters */
708 	unsigned long pcount;	      /* # of times run on this cpu */
709 	unsigned long long run_delay; /* time spent waiting on a runqueue */
710 
711 	/* timestamps */
712 	unsigned long long last_arrival,/* when we last ran on a cpu */
713 			   last_queued;	/* when we were last queued to run */
714 };
715 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
716 
717 #ifdef CONFIG_TASK_DELAY_ACCT
718 struct task_delay_info {
719 	spinlock_t	lock;
720 	unsigned int	flags;	/* Private per-task flags */
721 
722 	/* For each stat XXX, add following, aligned appropriately
723 	 *
724 	 * struct timespec XXX_start, XXX_end;
725 	 * u64 XXX_delay;
726 	 * u32 XXX_count;
727 	 *
728 	 * Atomicity of updates to XXX_delay, XXX_count protected by
729 	 * single lock above (split into XXX_lock if contention is an issue).
730 	 */
731 
732 	/*
733 	 * XXX_count is incremented on every XXX operation, the delay
734 	 * associated with the operation is added to XXX_delay.
735 	 * XXX_delay contains the accumulated delay time in nanoseconds.
736 	 */
737 	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
738 	u64 blkio_delay;	/* wait for sync block io completion */
739 	u64 swapin_delay;	/* wait for swapin block io completion */
740 	u32 blkio_count;	/* total count of the number of sync block */
741 				/* io operations performed */
742 	u32 swapin_count;	/* total count of the number of swapin block */
743 				/* io operations performed */
744 
745 	struct timespec freepages_start, freepages_end;
746 	u64 freepages_delay;	/* wait for memory reclaim */
747 	u32 freepages_count;	/* total count of memory reclaim */
748 };
749 #endif	/* CONFIG_TASK_DELAY_ACCT */
750 
751 static inline int sched_info_on(void)
752 {
753 #ifdef CONFIG_SCHEDSTATS
754 	return 1;
755 #elif defined(CONFIG_TASK_DELAY_ACCT)
756 	extern int delayacct_on;
757 	return delayacct_on;
758 #else
759 	return 0;
760 #endif
761 }
762 
763 enum cpu_idle_type {
764 	CPU_IDLE,
765 	CPU_NOT_IDLE,
766 	CPU_NEWLY_IDLE,
767 	CPU_MAX_IDLE_TYPES
768 };
769 
770 /*
771  * Increase resolution of nice-level calculations for 64-bit architectures.
772  * The extra resolution improves shares distribution and load balancing of
773  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
774  * hierarchies, especially on larger systems. This is not a user-visible change
775  * and does not change the user-interface for setting shares/weights.
776  *
777  * We increase resolution only if we have enough bits to allow this increased
778  * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
779  * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
780  * increased costs.
781  */
782 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */
783 # define SCHED_LOAD_RESOLUTION	10
784 # define scale_load(w)		((w) << SCHED_LOAD_RESOLUTION)
785 # define scale_load_down(w)	((w) >> SCHED_LOAD_RESOLUTION)
786 #else
787 # define SCHED_LOAD_RESOLUTION	0
788 # define scale_load(w)		(w)
789 # define scale_load_down(w)	(w)
790 #endif
791 
792 #define SCHED_LOAD_SHIFT	(10 + SCHED_LOAD_RESOLUTION)
793 #define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
794 
795 /*
796  * Increase resolution of cpu_power calculations
797  */
798 #define SCHED_POWER_SHIFT	10
799 #define SCHED_POWER_SCALE	(1L << SCHED_POWER_SHIFT)
800 
801 /*
802  * sched-domains (multiprocessor balancing) declarations:
803  */
804 #ifdef CONFIG_SMP
805 #define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
806 #define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
807 #define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
808 #define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
809 #define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
810 #define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
811 #define SD_SHARE_CPUPOWER	0x0080	/* Domain members share cpu power */
812 #define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
813 #define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
814 #define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */
815 #define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
816 #define SD_OVERLAP		0x2000	/* sched_domains of this level overlap */
817 
818 extern int __weak arch_sd_sibiling_asym_packing(void);
819 
820 struct sched_group_power {
821 	atomic_t ref;
822 	/*
823 	 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
824 	 * single CPU.
825 	 */
826 	unsigned int power, power_orig;
827 	unsigned long next_update;
828 	/*
829 	 * Number of busy cpus in this group.
830 	 */
831 	atomic_t nr_busy_cpus;
832 
833 	unsigned long cpumask[0]; /* iteration mask */
834 };
835 
836 struct sched_group {
837 	struct sched_group *next;	/* Must be a circular list */
838 	atomic_t ref;
839 
840 	unsigned int group_weight;
841 	struct sched_group_power *sgp;
842 
843 	/*
844 	 * The CPUs this group covers.
845 	 *
846 	 * NOTE: this field is variable length. (Allocated dynamically
847 	 * by attaching extra space to the end of the structure,
848 	 * depending on how many CPUs the kernel has booted up with)
849 	 */
850 	unsigned long cpumask[0];
851 };
852 
853 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
854 {
855 	return to_cpumask(sg->cpumask);
856 }
857 
858 /*
859  * cpumask masking which cpus in the group are allowed to iterate up the domain
860  * tree.
861  */
862 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
863 {
864 	return to_cpumask(sg->sgp->cpumask);
865 }
866 
867 /**
868  * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
869  * @group: The group whose first cpu is to be returned.
870  */
871 static inline unsigned int group_first_cpu(struct sched_group *group)
872 {
873 	return cpumask_first(sched_group_cpus(group));
874 }
875 
876 struct sched_domain_attr {
877 	int relax_domain_level;
878 };
879 
880 #define SD_ATTR_INIT	(struct sched_domain_attr) {	\
881 	.relax_domain_level = -1,			\
882 }
883 
884 extern int sched_domain_level_max;
885 
886 struct sched_domain {
887 	/* These fields must be setup */
888 	struct sched_domain *parent;	/* top domain must be null terminated */
889 	struct sched_domain *child;	/* bottom domain must be null terminated */
890 	struct sched_group *groups;	/* the balancing groups of the domain */
891 	unsigned long min_interval;	/* Minimum balance interval ms */
892 	unsigned long max_interval;	/* Maximum balance interval ms */
893 	unsigned int busy_factor;	/* less balancing by factor if busy */
894 	unsigned int imbalance_pct;	/* No balance until over watermark */
895 	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
896 	unsigned int busy_idx;
897 	unsigned int idle_idx;
898 	unsigned int newidle_idx;
899 	unsigned int wake_idx;
900 	unsigned int forkexec_idx;
901 	unsigned int smt_gain;
902 	int flags;			/* See SD_* */
903 	int level;
904 
905 	/* Runtime fields. */
906 	unsigned long last_balance;	/* init to jiffies. units in jiffies */
907 	unsigned int balance_interval;	/* initialise to 1. units in ms. */
908 	unsigned int nr_balance_failed; /* initialise to 0 */
909 
910 	u64 last_update;
911 
912 #ifdef CONFIG_SCHEDSTATS
913 	/* load_balance() stats */
914 	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
915 	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
916 	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
917 	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
918 	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
919 	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
920 	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
921 	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
922 
923 	/* Active load balancing */
924 	unsigned int alb_count;
925 	unsigned int alb_failed;
926 	unsigned int alb_pushed;
927 
928 	/* SD_BALANCE_EXEC stats */
929 	unsigned int sbe_count;
930 	unsigned int sbe_balanced;
931 	unsigned int sbe_pushed;
932 
933 	/* SD_BALANCE_FORK stats */
934 	unsigned int sbf_count;
935 	unsigned int sbf_balanced;
936 	unsigned int sbf_pushed;
937 
938 	/* try_to_wake_up() stats */
939 	unsigned int ttwu_wake_remote;
940 	unsigned int ttwu_move_affine;
941 	unsigned int ttwu_move_balance;
942 #endif
943 #ifdef CONFIG_SCHED_DEBUG
944 	char *name;
945 #endif
946 	union {
947 		void *private;		/* used during construction */
948 		struct rcu_head rcu;	/* used during destruction */
949 	};
950 
951 	unsigned int span_weight;
952 	/*
953 	 * Span of all CPUs in this domain.
954 	 *
955 	 * NOTE: this field is variable length. (Allocated dynamically
956 	 * by attaching extra space to the end of the structure,
957 	 * depending on how many CPUs the kernel has booted up with)
958 	 */
959 	unsigned long span[0];
960 };
961 
962 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
963 {
964 	return to_cpumask(sd->span);
965 }
966 
967 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
968 				    struct sched_domain_attr *dattr_new);
969 
970 /* Allocate an array of sched domains, for partition_sched_domains(). */
971 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
972 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
973 
974 /* Test a flag in parent sched domain */
975 static inline int test_sd_parent(struct sched_domain *sd, int flag)
976 {
977 	if (sd->parent && (sd->parent->flags & flag))
978 		return 1;
979 
980 	return 0;
981 }
982 
983 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
984 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
985 
986 bool cpus_share_cache(int this_cpu, int that_cpu);
987 
988 #else /* CONFIG_SMP */
989 
990 struct sched_domain_attr;
991 
992 static inline void
993 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
994 			struct sched_domain_attr *dattr_new)
995 {
996 }
997 
998 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
999 {
1000 	return true;
1001 }
1002 
1003 #endif	/* !CONFIG_SMP */
1004 
1005 
1006 struct io_context;			/* See blkdev.h */
1007 
1008 
1009 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1010 extern void prefetch_stack(struct task_struct *t);
1011 #else
1012 static inline void prefetch_stack(struct task_struct *t) { }
1013 #endif
1014 
1015 struct audit_context;		/* See audit.c */
1016 struct mempolicy;
1017 struct pipe_inode_info;
1018 struct uts_namespace;
1019 
1020 struct rq;
1021 struct sched_domain;
1022 
1023 /*
1024  * wake flags
1025  */
1026 #define WF_SYNC		0x01		/* waker goes to sleep after wakup */
1027 #define WF_FORK		0x02		/* child wakeup after fork */
1028 #define WF_MIGRATED	0x04		/* internal use, task got migrated */
1029 
1030 #define ENQUEUE_WAKEUP		1
1031 #define ENQUEUE_HEAD		2
1032 #ifdef CONFIG_SMP
1033 #define ENQUEUE_WAKING		4	/* sched_class::task_waking was called */
1034 #else
1035 #define ENQUEUE_WAKING		0
1036 #endif
1037 
1038 #define DEQUEUE_SLEEP		1
1039 
1040 struct sched_class {
1041 	const struct sched_class *next;
1042 
1043 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1044 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1045 	void (*yield_task) (struct rq *rq);
1046 	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1047 
1048 	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1049 
1050 	struct task_struct * (*pick_next_task) (struct rq *rq);
1051 	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1052 
1053 #ifdef CONFIG_SMP
1054 	int  (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1055 	void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1056 
1057 	void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1058 	void (*post_schedule) (struct rq *this_rq);
1059 	void (*task_waking) (struct task_struct *task);
1060 	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1061 
1062 	void (*set_cpus_allowed)(struct task_struct *p,
1063 				 const struct cpumask *newmask);
1064 
1065 	void (*rq_online)(struct rq *rq);
1066 	void (*rq_offline)(struct rq *rq);
1067 #endif
1068 
1069 	void (*set_curr_task) (struct rq *rq);
1070 	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1071 	void (*task_fork) (struct task_struct *p);
1072 
1073 	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1074 	void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1075 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1076 			     int oldprio);
1077 
1078 	unsigned int (*get_rr_interval) (struct rq *rq,
1079 					 struct task_struct *task);
1080 
1081 #ifdef CONFIG_FAIR_GROUP_SCHED
1082 	void (*task_move_group) (struct task_struct *p, int on_rq);
1083 #endif
1084 };
1085 
1086 struct load_weight {
1087 	unsigned long weight, inv_weight;
1088 };
1089 
1090 struct sched_avg {
1091 	/*
1092 	 * These sums represent an infinite geometric series and so are bound
1093 	 * above by 1024/(1-y).  Thus we only need a u32 to store them for for all
1094 	 * choices of y < 1-2^(-32)*1024.
1095 	 */
1096 	u32 runnable_avg_sum, runnable_avg_period;
1097 	u64 last_runnable_update;
1098 	s64 decay_count;
1099 	unsigned long load_avg_contrib;
1100 };
1101 
1102 #ifdef CONFIG_SCHEDSTATS
1103 struct sched_statistics {
1104 	u64			wait_start;
1105 	u64			wait_max;
1106 	u64			wait_count;
1107 	u64			wait_sum;
1108 	u64			iowait_count;
1109 	u64			iowait_sum;
1110 
1111 	u64			sleep_start;
1112 	u64			sleep_max;
1113 	s64			sum_sleep_runtime;
1114 
1115 	u64			block_start;
1116 	u64			block_max;
1117 	u64			exec_max;
1118 	u64			slice_max;
1119 
1120 	u64			nr_migrations_cold;
1121 	u64			nr_failed_migrations_affine;
1122 	u64			nr_failed_migrations_running;
1123 	u64			nr_failed_migrations_hot;
1124 	u64			nr_forced_migrations;
1125 
1126 	u64			nr_wakeups;
1127 	u64			nr_wakeups_sync;
1128 	u64			nr_wakeups_migrate;
1129 	u64			nr_wakeups_local;
1130 	u64			nr_wakeups_remote;
1131 	u64			nr_wakeups_affine;
1132 	u64			nr_wakeups_affine_attempts;
1133 	u64			nr_wakeups_passive;
1134 	u64			nr_wakeups_idle;
1135 };
1136 #endif
1137 
1138 struct sched_entity {
1139 	struct load_weight	load;		/* for load-balancing */
1140 	struct rb_node		run_node;
1141 	struct list_head	group_node;
1142 	unsigned int		on_rq;
1143 
1144 	u64			exec_start;
1145 	u64			sum_exec_runtime;
1146 	u64			vruntime;
1147 	u64			prev_sum_exec_runtime;
1148 
1149 	u64			nr_migrations;
1150 
1151 #ifdef CONFIG_SCHEDSTATS
1152 	struct sched_statistics statistics;
1153 #endif
1154 
1155 #ifdef CONFIG_FAIR_GROUP_SCHED
1156 	struct sched_entity	*parent;
1157 	/* rq on which this entity is (to be) queued: */
1158 	struct cfs_rq		*cfs_rq;
1159 	/* rq "owned" by this entity/group: */
1160 	struct cfs_rq		*my_q;
1161 #endif
1162 
1163 /*
1164  * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1165  * removed when useful for applications beyond shares distribution (e.g.
1166  * load-balance).
1167  */
1168 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1169 	/* Per-entity load-tracking */
1170 	struct sched_avg	avg;
1171 #endif
1172 };
1173 
1174 struct sched_rt_entity {
1175 	struct list_head run_list;
1176 	unsigned long timeout;
1177 	unsigned long watchdog_stamp;
1178 	unsigned int time_slice;
1179 
1180 	struct sched_rt_entity *back;
1181 #ifdef CONFIG_RT_GROUP_SCHED
1182 	struct sched_rt_entity	*parent;
1183 	/* rq on which this entity is (to be) queued: */
1184 	struct rt_rq		*rt_rq;
1185 	/* rq "owned" by this entity/group: */
1186 	struct rt_rq		*my_q;
1187 #endif
1188 };
1189 
1190 
1191 struct rcu_node;
1192 
1193 enum perf_event_task_context {
1194 	perf_invalid_context = -1,
1195 	perf_hw_context = 0,
1196 	perf_sw_context,
1197 	perf_nr_task_contexts,
1198 };
1199 
1200 struct task_struct {
1201 	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1202 	void *stack;
1203 	atomic_t usage;
1204 	unsigned int flags;	/* per process flags, defined below */
1205 	unsigned int ptrace;
1206 
1207 #ifdef CONFIG_SMP
1208 	struct llist_node wake_entry;
1209 	int on_cpu;
1210 #endif
1211 	int on_rq;
1212 
1213 	int prio, static_prio, normal_prio;
1214 	unsigned int rt_priority;
1215 	const struct sched_class *sched_class;
1216 	struct sched_entity se;
1217 	struct sched_rt_entity rt;
1218 #ifdef CONFIG_CGROUP_SCHED
1219 	struct task_group *sched_task_group;
1220 #endif
1221 
1222 #ifdef CONFIG_PREEMPT_NOTIFIERS
1223 	/* list of struct preempt_notifier: */
1224 	struct hlist_head preempt_notifiers;
1225 #endif
1226 
1227 	/*
1228 	 * fpu_counter contains the number of consecutive context switches
1229 	 * that the FPU is used. If this is over a threshold, the lazy fpu
1230 	 * saving becomes unlazy to save the trap. This is an unsigned char
1231 	 * so that after 256 times the counter wraps and the behavior turns
1232 	 * lazy again; this to deal with bursty apps that only use FPU for
1233 	 * a short time
1234 	 */
1235 	unsigned char fpu_counter;
1236 #ifdef CONFIG_BLK_DEV_IO_TRACE
1237 	unsigned int btrace_seq;
1238 #endif
1239 
1240 	unsigned int policy;
1241 	int nr_cpus_allowed;
1242 	cpumask_t cpus_allowed;
1243 
1244 #ifdef CONFIG_PREEMPT_RCU
1245 	int rcu_read_lock_nesting;
1246 	char rcu_read_unlock_special;
1247 	struct list_head rcu_node_entry;
1248 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1249 #ifdef CONFIG_TREE_PREEMPT_RCU
1250 	struct rcu_node *rcu_blocked_node;
1251 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1252 #ifdef CONFIG_RCU_BOOST
1253 	struct rt_mutex *rcu_boost_mutex;
1254 #endif /* #ifdef CONFIG_RCU_BOOST */
1255 
1256 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1257 	struct sched_info sched_info;
1258 #endif
1259 
1260 	struct list_head tasks;
1261 #ifdef CONFIG_SMP
1262 	struct plist_node pushable_tasks;
1263 #endif
1264 
1265 	struct mm_struct *mm, *active_mm;
1266 #ifdef CONFIG_COMPAT_BRK
1267 	unsigned brk_randomized:1;
1268 #endif
1269 #if defined(SPLIT_RSS_COUNTING)
1270 	struct task_rss_stat	rss_stat;
1271 #endif
1272 /* task state */
1273 	int exit_state;
1274 	int exit_code, exit_signal;
1275 	int pdeath_signal;  /*  The signal sent when the parent dies  */
1276 	unsigned int jobctl;	/* JOBCTL_*, siglock protected */
1277 	/* ??? */
1278 	unsigned int personality;
1279 	unsigned did_exec:1;
1280 	unsigned in_execve:1;	/* Tell the LSMs that the process is doing an
1281 				 * execve */
1282 	unsigned in_iowait:1;
1283 
1284 	/* task may not gain privileges */
1285 	unsigned no_new_privs:1;
1286 
1287 	/* Revert to default priority/policy when forking */
1288 	unsigned sched_reset_on_fork:1;
1289 	unsigned sched_contributes_to_load:1;
1290 
1291 	pid_t pid;
1292 	pid_t tgid;
1293 
1294 #ifdef CONFIG_CC_STACKPROTECTOR
1295 	/* Canary value for the -fstack-protector gcc feature */
1296 	unsigned long stack_canary;
1297 #endif
1298 	/*
1299 	 * pointers to (original) parent process, youngest child, younger sibling,
1300 	 * older sibling, respectively.  (p->father can be replaced with
1301 	 * p->real_parent->pid)
1302 	 */
1303 	struct task_struct __rcu *real_parent; /* real parent process */
1304 	struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1305 	/*
1306 	 * children/sibling forms the list of my natural children
1307 	 */
1308 	struct list_head children;	/* list of my children */
1309 	struct list_head sibling;	/* linkage in my parent's children list */
1310 	struct task_struct *group_leader;	/* threadgroup leader */
1311 
1312 	/*
1313 	 * ptraced is the list of tasks this task is using ptrace on.
1314 	 * This includes both natural children and PTRACE_ATTACH targets.
1315 	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1316 	 */
1317 	struct list_head ptraced;
1318 	struct list_head ptrace_entry;
1319 
1320 	/* PID/PID hash table linkage. */
1321 	struct pid_link pids[PIDTYPE_MAX];
1322 	struct list_head thread_group;
1323 
1324 	struct completion *vfork_done;		/* for vfork() */
1325 	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1326 	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1327 
1328 	cputime_t utime, stime, utimescaled, stimescaled;
1329 	cputime_t gtime;
1330 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1331 	struct cputime prev_cputime;
1332 #endif
1333 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1334 	seqlock_t vtime_seqlock;
1335 	unsigned long long vtime_snap;
1336 	enum {
1337 		VTIME_SLEEPING = 0,
1338 		VTIME_USER,
1339 		VTIME_SYS,
1340 	} vtime_snap_whence;
1341 #endif
1342 	unsigned long nvcsw, nivcsw; /* context switch counts */
1343 	struct timespec start_time; 		/* monotonic time */
1344 	struct timespec real_start_time;	/* boot based time */
1345 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1346 	unsigned long min_flt, maj_flt;
1347 
1348 	struct task_cputime cputime_expires;
1349 	struct list_head cpu_timers[3];
1350 
1351 /* process credentials */
1352 	const struct cred __rcu *real_cred; /* objective and real subjective task
1353 					 * credentials (COW) */
1354 	const struct cred __rcu *cred;	/* effective (overridable) subjective task
1355 					 * credentials (COW) */
1356 	char comm[TASK_COMM_LEN]; /* executable name excluding path
1357 				     - access with [gs]et_task_comm (which lock
1358 				       it with task_lock())
1359 				     - initialized normally by setup_new_exec */
1360 /* file system info */
1361 	int link_count, total_link_count;
1362 #ifdef CONFIG_SYSVIPC
1363 /* ipc stuff */
1364 	struct sysv_sem sysvsem;
1365 #endif
1366 #ifdef CONFIG_DETECT_HUNG_TASK
1367 /* hung task detection */
1368 	unsigned long last_switch_count;
1369 #endif
1370 /* CPU-specific state of this task */
1371 	struct thread_struct thread;
1372 /* filesystem information */
1373 	struct fs_struct *fs;
1374 /* open file information */
1375 	struct files_struct *files;
1376 /* namespaces */
1377 	struct nsproxy *nsproxy;
1378 /* signal handlers */
1379 	struct signal_struct *signal;
1380 	struct sighand_struct *sighand;
1381 
1382 	sigset_t blocked, real_blocked;
1383 	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1384 	struct sigpending pending;
1385 
1386 	unsigned long sas_ss_sp;
1387 	size_t sas_ss_size;
1388 	int (*notifier)(void *priv);
1389 	void *notifier_data;
1390 	sigset_t *notifier_mask;
1391 	struct callback_head *task_works;
1392 
1393 	struct audit_context *audit_context;
1394 #ifdef CONFIG_AUDITSYSCALL
1395 	kuid_t loginuid;
1396 	unsigned int sessionid;
1397 #endif
1398 	struct seccomp seccomp;
1399 
1400 /* Thread group tracking */
1401    	u32 parent_exec_id;
1402    	u32 self_exec_id;
1403 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1404  * mempolicy */
1405 	spinlock_t alloc_lock;
1406 
1407 	/* Protection of the PI data structures: */
1408 	raw_spinlock_t pi_lock;
1409 
1410 #ifdef CONFIG_RT_MUTEXES
1411 	/* PI waiters blocked on a rt_mutex held by this task */
1412 	struct plist_head pi_waiters;
1413 	/* Deadlock detection and priority inheritance handling */
1414 	struct rt_mutex_waiter *pi_blocked_on;
1415 #endif
1416 
1417 #ifdef CONFIG_DEBUG_MUTEXES
1418 	/* mutex deadlock detection */
1419 	struct mutex_waiter *blocked_on;
1420 #endif
1421 #ifdef CONFIG_TRACE_IRQFLAGS
1422 	unsigned int irq_events;
1423 	unsigned long hardirq_enable_ip;
1424 	unsigned long hardirq_disable_ip;
1425 	unsigned int hardirq_enable_event;
1426 	unsigned int hardirq_disable_event;
1427 	int hardirqs_enabled;
1428 	int hardirq_context;
1429 	unsigned long softirq_disable_ip;
1430 	unsigned long softirq_enable_ip;
1431 	unsigned int softirq_disable_event;
1432 	unsigned int softirq_enable_event;
1433 	int softirqs_enabled;
1434 	int softirq_context;
1435 #endif
1436 #ifdef CONFIG_LOCKDEP
1437 # define MAX_LOCK_DEPTH 48UL
1438 	u64 curr_chain_key;
1439 	int lockdep_depth;
1440 	unsigned int lockdep_recursion;
1441 	struct held_lock held_locks[MAX_LOCK_DEPTH];
1442 	gfp_t lockdep_reclaim_gfp;
1443 #endif
1444 
1445 /* journalling filesystem info */
1446 	void *journal_info;
1447 
1448 /* stacked block device info */
1449 	struct bio_list *bio_list;
1450 
1451 #ifdef CONFIG_BLOCK
1452 /* stack plugging */
1453 	struct blk_plug *plug;
1454 #endif
1455 
1456 /* VM state */
1457 	struct reclaim_state *reclaim_state;
1458 
1459 	struct backing_dev_info *backing_dev_info;
1460 
1461 	struct io_context *io_context;
1462 
1463 	unsigned long ptrace_message;
1464 	siginfo_t *last_siginfo; /* For ptrace use.  */
1465 	struct task_io_accounting ioac;
1466 #if defined(CONFIG_TASK_XACCT)
1467 	u64 acct_rss_mem1;	/* accumulated rss usage */
1468 	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1469 	cputime_t acct_timexpd;	/* stime + utime since last update */
1470 #endif
1471 #ifdef CONFIG_CPUSETS
1472 	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1473 	seqcount_t mems_allowed_seq;	/* Seqence no to catch updates */
1474 	int cpuset_mem_spread_rotor;
1475 	int cpuset_slab_spread_rotor;
1476 #endif
1477 #ifdef CONFIG_CGROUPS
1478 	/* Control Group info protected by css_set_lock */
1479 	struct css_set __rcu *cgroups;
1480 	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1481 	struct list_head cg_list;
1482 #endif
1483 #ifdef CONFIG_FUTEX
1484 	struct robust_list_head __user *robust_list;
1485 #ifdef CONFIG_COMPAT
1486 	struct compat_robust_list_head __user *compat_robust_list;
1487 #endif
1488 	struct list_head pi_state_list;
1489 	struct futex_pi_state *pi_state_cache;
1490 #endif
1491 #ifdef CONFIG_PERF_EVENTS
1492 	struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1493 	struct mutex perf_event_mutex;
1494 	struct list_head perf_event_list;
1495 #endif
1496 #ifdef CONFIG_NUMA
1497 	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1498 	short il_next;
1499 	short pref_node_fork;
1500 #endif
1501 #ifdef CONFIG_NUMA_BALANCING
1502 	int numa_scan_seq;
1503 	int numa_migrate_seq;
1504 	unsigned int numa_scan_period;
1505 	u64 node_stamp;			/* migration stamp  */
1506 	struct callback_head numa_work;
1507 #endif /* CONFIG_NUMA_BALANCING */
1508 
1509 	struct rcu_head rcu;
1510 
1511 	/*
1512 	 * cache last used pipe for splice
1513 	 */
1514 	struct pipe_inode_info *splice_pipe;
1515 
1516 	struct page_frag task_frag;
1517 
1518 #ifdef	CONFIG_TASK_DELAY_ACCT
1519 	struct task_delay_info *delays;
1520 #endif
1521 #ifdef CONFIG_FAULT_INJECTION
1522 	int make_it_fail;
1523 #endif
1524 	/*
1525 	 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1526 	 * balance_dirty_pages() for some dirty throttling pause
1527 	 */
1528 	int nr_dirtied;
1529 	int nr_dirtied_pause;
1530 	unsigned long dirty_paused_when; /* start of a write-and-pause period */
1531 
1532 #ifdef CONFIG_LATENCYTOP
1533 	int latency_record_count;
1534 	struct latency_record latency_record[LT_SAVECOUNT];
1535 #endif
1536 	/*
1537 	 * time slack values; these are used to round up poll() and
1538 	 * select() etc timeout values. These are in nanoseconds.
1539 	 */
1540 	unsigned long timer_slack_ns;
1541 	unsigned long default_timer_slack_ns;
1542 
1543 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1544 	/* Index of current stored address in ret_stack */
1545 	int curr_ret_stack;
1546 	/* Stack of return addresses for return function tracing */
1547 	struct ftrace_ret_stack	*ret_stack;
1548 	/* time stamp for last schedule */
1549 	unsigned long long ftrace_timestamp;
1550 	/*
1551 	 * Number of functions that haven't been traced
1552 	 * because of depth overrun.
1553 	 */
1554 	atomic_t trace_overrun;
1555 	/* Pause for the tracing */
1556 	atomic_t tracing_graph_pause;
1557 #endif
1558 #ifdef CONFIG_TRACING
1559 	/* state flags for use by tracers */
1560 	unsigned long trace;
1561 	/* bitmask and counter of trace recursion */
1562 	unsigned long trace_recursion;
1563 #endif /* CONFIG_TRACING */
1564 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1565 	struct memcg_batch_info {
1566 		int do_batch;	/* incremented when batch uncharge started */
1567 		struct mem_cgroup *memcg; /* target memcg of uncharge */
1568 		unsigned long nr_pages;	/* uncharged usage */
1569 		unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1570 	} memcg_batch;
1571 	unsigned int memcg_kmem_skip_account;
1572 #endif
1573 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1574 	atomic_t ptrace_bp_refcnt;
1575 #endif
1576 #ifdef CONFIG_UPROBES
1577 	struct uprobe_task *utask;
1578 #endif
1579 };
1580 
1581 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1582 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1583 
1584 #ifdef CONFIG_NUMA_BALANCING
1585 extern void task_numa_fault(int node, int pages, bool migrated);
1586 extern void set_numabalancing_state(bool enabled);
1587 #else
1588 static inline void task_numa_fault(int node, int pages, bool migrated)
1589 {
1590 }
1591 static inline void set_numabalancing_state(bool enabled)
1592 {
1593 }
1594 #endif
1595 
1596 static inline struct pid *task_pid(struct task_struct *task)
1597 {
1598 	return task->pids[PIDTYPE_PID].pid;
1599 }
1600 
1601 static inline struct pid *task_tgid(struct task_struct *task)
1602 {
1603 	return task->group_leader->pids[PIDTYPE_PID].pid;
1604 }
1605 
1606 /*
1607  * Without tasklist or rcu lock it is not safe to dereference
1608  * the result of task_pgrp/task_session even if task == current,
1609  * we can race with another thread doing sys_setsid/sys_setpgid.
1610  */
1611 static inline struct pid *task_pgrp(struct task_struct *task)
1612 {
1613 	return task->group_leader->pids[PIDTYPE_PGID].pid;
1614 }
1615 
1616 static inline struct pid *task_session(struct task_struct *task)
1617 {
1618 	return task->group_leader->pids[PIDTYPE_SID].pid;
1619 }
1620 
1621 struct pid_namespace;
1622 
1623 /*
1624  * the helpers to get the task's different pids as they are seen
1625  * from various namespaces
1626  *
1627  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1628  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1629  *                     current.
1630  * task_xid_nr_ns()  : id seen from the ns specified;
1631  *
1632  * set_task_vxid()   : assigns a virtual id to a task;
1633  *
1634  * see also pid_nr() etc in include/linux/pid.h
1635  */
1636 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1637 			struct pid_namespace *ns);
1638 
1639 static inline pid_t task_pid_nr(struct task_struct *tsk)
1640 {
1641 	return tsk->pid;
1642 }
1643 
1644 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1645 					struct pid_namespace *ns)
1646 {
1647 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1648 }
1649 
1650 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1651 {
1652 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1653 }
1654 
1655 
1656 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1657 {
1658 	return tsk->tgid;
1659 }
1660 
1661 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1662 
1663 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1664 {
1665 	return pid_vnr(task_tgid(tsk));
1666 }
1667 
1668 
1669 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1670 					struct pid_namespace *ns)
1671 {
1672 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1673 }
1674 
1675 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1676 {
1677 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1678 }
1679 
1680 
1681 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1682 					struct pid_namespace *ns)
1683 {
1684 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1685 }
1686 
1687 static inline pid_t task_session_vnr(struct task_struct *tsk)
1688 {
1689 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1690 }
1691 
1692 /* obsolete, do not use */
1693 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1694 {
1695 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1696 }
1697 
1698 /**
1699  * pid_alive - check that a task structure is not stale
1700  * @p: Task structure to be checked.
1701  *
1702  * Test if a process is not yet dead (at most zombie state)
1703  * If pid_alive fails, then pointers within the task structure
1704  * can be stale and must not be dereferenced.
1705  */
1706 static inline int pid_alive(struct task_struct *p)
1707 {
1708 	return p->pids[PIDTYPE_PID].pid != NULL;
1709 }
1710 
1711 /**
1712  * is_global_init - check if a task structure is init
1713  * @tsk: Task structure to be checked.
1714  *
1715  * Check if a task structure is the first user space task the kernel created.
1716  */
1717 static inline int is_global_init(struct task_struct *tsk)
1718 {
1719 	return tsk->pid == 1;
1720 }
1721 
1722 extern struct pid *cad_pid;
1723 
1724 extern void free_task(struct task_struct *tsk);
1725 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1726 
1727 extern void __put_task_struct(struct task_struct *t);
1728 
1729 static inline void put_task_struct(struct task_struct *t)
1730 {
1731 	if (atomic_dec_and_test(&t->usage))
1732 		__put_task_struct(t);
1733 }
1734 
1735 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1736 extern void task_cputime(struct task_struct *t,
1737 			 cputime_t *utime, cputime_t *stime);
1738 extern void task_cputime_scaled(struct task_struct *t,
1739 				cputime_t *utimescaled, cputime_t *stimescaled);
1740 extern cputime_t task_gtime(struct task_struct *t);
1741 #else
1742 static inline void task_cputime(struct task_struct *t,
1743 				cputime_t *utime, cputime_t *stime)
1744 {
1745 	if (utime)
1746 		*utime = t->utime;
1747 	if (stime)
1748 		*stime = t->stime;
1749 }
1750 
1751 static inline void task_cputime_scaled(struct task_struct *t,
1752 				       cputime_t *utimescaled,
1753 				       cputime_t *stimescaled)
1754 {
1755 	if (utimescaled)
1756 		*utimescaled = t->utimescaled;
1757 	if (stimescaled)
1758 		*stimescaled = t->stimescaled;
1759 }
1760 
1761 static inline cputime_t task_gtime(struct task_struct *t)
1762 {
1763 	return t->gtime;
1764 }
1765 #endif
1766 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1767 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1768 
1769 /*
1770  * Per process flags
1771  */
1772 #define PF_EXITING	0x00000004	/* getting shut down */
1773 #define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1774 #define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1775 #define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */
1776 #define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1777 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1778 #define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1779 #define PF_DUMPCORE	0x00000200	/* dumped core */
1780 #define PF_SIGNALED	0x00000400	/* killed by a signal */
1781 #define PF_MEMALLOC	0x00000800	/* Allocating memory */
1782 #define PF_NPROC_EXCEEDED 0x00001000	/* set_user noticed that RLIMIT_NPROC was exceeded */
1783 #define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1784 #define PF_USED_ASYNC	0x00004000	/* used async_schedule*(), used by module init */
1785 #define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1786 #define PF_FROZEN	0x00010000	/* frozen for system suspend */
1787 #define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1788 #define PF_KSWAPD	0x00040000	/* I am kswapd */
1789 #define PF_MEMALLOC_NOIO 0x00080000	/* Allocating memory without IO involved */
1790 #define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1791 #define PF_KTHREAD	0x00200000	/* I am a kernel thread */
1792 #define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1793 #define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1794 #define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
1795 #define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
1796 #define PF_THREAD_BOUND	0x04000000	/* Thread bound to specific cpu */
1797 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1798 #define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
1799 #define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1800 #define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezable */
1801 
1802 /*
1803  * Only the _current_ task can read/write to tsk->flags, but other
1804  * tasks can access tsk->flags in readonly mode for example
1805  * with tsk_used_math (like during threaded core dumping).
1806  * There is however an exception to this rule during ptrace
1807  * or during fork: the ptracer task is allowed to write to the
1808  * child->flags of its traced child (same goes for fork, the parent
1809  * can write to the child->flags), because we're guaranteed the
1810  * child is not running and in turn not changing child->flags
1811  * at the same time the parent does it.
1812  */
1813 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1814 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1815 #define clear_used_math() clear_stopped_child_used_math(current)
1816 #define set_used_math() set_stopped_child_used_math(current)
1817 #define conditional_stopped_child_used_math(condition, child) \
1818 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1819 #define conditional_used_math(condition) \
1820 	conditional_stopped_child_used_math(condition, current)
1821 #define copy_to_stopped_child_used_math(child) \
1822 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1823 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1824 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1825 #define used_math() tsk_used_math(current)
1826 
1827 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1828 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1829 {
1830 	if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1831 		flags &= ~__GFP_IO;
1832 	return flags;
1833 }
1834 
1835 static inline unsigned int memalloc_noio_save(void)
1836 {
1837 	unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1838 	current->flags |= PF_MEMALLOC_NOIO;
1839 	return flags;
1840 }
1841 
1842 static inline void memalloc_noio_restore(unsigned int flags)
1843 {
1844 	current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1845 }
1846 
1847 /*
1848  * task->jobctl flags
1849  */
1850 #define JOBCTL_STOP_SIGMASK	0xffff	/* signr of the last group stop */
1851 
1852 #define JOBCTL_STOP_DEQUEUED_BIT 16	/* stop signal dequeued */
1853 #define JOBCTL_STOP_PENDING_BIT	17	/* task should stop for group stop */
1854 #define JOBCTL_STOP_CONSUME_BIT	18	/* consume group stop count */
1855 #define JOBCTL_TRAP_STOP_BIT	19	/* trap for STOP */
1856 #define JOBCTL_TRAP_NOTIFY_BIT	20	/* trap for NOTIFY */
1857 #define JOBCTL_TRAPPING_BIT	21	/* switching to TRACED */
1858 #define JOBCTL_LISTENING_BIT	22	/* ptracer is listening for events */
1859 
1860 #define JOBCTL_STOP_DEQUEUED	(1 << JOBCTL_STOP_DEQUEUED_BIT)
1861 #define JOBCTL_STOP_PENDING	(1 << JOBCTL_STOP_PENDING_BIT)
1862 #define JOBCTL_STOP_CONSUME	(1 << JOBCTL_STOP_CONSUME_BIT)
1863 #define JOBCTL_TRAP_STOP	(1 << JOBCTL_TRAP_STOP_BIT)
1864 #define JOBCTL_TRAP_NOTIFY	(1 << JOBCTL_TRAP_NOTIFY_BIT)
1865 #define JOBCTL_TRAPPING		(1 << JOBCTL_TRAPPING_BIT)
1866 #define JOBCTL_LISTENING	(1 << JOBCTL_LISTENING_BIT)
1867 
1868 #define JOBCTL_TRAP_MASK	(JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1869 #define JOBCTL_PENDING_MASK	(JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1870 
1871 extern bool task_set_jobctl_pending(struct task_struct *task,
1872 				    unsigned int mask);
1873 extern void task_clear_jobctl_trapping(struct task_struct *task);
1874 extern void task_clear_jobctl_pending(struct task_struct *task,
1875 				      unsigned int mask);
1876 
1877 #ifdef CONFIG_PREEMPT_RCU
1878 
1879 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1880 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1881 
1882 static inline void rcu_copy_process(struct task_struct *p)
1883 {
1884 	p->rcu_read_lock_nesting = 0;
1885 	p->rcu_read_unlock_special = 0;
1886 #ifdef CONFIG_TREE_PREEMPT_RCU
1887 	p->rcu_blocked_node = NULL;
1888 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1889 #ifdef CONFIG_RCU_BOOST
1890 	p->rcu_boost_mutex = NULL;
1891 #endif /* #ifdef CONFIG_RCU_BOOST */
1892 	INIT_LIST_HEAD(&p->rcu_node_entry);
1893 }
1894 
1895 #else
1896 
1897 static inline void rcu_copy_process(struct task_struct *p)
1898 {
1899 }
1900 
1901 #endif
1902 
1903 static inline void tsk_restore_flags(struct task_struct *task,
1904 				unsigned long orig_flags, unsigned long flags)
1905 {
1906 	task->flags &= ~flags;
1907 	task->flags |= orig_flags & flags;
1908 }
1909 
1910 #ifdef CONFIG_SMP
1911 extern void do_set_cpus_allowed(struct task_struct *p,
1912 			       const struct cpumask *new_mask);
1913 
1914 extern int set_cpus_allowed_ptr(struct task_struct *p,
1915 				const struct cpumask *new_mask);
1916 #else
1917 static inline void do_set_cpus_allowed(struct task_struct *p,
1918 				      const struct cpumask *new_mask)
1919 {
1920 }
1921 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1922 				       const struct cpumask *new_mask)
1923 {
1924 	if (!cpumask_test_cpu(0, new_mask))
1925 		return -EINVAL;
1926 	return 0;
1927 }
1928 #endif
1929 
1930 #ifdef CONFIG_NO_HZ
1931 void calc_load_enter_idle(void);
1932 void calc_load_exit_idle(void);
1933 #else
1934 static inline void calc_load_enter_idle(void) { }
1935 static inline void calc_load_exit_idle(void) { }
1936 #endif /* CONFIG_NO_HZ */
1937 
1938 #ifndef CONFIG_CPUMASK_OFFSTACK
1939 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1940 {
1941 	return set_cpus_allowed_ptr(p, &new_mask);
1942 }
1943 #endif
1944 
1945 /*
1946  * Do not use outside of architecture code which knows its limitations.
1947  *
1948  * sched_clock() has no promise of monotonicity or bounded drift between
1949  * CPUs, use (which you should not) requires disabling IRQs.
1950  *
1951  * Please use one of the three interfaces below.
1952  */
1953 extern unsigned long long notrace sched_clock(void);
1954 /*
1955  * See the comment in kernel/sched/clock.c
1956  */
1957 extern u64 cpu_clock(int cpu);
1958 extern u64 local_clock(void);
1959 extern u64 sched_clock_cpu(int cpu);
1960 
1961 
1962 extern void sched_clock_init(void);
1963 
1964 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1965 static inline void sched_clock_tick(void)
1966 {
1967 }
1968 
1969 static inline void sched_clock_idle_sleep_event(void)
1970 {
1971 }
1972 
1973 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1974 {
1975 }
1976 #else
1977 /*
1978  * Architectures can set this to 1 if they have specified
1979  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1980  * but then during bootup it turns out that sched_clock()
1981  * is reliable after all:
1982  */
1983 extern int sched_clock_stable;
1984 
1985 extern void sched_clock_tick(void);
1986 extern void sched_clock_idle_sleep_event(void);
1987 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1988 #endif
1989 
1990 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1991 /*
1992  * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1993  * The reason for this explicit opt-in is not to have perf penalty with
1994  * slow sched_clocks.
1995  */
1996 extern void enable_sched_clock_irqtime(void);
1997 extern void disable_sched_clock_irqtime(void);
1998 #else
1999 static inline void enable_sched_clock_irqtime(void) {}
2000 static inline void disable_sched_clock_irqtime(void) {}
2001 #endif
2002 
2003 extern unsigned long long
2004 task_sched_runtime(struct task_struct *task);
2005 
2006 /* sched_exec is called by processes performing an exec */
2007 #ifdef CONFIG_SMP
2008 extern void sched_exec(void);
2009 #else
2010 #define sched_exec()   {}
2011 #endif
2012 
2013 extern void sched_clock_idle_sleep_event(void);
2014 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2015 
2016 #ifdef CONFIG_HOTPLUG_CPU
2017 extern void idle_task_exit(void);
2018 #else
2019 static inline void idle_task_exit(void) {}
2020 #endif
2021 
2022 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
2023 extern void wake_up_idle_cpu(int cpu);
2024 #else
2025 static inline void wake_up_idle_cpu(int cpu) { }
2026 #endif
2027 
2028 #ifdef CONFIG_SCHED_AUTOGROUP
2029 extern void sched_autogroup_create_attach(struct task_struct *p);
2030 extern void sched_autogroup_detach(struct task_struct *p);
2031 extern void sched_autogroup_fork(struct signal_struct *sig);
2032 extern void sched_autogroup_exit(struct signal_struct *sig);
2033 #ifdef CONFIG_PROC_FS
2034 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2035 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2036 #endif
2037 #else
2038 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2039 static inline void sched_autogroup_detach(struct task_struct *p) { }
2040 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2041 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2042 #endif
2043 
2044 extern bool yield_to(struct task_struct *p, bool preempt);
2045 extern void set_user_nice(struct task_struct *p, long nice);
2046 extern int task_prio(const struct task_struct *p);
2047 extern int task_nice(const struct task_struct *p);
2048 extern int can_nice(const struct task_struct *p, const int nice);
2049 extern int task_curr(const struct task_struct *p);
2050 extern int idle_cpu(int cpu);
2051 extern int sched_setscheduler(struct task_struct *, int,
2052 			      const struct sched_param *);
2053 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2054 				      const struct sched_param *);
2055 extern struct task_struct *idle_task(int cpu);
2056 /**
2057  * is_idle_task - is the specified task an idle task?
2058  * @p: the task in question.
2059  */
2060 static inline bool is_idle_task(const struct task_struct *p)
2061 {
2062 	return p->pid == 0;
2063 }
2064 extern struct task_struct *curr_task(int cpu);
2065 extern void set_curr_task(int cpu, struct task_struct *p);
2066 
2067 void yield(void);
2068 
2069 /*
2070  * The default (Linux) execution domain.
2071  */
2072 extern struct exec_domain	default_exec_domain;
2073 
2074 union thread_union {
2075 	struct thread_info thread_info;
2076 	unsigned long stack[THREAD_SIZE/sizeof(long)];
2077 };
2078 
2079 #ifndef __HAVE_ARCH_KSTACK_END
2080 static inline int kstack_end(void *addr)
2081 {
2082 	/* Reliable end of stack detection:
2083 	 * Some APM bios versions misalign the stack
2084 	 */
2085 	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2086 }
2087 #endif
2088 
2089 extern union thread_union init_thread_union;
2090 extern struct task_struct init_task;
2091 
2092 extern struct   mm_struct init_mm;
2093 
2094 extern struct pid_namespace init_pid_ns;
2095 
2096 /*
2097  * find a task by one of its numerical ids
2098  *
2099  * find_task_by_pid_ns():
2100  *      finds a task by its pid in the specified namespace
2101  * find_task_by_vpid():
2102  *      finds a task by its virtual pid
2103  *
2104  * see also find_vpid() etc in include/linux/pid.h
2105  */
2106 
2107 extern struct task_struct *find_task_by_vpid(pid_t nr);
2108 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2109 		struct pid_namespace *ns);
2110 
2111 extern void __set_special_pids(struct pid *pid);
2112 
2113 /* per-UID process charging. */
2114 extern struct user_struct * alloc_uid(kuid_t);
2115 static inline struct user_struct *get_uid(struct user_struct *u)
2116 {
2117 	atomic_inc(&u->__count);
2118 	return u;
2119 }
2120 extern void free_uid(struct user_struct *);
2121 
2122 #include <asm/current.h>
2123 
2124 extern void xtime_update(unsigned long ticks);
2125 
2126 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2127 extern int wake_up_process(struct task_struct *tsk);
2128 extern void wake_up_new_task(struct task_struct *tsk);
2129 #ifdef CONFIG_SMP
2130  extern void kick_process(struct task_struct *tsk);
2131 #else
2132  static inline void kick_process(struct task_struct *tsk) { }
2133 #endif
2134 extern void sched_fork(struct task_struct *p);
2135 extern void sched_dead(struct task_struct *p);
2136 
2137 extern void proc_caches_init(void);
2138 extern void flush_signals(struct task_struct *);
2139 extern void __flush_signals(struct task_struct *);
2140 extern void ignore_signals(struct task_struct *);
2141 extern void flush_signal_handlers(struct task_struct *, int force_default);
2142 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2143 
2144 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2145 {
2146 	unsigned long flags;
2147 	int ret;
2148 
2149 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
2150 	ret = dequeue_signal(tsk, mask, info);
2151 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2152 
2153 	return ret;
2154 }
2155 
2156 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2157 			      sigset_t *mask);
2158 extern void unblock_all_signals(void);
2159 extern void release_task(struct task_struct * p);
2160 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2161 extern int force_sigsegv(int, struct task_struct *);
2162 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2163 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2164 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2165 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2166 				const struct cred *, u32);
2167 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2168 extern int kill_pid(struct pid *pid, int sig, int priv);
2169 extern int kill_proc_info(int, struct siginfo *, pid_t);
2170 extern __must_check bool do_notify_parent(struct task_struct *, int);
2171 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2172 extern void force_sig(int, struct task_struct *);
2173 extern int send_sig(int, struct task_struct *, int);
2174 extern int zap_other_threads(struct task_struct *p);
2175 extern struct sigqueue *sigqueue_alloc(void);
2176 extern void sigqueue_free(struct sigqueue *);
2177 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2178 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2179 
2180 static inline void restore_saved_sigmask(void)
2181 {
2182 	if (test_and_clear_restore_sigmask())
2183 		__set_current_blocked(&current->saved_sigmask);
2184 }
2185 
2186 static inline sigset_t *sigmask_to_save(void)
2187 {
2188 	sigset_t *res = &current->blocked;
2189 	if (unlikely(test_restore_sigmask()))
2190 		res = &current->saved_sigmask;
2191 	return res;
2192 }
2193 
2194 static inline int kill_cad_pid(int sig, int priv)
2195 {
2196 	return kill_pid(cad_pid, sig, priv);
2197 }
2198 
2199 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2200 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2201 #define SEND_SIG_PRIV	((struct siginfo *) 1)
2202 #define SEND_SIG_FORCED	((struct siginfo *) 2)
2203 
2204 /*
2205  * True if we are on the alternate signal stack.
2206  */
2207 static inline int on_sig_stack(unsigned long sp)
2208 {
2209 #ifdef CONFIG_STACK_GROWSUP
2210 	return sp >= current->sas_ss_sp &&
2211 		sp - current->sas_ss_sp < current->sas_ss_size;
2212 #else
2213 	return sp > current->sas_ss_sp &&
2214 		sp - current->sas_ss_sp <= current->sas_ss_size;
2215 #endif
2216 }
2217 
2218 static inline int sas_ss_flags(unsigned long sp)
2219 {
2220 	return (current->sas_ss_size == 0 ? SS_DISABLE
2221 		: on_sig_stack(sp) ? SS_ONSTACK : 0);
2222 }
2223 
2224 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2225 {
2226 	if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2227 #ifdef CONFIG_STACK_GROWSUP
2228 		return current->sas_ss_sp;
2229 #else
2230 		return current->sas_ss_sp + current->sas_ss_size;
2231 #endif
2232 	return sp;
2233 }
2234 
2235 /*
2236  * Routines for handling mm_structs
2237  */
2238 extern struct mm_struct * mm_alloc(void);
2239 
2240 /* mmdrop drops the mm and the page tables */
2241 extern void __mmdrop(struct mm_struct *);
2242 static inline void mmdrop(struct mm_struct * mm)
2243 {
2244 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2245 		__mmdrop(mm);
2246 }
2247 
2248 /* mmput gets rid of the mappings and all user-space */
2249 extern void mmput(struct mm_struct *);
2250 /* Grab a reference to a task's mm, if it is not already going away */
2251 extern struct mm_struct *get_task_mm(struct task_struct *task);
2252 /*
2253  * Grab a reference to a task's mm, if it is not already going away
2254  * and ptrace_may_access with the mode parameter passed to it
2255  * succeeds.
2256  */
2257 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2258 /* Remove the current tasks stale references to the old mm_struct */
2259 extern void mm_release(struct task_struct *, struct mm_struct *);
2260 /* Allocate a new mm structure and copy contents from tsk->mm */
2261 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2262 
2263 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2264 			struct task_struct *);
2265 extern void flush_thread(void);
2266 extern void exit_thread(void);
2267 
2268 extern void exit_files(struct task_struct *);
2269 extern void __cleanup_sighand(struct sighand_struct *);
2270 
2271 extern void exit_itimers(struct signal_struct *);
2272 extern void flush_itimer_signals(void);
2273 
2274 extern void do_group_exit(int);
2275 
2276 extern int allow_signal(int);
2277 extern int disallow_signal(int);
2278 
2279 extern int do_execve(const char *,
2280 		     const char __user * const __user *,
2281 		     const char __user * const __user *);
2282 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2283 struct task_struct *fork_idle(int);
2284 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2285 
2286 extern void set_task_comm(struct task_struct *tsk, char *from);
2287 extern char *get_task_comm(char *to, struct task_struct *tsk);
2288 
2289 #ifdef CONFIG_SMP
2290 void scheduler_ipi(void);
2291 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2292 #else
2293 static inline void scheduler_ipi(void) { }
2294 static inline unsigned long wait_task_inactive(struct task_struct *p,
2295 					       long match_state)
2296 {
2297 	return 1;
2298 }
2299 #endif
2300 
2301 #define next_task(p) \
2302 	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2303 
2304 #define for_each_process(p) \
2305 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2306 
2307 extern bool current_is_single_threaded(void);
2308 
2309 /*
2310  * Careful: do_each_thread/while_each_thread is a double loop so
2311  *          'break' will not work as expected - use goto instead.
2312  */
2313 #define do_each_thread(g, t) \
2314 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2315 
2316 #define while_each_thread(g, t) \
2317 	while ((t = next_thread(t)) != g)
2318 
2319 static inline int get_nr_threads(struct task_struct *tsk)
2320 {
2321 	return tsk->signal->nr_threads;
2322 }
2323 
2324 static inline bool thread_group_leader(struct task_struct *p)
2325 {
2326 	return p->exit_signal >= 0;
2327 }
2328 
2329 /* Do to the insanities of de_thread it is possible for a process
2330  * to have the pid of the thread group leader without actually being
2331  * the thread group leader.  For iteration through the pids in proc
2332  * all we care about is that we have a task with the appropriate
2333  * pid, we don't actually care if we have the right task.
2334  */
2335 static inline int has_group_leader_pid(struct task_struct *p)
2336 {
2337 	return p->pid == p->tgid;
2338 }
2339 
2340 static inline
2341 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2342 {
2343 	return p1->tgid == p2->tgid;
2344 }
2345 
2346 static inline struct task_struct *next_thread(const struct task_struct *p)
2347 {
2348 	return list_entry_rcu(p->thread_group.next,
2349 			      struct task_struct, thread_group);
2350 }
2351 
2352 static inline int thread_group_empty(struct task_struct *p)
2353 {
2354 	return list_empty(&p->thread_group);
2355 }
2356 
2357 #define delay_group_leader(p) \
2358 		(thread_group_leader(p) && !thread_group_empty(p))
2359 
2360 /*
2361  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2362  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2363  * pins the final release of task.io_context.  Also protects ->cpuset and
2364  * ->cgroup.subsys[]. And ->vfork_done.
2365  *
2366  * Nests both inside and outside of read_lock(&tasklist_lock).
2367  * It must not be nested with write_lock_irq(&tasklist_lock),
2368  * neither inside nor outside.
2369  */
2370 static inline void task_lock(struct task_struct *p)
2371 {
2372 	spin_lock(&p->alloc_lock);
2373 }
2374 
2375 static inline void task_unlock(struct task_struct *p)
2376 {
2377 	spin_unlock(&p->alloc_lock);
2378 }
2379 
2380 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2381 							unsigned long *flags);
2382 
2383 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2384 						       unsigned long *flags)
2385 {
2386 	struct sighand_struct *ret;
2387 
2388 	ret = __lock_task_sighand(tsk, flags);
2389 	(void)__cond_lock(&tsk->sighand->siglock, ret);
2390 	return ret;
2391 }
2392 
2393 static inline void unlock_task_sighand(struct task_struct *tsk,
2394 						unsigned long *flags)
2395 {
2396 	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2397 }
2398 
2399 #ifdef CONFIG_CGROUPS
2400 static inline void threadgroup_change_begin(struct task_struct *tsk)
2401 {
2402 	down_read(&tsk->signal->group_rwsem);
2403 }
2404 static inline void threadgroup_change_end(struct task_struct *tsk)
2405 {
2406 	up_read(&tsk->signal->group_rwsem);
2407 }
2408 
2409 /**
2410  * threadgroup_lock - lock threadgroup
2411  * @tsk: member task of the threadgroup to lock
2412  *
2413  * Lock the threadgroup @tsk belongs to.  No new task is allowed to enter
2414  * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2415  * perform exec.  This is useful for cases where the threadgroup needs to
2416  * stay stable across blockable operations.
2417  *
2418  * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2419  * synchronization.  While held, no new task will be added to threadgroup
2420  * and no existing live task will have its PF_EXITING set.
2421  *
2422  * During exec, a task goes and puts its thread group through unusual
2423  * changes.  After de-threading, exclusive access is assumed to resources
2424  * which are usually shared by tasks in the same group - e.g. sighand may
2425  * be replaced with a new one.  Also, the exec'ing task takes over group
2426  * leader role including its pid.  Exclude these changes while locked by
2427  * grabbing cred_guard_mutex which is used to synchronize exec path.
2428  */
2429 static inline void threadgroup_lock(struct task_struct *tsk)
2430 {
2431 	/*
2432 	 * exec uses exit for de-threading nesting group_rwsem inside
2433 	 * cred_guard_mutex. Grab cred_guard_mutex first.
2434 	 */
2435 	mutex_lock(&tsk->signal->cred_guard_mutex);
2436 	down_write(&tsk->signal->group_rwsem);
2437 }
2438 
2439 /**
2440  * threadgroup_unlock - unlock threadgroup
2441  * @tsk: member task of the threadgroup to unlock
2442  *
2443  * Reverse threadgroup_lock().
2444  */
2445 static inline void threadgroup_unlock(struct task_struct *tsk)
2446 {
2447 	up_write(&tsk->signal->group_rwsem);
2448 	mutex_unlock(&tsk->signal->cred_guard_mutex);
2449 }
2450 #else
2451 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2452 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2453 static inline void threadgroup_lock(struct task_struct *tsk) {}
2454 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2455 #endif
2456 
2457 #ifndef __HAVE_THREAD_FUNCTIONS
2458 
2459 #define task_thread_info(task)	((struct thread_info *)(task)->stack)
2460 #define task_stack_page(task)	((task)->stack)
2461 
2462 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2463 {
2464 	*task_thread_info(p) = *task_thread_info(org);
2465 	task_thread_info(p)->task = p;
2466 }
2467 
2468 static inline unsigned long *end_of_stack(struct task_struct *p)
2469 {
2470 	return (unsigned long *)(task_thread_info(p) + 1);
2471 }
2472 
2473 #endif
2474 
2475 static inline int object_is_on_stack(void *obj)
2476 {
2477 	void *stack = task_stack_page(current);
2478 
2479 	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2480 }
2481 
2482 extern void thread_info_cache_init(void);
2483 
2484 #ifdef CONFIG_DEBUG_STACK_USAGE
2485 static inline unsigned long stack_not_used(struct task_struct *p)
2486 {
2487 	unsigned long *n = end_of_stack(p);
2488 
2489 	do { 	/* Skip over canary */
2490 		n++;
2491 	} while (!*n);
2492 
2493 	return (unsigned long)n - (unsigned long)end_of_stack(p);
2494 }
2495 #endif
2496 
2497 /* set thread flags in other task's structures
2498  * - see asm/thread_info.h for TIF_xxxx flags available
2499  */
2500 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2501 {
2502 	set_ti_thread_flag(task_thread_info(tsk), flag);
2503 }
2504 
2505 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2506 {
2507 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2508 }
2509 
2510 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2511 {
2512 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2513 }
2514 
2515 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2516 {
2517 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2518 }
2519 
2520 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2521 {
2522 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2523 }
2524 
2525 static inline void set_tsk_need_resched(struct task_struct *tsk)
2526 {
2527 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2528 }
2529 
2530 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2531 {
2532 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2533 }
2534 
2535 static inline int test_tsk_need_resched(struct task_struct *tsk)
2536 {
2537 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2538 }
2539 
2540 static inline int restart_syscall(void)
2541 {
2542 	set_tsk_thread_flag(current, TIF_SIGPENDING);
2543 	return -ERESTARTNOINTR;
2544 }
2545 
2546 static inline int signal_pending(struct task_struct *p)
2547 {
2548 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2549 }
2550 
2551 static inline int __fatal_signal_pending(struct task_struct *p)
2552 {
2553 	return unlikely(sigismember(&p->pending.signal, SIGKILL));
2554 }
2555 
2556 static inline int fatal_signal_pending(struct task_struct *p)
2557 {
2558 	return signal_pending(p) && __fatal_signal_pending(p);
2559 }
2560 
2561 static inline int signal_pending_state(long state, struct task_struct *p)
2562 {
2563 	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2564 		return 0;
2565 	if (!signal_pending(p))
2566 		return 0;
2567 
2568 	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2569 }
2570 
2571 static inline int need_resched(void)
2572 {
2573 	return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2574 }
2575 
2576 /*
2577  * cond_resched() and cond_resched_lock(): latency reduction via
2578  * explicit rescheduling in places that are safe. The return
2579  * value indicates whether a reschedule was done in fact.
2580  * cond_resched_lock() will drop the spinlock before scheduling,
2581  * cond_resched_softirq() will enable bhs before scheduling.
2582  */
2583 extern int _cond_resched(void);
2584 
2585 #define cond_resched() ({			\
2586 	__might_sleep(__FILE__, __LINE__, 0);	\
2587 	_cond_resched();			\
2588 })
2589 
2590 extern int __cond_resched_lock(spinlock_t *lock);
2591 
2592 #ifdef CONFIG_PREEMPT_COUNT
2593 #define PREEMPT_LOCK_OFFSET	PREEMPT_OFFSET
2594 #else
2595 #define PREEMPT_LOCK_OFFSET	0
2596 #endif
2597 
2598 #define cond_resched_lock(lock) ({				\
2599 	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
2600 	__cond_resched_lock(lock);				\
2601 })
2602 
2603 extern int __cond_resched_softirq(void);
2604 
2605 #define cond_resched_softirq() ({					\
2606 	__might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
2607 	__cond_resched_softirq();					\
2608 })
2609 
2610 /*
2611  * Does a critical section need to be broken due to another
2612  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2613  * but a general need for low latency)
2614  */
2615 static inline int spin_needbreak(spinlock_t *lock)
2616 {
2617 #ifdef CONFIG_PREEMPT
2618 	return spin_is_contended(lock);
2619 #else
2620 	return 0;
2621 #endif
2622 }
2623 
2624 /*
2625  * Thread group CPU time accounting.
2626  */
2627 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2628 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2629 
2630 static inline void thread_group_cputime_init(struct signal_struct *sig)
2631 {
2632 	raw_spin_lock_init(&sig->cputimer.lock);
2633 }
2634 
2635 /*
2636  * Reevaluate whether the task has signals pending delivery.
2637  * Wake the task if so.
2638  * This is required every time the blocked sigset_t changes.
2639  * callers must hold sighand->siglock.
2640  */
2641 extern void recalc_sigpending_and_wake(struct task_struct *t);
2642 extern void recalc_sigpending(void);
2643 
2644 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2645 
2646 static inline void signal_wake_up(struct task_struct *t, bool resume)
2647 {
2648 	signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2649 }
2650 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2651 {
2652 	signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2653 }
2654 
2655 /*
2656  * Wrappers for p->thread_info->cpu access. No-op on UP.
2657  */
2658 #ifdef CONFIG_SMP
2659 
2660 static inline unsigned int task_cpu(const struct task_struct *p)
2661 {
2662 	return task_thread_info(p)->cpu;
2663 }
2664 
2665 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2666 
2667 #else
2668 
2669 static inline unsigned int task_cpu(const struct task_struct *p)
2670 {
2671 	return 0;
2672 }
2673 
2674 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2675 {
2676 }
2677 
2678 #endif /* CONFIG_SMP */
2679 
2680 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2681 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2682 
2683 #ifdef CONFIG_CGROUP_SCHED
2684 
2685 extern struct task_group root_task_group;
2686 
2687 extern struct task_group *sched_create_group(struct task_group *parent);
2688 extern void sched_online_group(struct task_group *tg,
2689 			       struct task_group *parent);
2690 extern void sched_destroy_group(struct task_group *tg);
2691 extern void sched_offline_group(struct task_group *tg);
2692 extern void sched_move_task(struct task_struct *tsk);
2693 #ifdef CONFIG_FAIR_GROUP_SCHED
2694 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2695 extern unsigned long sched_group_shares(struct task_group *tg);
2696 #endif
2697 #ifdef CONFIG_RT_GROUP_SCHED
2698 extern int sched_group_set_rt_runtime(struct task_group *tg,
2699 				      long rt_runtime_us);
2700 extern long sched_group_rt_runtime(struct task_group *tg);
2701 extern int sched_group_set_rt_period(struct task_group *tg,
2702 				      long rt_period_us);
2703 extern long sched_group_rt_period(struct task_group *tg);
2704 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2705 #endif
2706 #endif /* CONFIG_CGROUP_SCHED */
2707 
2708 extern int task_can_switch_user(struct user_struct *up,
2709 					struct task_struct *tsk);
2710 
2711 #ifdef CONFIG_TASK_XACCT
2712 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2713 {
2714 	tsk->ioac.rchar += amt;
2715 }
2716 
2717 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2718 {
2719 	tsk->ioac.wchar += amt;
2720 }
2721 
2722 static inline void inc_syscr(struct task_struct *tsk)
2723 {
2724 	tsk->ioac.syscr++;
2725 }
2726 
2727 static inline void inc_syscw(struct task_struct *tsk)
2728 {
2729 	tsk->ioac.syscw++;
2730 }
2731 #else
2732 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2733 {
2734 }
2735 
2736 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2737 {
2738 }
2739 
2740 static inline void inc_syscr(struct task_struct *tsk)
2741 {
2742 }
2743 
2744 static inline void inc_syscw(struct task_struct *tsk)
2745 {
2746 }
2747 #endif
2748 
2749 #ifndef TASK_SIZE_OF
2750 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2751 #endif
2752 
2753 #ifdef CONFIG_MM_OWNER
2754 extern void mm_update_next_owner(struct mm_struct *mm);
2755 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2756 #else
2757 static inline void mm_update_next_owner(struct mm_struct *mm)
2758 {
2759 }
2760 
2761 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2762 {
2763 }
2764 #endif /* CONFIG_MM_OWNER */
2765 
2766 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2767 		unsigned int limit)
2768 {
2769 	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2770 }
2771 
2772 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2773 		unsigned int limit)
2774 {
2775 	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2776 }
2777 
2778 static inline unsigned long rlimit(unsigned int limit)
2779 {
2780 	return task_rlimit(current, limit);
2781 }
2782 
2783 static inline unsigned long rlimit_max(unsigned int limit)
2784 {
2785 	return task_rlimit_max(current, limit);
2786 }
2787 
2788 #endif
2789