1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <uapi/linux/sched.h> 5 6 7 struct sched_param { 8 int sched_priority; 9 }; 10 11 #include <asm/param.h> /* for HZ */ 12 13 #include <linux/capability.h> 14 #include <linux/threads.h> 15 #include <linux/kernel.h> 16 #include <linux/types.h> 17 #include <linux/timex.h> 18 #include <linux/jiffies.h> 19 #include <linux/rbtree.h> 20 #include <linux/thread_info.h> 21 #include <linux/cpumask.h> 22 #include <linux/errno.h> 23 #include <linux/nodemask.h> 24 #include <linux/mm_types.h> 25 26 #include <asm/page.h> 27 #include <asm/ptrace.h> 28 #include <asm/cputime.h> 29 30 #include <linux/smp.h> 31 #include <linux/sem.h> 32 #include <linux/signal.h> 33 #include <linux/compiler.h> 34 #include <linux/completion.h> 35 #include <linux/pid.h> 36 #include <linux/percpu.h> 37 #include <linux/topology.h> 38 #include <linux/proportions.h> 39 #include <linux/seccomp.h> 40 #include <linux/rcupdate.h> 41 #include <linux/rculist.h> 42 #include <linux/rtmutex.h> 43 44 #include <linux/time.h> 45 #include <linux/param.h> 46 #include <linux/resource.h> 47 #include <linux/timer.h> 48 #include <linux/hrtimer.h> 49 #include <linux/task_io_accounting.h> 50 #include <linux/latencytop.h> 51 #include <linux/cred.h> 52 #include <linux/llist.h> 53 #include <linux/uidgid.h> 54 #include <linux/gfp.h> 55 56 #include <asm/processor.h> 57 58 struct exec_domain; 59 struct futex_pi_state; 60 struct robust_list_head; 61 struct bio_list; 62 struct fs_struct; 63 struct perf_event_context; 64 struct blk_plug; 65 66 /* 67 * List of flags we want to share for kernel threads, 68 * if only because they are not used by them anyway. 69 */ 70 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 71 72 /* 73 * These are the constant used to fake the fixed-point load-average 74 * counting. Some notes: 75 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 76 * a load-average precision of 10 bits integer + 11 bits fractional 77 * - if you want to count load-averages more often, you need more 78 * precision, or rounding will get you. With 2-second counting freq, 79 * the EXP_n values would be 1981, 2034 and 2043 if still using only 80 * 11 bit fractions. 81 */ 82 extern unsigned long avenrun[]; /* Load averages */ 83 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 84 85 #define FSHIFT 11 /* nr of bits of precision */ 86 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 87 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 88 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 89 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 90 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 91 92 #define CALC_LOAD(load,exp,n) \ 93 load *= exp; \ 94 load += n*(FIXED_1-exp); \ 95 load >>= FSHIFT; 96 97 extern unsigned long total_forks; 98 extern int nr_threads; 99 DECLARE_PER_CPU(unsigned long, process_counts); 100 extern int nr_processes(void); 101 extern unsigned long nr_running(void); 102 extern unsigned long nr_iowait(void); 103 extern unsigned long nr_iowait_cpu(int cpu); 104 extern unsigned long this_cpu_load(void); 105 106 107 extern void calc_global_load(unsigned long ticks); 108 extern void update_cpu_load_nohz(void); 109 110 /* Notifier for when a task gets migrated to a new CPU */ 111 struct task_migration_notifier { 112 struct task_struct *task; 113 int from_cpu; 114 int to_cpu; 115 }; 116 extern void register_task_migration_notifier(struct notifier_block *n); 117 118 extern unsigned long get_parent_ip(unsigned long addr); 119 120 extern void dump_cpu_task(int cpu); 121 122 struct seq_file; 123 struct cfs_rq; 124 struct task_group; 125 #ifdef CONFIG_SCHED_DEBUG 126 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 127 extern void proc_sched_set_task(struct task_struct *p); 128 extern void 129 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 130 #else 131 static inline void 132 proc_sched_show_task(struct task_struct *p, struct seq_file *m) 133 { 134 } 135 static inline void proc_sched_set_task(struct task_struct *p) 136 { 137 } 138 static inline void 139 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 140 { 141 } 142 #endif 143 144 /* 145 * Task state bitmask. NOTE! These bits are also 146 * encoded in fs/proc/array.c: get_task_state(). 147 * 148 * We have two separate sets of flags: task->state 149 * is about runnability, while task->exit_state are 150 * about the task exiting. Confusing, but this way 151 * modifying one set can't modify the other one by 152 * mistake. 153 */ 154 #define TASK_RUNNING 0 155 #define TASK_INTERRUPTIBLE 1 156 #define TASK_UNINTERRUPTIBLE 2 157 #define __TASK_STOPPED 4 158 #define __TASK_TRACED 8 159 /* in tsk->exit_state */ 160 #define EXIT_ZOMBIE 16 161 #define EXIT_DEAD 32 162 /* in tsk->state again */ 163 #define TASK_DEAD 64 164 #define TASK_WAKEKILL 128 165 #define TASK_WAKING 256 166 #define TASK_STATE_MAX 512 167 168 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW" 169 170 extern char ___assert_task_state[1 - 2*!!( 171 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 172 173 /* Convenience macros for the sake of set_task_state */ 174 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 175 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 176 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 177 178 /* Convenience macros for the sake of wake_up */ 179 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 180 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 181 182 /* get_task_state() */ 183 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 184 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 185 __TASK_TRACED) 186 187 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 188 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 189 #define task_is_dead(task) ((task)->exit_state != 0) 190 #define task_is_stopped_or_traced(task) \ 191 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 192 #define task_contributes_to_load(task) \ 193 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 194 (task->flags & PF_FROZEN) == 0) 195 196 #define __set_task_state(tsk, state_value) \ 197 do { (tsk)->state = (state_value); } while (0) 198 #define set_task_state(tsk, state_value) \ 199 set_mb((tsk)->state, (state_value)) 200 201 /* 202 * set_current_state() includes a barrier so that the write of current->state 203 * is correctly serialised wrt the caller's subsequent test of whether to 204 * actually sleep: 205 * 206 * set_current_state(TASK_UNINTERRUPTIBLE); 207 * if (do_i_need_to_sleep()) 208 * schedule(); 209 * 210 * If the caller does not need such serialisation then use __set_current_state() 211 */ 212 #define __set_current_state(state_value) \ 213 do { current->state = (state_value); } while (0) 214 #define set_current_state(state_value) \ 215 set_mb(current->state, (state_value)) 216 217 /* Task command name length */ 218 #define TASK_COMM_LEN 16 219 220 #include <linux/spinlock.h> 221 222 /* 223 * This serializes "schedule()" and also protects 224 * the run-queue from deletions/modifications (but 225 * _adding_ to the beginning of the run-queue has 226 * a separate lock). 227 */ 228 extern rwlock_t tasklist_lock; 229 extern spinlock_t mmlist_lock; 230 231 struct task_struct; 232 233 #ifdef CONFIG_PROVE_RCU 234 extern int lockdep_tasklist_lock_is_held(void); 235 #endif /* #ifdef CONFIG_PROVE_RCU */ 236 237 extern void sched_init(void); 238 extern void sched_init_smp(void); 239 extern asmlinkage void schedule_tail(struct task_struct *prev); 240 extern void init_idle(struct task_struct *idle, int cpu); 241 extern void init_idle_bootup_task(struct task_struct *idle); 242 243 extern int runqueue_is_locked(int cpu); 244 245 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 246 extern void nohz_balance_enter_idle(int cpu); 247 extern void set_cpu_sd_state_idle(void); 248 extern int get_nohz_timer_target(void); 249 #else 250 static inline void nohz_balance_enter_idle(int cpu) { } 251 static inline void set_cpu_sd_state_idle(void) { } 252 #endif 253 254 /* 255 * Only dump TASK_* tasks. (0 for all tasks) 256 */ 257 extern void show_state_filter(unsigned long state_filter); 258 259 static inline void show_state(void) 260 { 261 show_state_filter(0); 262 } 263 264 extern void show_regs(struct pt_regs *); 265 266 /* 267 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 268 * task), SP is the stack pointer of the first frame that should be shown in the back 269 * trace (or NULL if the entire call-chain of the task should be shown). 270 */ 271 extern void show_stack(struct task_struct *task, unsigned long *sp); 272 273 void io_schedule(void); 274 long io_schedule_timeout(long timeout); 275 276 extern void cpu_init (void); 277 extern void trap_init(void); 278 extern void update_process_times(int user); 279 extern void scheduler_tick(void); 280 281 extern void sched_show_task(struct task_struct *p); 282 283 #ifdef CONFIG_LOCKUP_DETECTOR 284 extern void touch_softlockup_watchdog(void); 285 extern void touch_softlockup_watchdog_sync(void); 286 extern void touch_all_softlockup_watchdogs(void); 287 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 288 void __user *buffer, 289 size_t *lenp, loff_t *ppos); 290 extern unsigned int softlockup_panic; 291 void lockup_detector_init(void); 292 #else 293 static inline void touch_softlockup_watchdog(void) 294 { 295 } 296 static inline void touch_softlockup_watchdog_sync(void) 297 { 298 } 299 static inline void touch_all_softlockup_watchdogs(void) 300 { 301 } 302 static inline void lockup_detector_init(void) 303 { 304 } 305 #endif 306 307 /* Attach to any functions which should be ignored in wchan output. */ 308 #define __sched __attribute__((__section__(".sched.text"))) 309 310 /* Linker adds these: start and end of __sched functions */ 311 extern char __sched_text_start[], __sched_text_end[]; 312 313 /* Is this address in the __sched functions? */ 314 extern int in_sched_functions(unsigned long addr); 315 316 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 317 extern signed long schedule_timeout(signed long timeout); 318 extern signed long schedule_timeout_interruptible(signed long timeout); 319 extern signed long schedule_timeout_killable(signed long timeout); 320 extern signed long schedule_timeout_uninterruptible(signed long timeout); 321 asmlinkage void schedule(void); 322 extern void schedule_preempt_disabled(void); 323 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner); 324 325 struct nsproxy; 326 struct user_namespace; 327 328 #include <linux/aio.h> 329 330 #ifdef CONFIG_MMU 331 extern void arch_pick_mmap_layout(struct mm_struct *mm); 332 extern unsigned long 333 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 334 unsigned long, unsigned long); 335 extern unsigned long 336 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 337 unsigned long len, unsigned long pgoff, 338 unsigned long flags); 339 extern void arch_unmap_area(struct mm_struct *, unsigned long); 340 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 341 #else 342 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 343 #endif 344 345 346 extern void set_dumpable(struct mm_struct *mm, int value); 347 extern int get_dumpable(struct mm_struct *mm); 348 349 /* mm flags */ 350 /* dumpable bits */ 351 #define MMF_DUMPABLE 0 /* core dump is permitted */ 352 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 353 354 #define MMF_DUMPABLE_BITS 2 355 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 356 357 /* coredump filter bits */ 358 #define MMF_DUMP_ANON_PRIVATE 2 359 #define MMF_DUMP_ANON_SHARED 3 360 #define MMF_DUMP_MAPPED_PRIVATE 4 361 #define MMF_DUMP_MAPPED_SHARED 5 362 #define MMF_DUMP_ELF_HEADERS 6 363 #define MMF_DUMP_HUGETLB_PRIVATE 7 364 #define MMF_DUMP_HUGETLB_SHARED 8 365 366 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 367 #define MMF_DUMP_FILTER_BITS 7 368 #define MMF_DUMP_FILTER_MASK \ 369 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 370 #define MMF_DUMP_FILTER_DEFAULT \ 371 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 372 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 373 374 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 375 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 376 #else 377 # define MMF_DUMP_MASK_DEFAULT_ELF 0 378 #endif 379 /* leave room for more dump flags */ 380 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 381 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 382 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 383 384 #define MMF_HAS_UPROBES 19 /* has uprobes */ 385 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 386 387 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 388 389 struct sighand_struct { 390 atomic_t count; 391 struct k_sigaction action[_NSIG]; 392 spinlock_t siglock; 393 wait_queue_head_t signalfd_wqh; 394 }; 395 396 struct pacct_struct { 397 int ac_flag; 398 long ac_exitcode; 399 unsigned long ac_mem; 400 cputime_t ac_utime, ac_stime; 401 unsigned long ac_minflt, ac_majflt; 402 }; 403 404 struct cpu_itimer { 405 cputime_t expires; 406 cputime_t incr; 407 u32 error; 408 u32 incr_error; 409 }; 410 411 /** 412 * struct cputime - snaphsot of system and user cputime 413 * @utime: time spent in user mode 414 * @stime: time spent in system mode 415 * 416 * Gathers a generic snapshot of user and system time. 417 */ 418 struct cputime { 419 cputime_t utime; 420 cputime_t stime; 421 }; 422 423 /** 424 * struct task_cputime - collected CPU time counts 425 * @utime: time spent in user mode, in &cputime_t units 426 * @stime: time spent in kernel mode, in &cputime_t units 427 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 428 * 429 * This is an extension of struct cputime that includes the total runtime 430 * spent by the task from the scheduler point of view. 431 * 432 * As a result, this structure groups together three kinds of CPU time 433 * that are tracked for threads and thread groups. Most things considering 434 * CPU time want to group these counts together and treat all three 435 * of them in parallel. 436 */ 437 struct task_cputime { 438 cputime_t utime; 439 cputime_t stime; 440 unsigned long long sum_exec_runtime; 441 }; 442 /* Alternate field names when used to cache expirations. */ 443 #define prof_exp stime 444 #define virt_exp utime 445 #define sched_exp sum_exec_runtime 446 447 #define INIT_CPUTIME \ 448 (struct task_cputime) { \ 449 .utime = 0, \ 450 .stime = 0, \ 451 .sum_exec_runtime = 0, \ 452 } 453 454 /* 455 * Disable preemption until the scheduler is running. 456 * Reset by start_kernel()->sched_init()->init_idle(). 457 * 458 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 459 * before the scheduler is active -- see should_resched(). 460 */ 461 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 462 463 /** 464 * struct thread_group_cputimer - thread group interval timer counts 465 * @cputime: thread group interval timers. 466 * @running: non-zero when there are timers running and 467 * @cputime receives updates. 468 * @lock: lock for fields in this struct. 469 * 470 * This structure contains the version of task_cputime, above, that is 471 * used for thread group CPU timer calculations. 472 */ 473 struct thread_group_cputimer { 474 struct task_cputime cputime; 475 int running; 476 raw_spinlock_t lock; 477 }; 478 479 #include <linux/rwsem.h> 480 struct autogroup; 481 482 /* 483 * NOTE! "signal_struct" does not have its own 484 * locking, because a shared signal_struct always 485 * implies a shared sighand_struct, so locking 486 * sighand_struct is always a proper superset of 487 * the locking of signal_struct. 488 */ 489 struct signal_struct { 490 atomic_t sigcnt; 491 atomic_t live; 492 int nr_threads; 493 494 wait_queue_head_t wait_chldexit; /* for wait4() */ 495 496 /* current thread group signal load-balancing target: */ 497 struct task_struct *curr_target; 498 499 /* shared signal handling: */ 500 struct sigpending shared_pending; 501 502 /* thread group exit support */ 503 int group_exit_code; 504 /* overloaded: 505 * - notify group_exit_task when ->count is equal to notify_count 506 * - everyone except group_exit_task is stopped during signal delivery 507 * of fatal signals, group_exit_task processes the signal. 508 */ 509 int notify_count; 510 struct task_struct *group_exit_task; 511 512 /* thread group stop support, overloads group_exit_code too */ 513 int group_stop_count; 514 unsigned int flags; /* see SIGNAL_* flags below */ 515 516 /* 517 * PR_SET_CHILD_SUBREAPER marks a process, like a service 518 * manager, to re-parent orphan (double-forking) child processes 519 * to this process instead of 'init'. The service manager is 520 * able to receive SIGCHLD signals and is able to investigate 521 * the process until it calls wait(). All children of this 522 * process will inherit a flag if they should look for a 523 * child_subreaper process at exit. 524 */ 525 unsigned int is_child_subreaper:1; 526 unsigned int has_child_subreaper:1; 527 528 /* POSIX.1b Interval Timers */ 529 struct list_head posix_timers; 530 531 /* ITIMER_REAL timer for the process */ 532 struct hrtimer real_timer; 533 struct pid *leader_pid; 534 ktime_t it_real_incr; 535 536 /* 537 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 538 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 539 * values are defined to 0 and 1 respectively 540 */ 541 struct cpu_itimer it[2]; 542 543 /* 544 * Thread group totals for process CPU timers. 545 * See thread_group_cputimer(), et al, for details. 546 */ 547 struct thread_group_cputimer cputimer; 548 549 /* Earliest-expiration cache. */ 550 struct task_cputime cputime_expires; 551 552 struct list_head cpu_timers[3]; 553 554 struct pid *tty_old_pgrp; 555 556 /* boolean value for session group leader */ 557 int leader; 558 559 struct tty_struct *tty; /* NULL if no tty */ 560 561 #ifdef CONFIG_SCHED_AUTOGROUP 562 struct autogroup *autogroup; 563 #endif 564 /* 565 * Cumulative resource counters for dead threads in the group, 566 * and for reaped dead child processes forked by this group. 567 * Live threads maintain their own counters and add to these 568 * in __exit_signal, except for the group leader. 569 */ 570 cputime_t utime, stime, cutime, cstime; 571 cputime_t gtime; 572 cputime_t cgtime; 573 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 574 struct cputime prev_cputime; 575 #endif 576 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 577 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 578 unsigned long inblock, oublock, cinblock, coublock; 579 unsigned long maxrss, cmaxrss; 580 struct task_io_accounting ioac; 581 582 /* 583 * Cumulative ns of schedule CPU time fo dead threads in the 584 * group, not including a zombie group leader, (This only differs 585 * from jiffies_to_ns(utime + stime) if sched_clock uses something 586 * other than jiffies.) 587 */ 588 unsigned long long sum_sched_runtime; 589 590 /* 591 * We don't bother to synchronize most readers of this at all, 592 * because there is no reader checking a limit that actually needs 593 * to get both rlim_cur and rlim_max atomically, and either one 594 * alone is a single word that can safely be read normally. 595 * getrlimit/setrlimit use task_lock(current->group_leader) to 596 * protect this instead of the siglock, because they really 597 * have no need to disable irqs. 598 */ 599 struct rlimit rlim[RLIM_NLIMITS]; 600 601 #ifdef CONFIG_BSD_PROCESS_ACCT 602 struct pacct_struct pacct; /* per-process accounting information */ 603 #endif 604 #ifdef CONFIG_TASKSTATS 605 struct taskstats *stats; 606 #endif 607 #ifdef CONFIG_AUDIT 608 unsigned audit_tty; 609 struct tty_audit_buf *tty_audit_buf; 610 #endif 611 #ifdef CONFIG_CGROUPS 612 /* 613 * group_rwsem prevents new tasks from entering the threadgroup and 614 * member tasks from exiting,a more specifically, setting of 615 * PF_EXITING. fork and exit paths are protected with this rwsem 616 * using threadgroup_change_begin/end(). Users which require 617 * threadgroup to remain stable should use threadgroup_[un]lock() 618 * which also takes care of exec path. Currently, cgroup is the 619 * only user. 620 */ 621 struct rw_semaphore group_rwsem; 622 #endif 623 624 oom_flags_t oom_flags; 625 short oom_score_adj; /* OOM kill score adjustment */ 626 short oom_score_adj_min; /* OOM kill score adjustment min value. 627 * Only settable by CAP_SYS_RESOURCE. */ 628 629 struct mutex cred_guard_mutex; /* guard against foreign influences on 630 * credential calculations 631 * (notably. ptrace) */ 632 }; 633 634 /* 635 * Bits in flags field of signal_struct. 636 */ 637 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 638 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 639 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 640 /* 641 * Pending notifications to parent. 642 */ 643 #define SIGNAL_CLD_STOPPED 0x00000010 644 #define SIGNAL_CLD_CONTINUED 0x00000020 645 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 646 647 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 648 649 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 650 static inline int signal_group_exit(const struct signal_struct *sig) 651 { 652 return (sig->flags & SIGNAL_GROUP_EXIT) || 653 (sig->group_exit_task != NULL); 654 } 655 656 /* 657 * Some day this will be a full-fledged user tracking system.. 658 */ 659 struct user_struct { 660 atomic_t __count; /* reference count */ 661 atomic_t processes; /* How many processes does this user have? */ 662 atomic_t files; /* How many open files does this user have? */ 663 atomic_t sigpending; /* How many pending signals does this user have? */ 664 #ifdef CONFIG_INOTIFY_USER 665 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 666 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 667 #endif 668 #ifdef CONFIG_FANOTIFY 669 atomic_t fanotify_listeners; 670 #endif 671 #ifdef CONFIG_EPOLL 672 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 673 #endif 674 #ifdef CONFIG_POSIX_MQUEUE 675 /* protected by mq_lock */ 676 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 677 #endif 678 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 679 680 #ifdef CONFIG_KEYS 681 struct key *uid_keyring; /* UID specific keyring */ 682 struct key *session_keyring; /* UID's default session keyring */ 683 #endif 684 685 /* Hash table maintenance information */ 686 struct hlist_node uidhash_node; 687 kuid_t uid; 688 689 #ifdef CONFIG_PERF_EVENTS 690 atomic_long_t locked_vm; 691 #endif 692 }; 693 694 extern int uids_sysfs_init(void); 695 696 extern struct user_struct *find_user(kuid_t); 697 698 extern struct user_struct root_user; 699 #define INIT_USER (&root_user) 700 701 702 struct backing_dev_info; 703 struct reclaim_state; 704 705 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 706 struct sched_info { 707 /* cumulative counters */ 708 unsigned long pcount; /* # of times run on this cpu */ 709 unsigned long long run_delay; /* time spent waiting on a runqueue */ 710 711 /* timestamps */ 712 unsigned long long last_arrival,/* when we last ran on a cpu */ 713 last_queued; /* when we were last queued to run */ 714 }; 715 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 716 717 #ifdef CONFIG_TASK_DELAY_ACCT 718 struct task_delay_info { 719 spinlock_t lock; 720 unsigned int flags; /* Private per-task flags */ 721 722 /* For each stat XXX, add following, aligned appropriately 723 * 724 * struct timespec XXX_start, XXX_end; 725 * u64 XXX_delay; 726 * u32 XXX_count; 727 * 728 * Atomicity of updates to XXX_delay, XXX_count protected by 729 * single lock above (split into XXX_lock if contention is an issue). 730 */ 731 732 /* 733 * XXX_count is incremented on every XXX operation, the delay 734 * associated with the operation is added to XXX_delay. 735 * XXX_delay contains the accumulated delay time in nanoseconds. 736 */ 737 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 738 u64 blkio_delay; /* wait for sync block io completion */ 739 u64 swapin_delay; /* wait for swapin block io completion */ 740 u32 blkio_count; /* total count of the number of sync block */ 741 /* io operations performed */ 742 u32 swapin_count; /* total count of the number of swapin block */ 743 /* io operations performed */ 744 745 struct timespec freepages_start, freepages_end; 746 u64 freepages_delay; /* wait for memory reclaim */ 747 u32 freepages_count; /* total count of memory reclaim */ 748 }; 749 #endif /* CONFIG_TASK_DELAY_ACCT */ 750 751 static inline int sched_info_on(void) 752 { 753 #ifdef CONFIG_SCHEDSTATS 754 return 1; 755 #elif defined(CONFIG_TASK_DELAY_ACCT) 756 extern int delayacct_on; 757 return delayacct_on; 758 #else 759 return 0; 760 #endif 761 } 762 763 enum cpu_idle_type { 764 CPU_IDLE, 765 CPU_NOT_IDLE, 766 CPU_NEWLY_IDLE, 767 CPU_MAX_IDLE_TYPES 768 }; 769 770 /* 771 * Increase resolution of nice-level calculations for 64-bit architectures. 772 * The extra resolution improves shares distribution and load balancing of 773 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 774 * hierarchies, especially on larger systems. This is not a user-visible change 775 * and does not change the user-interface for setting shares/weights. 776 * 777 * We increase resolution only if we have enough bits to allow this increased 778 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution 779 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the 780 * increased costs. 781 */ 782 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */ 783 # define SCHED_LOAD_RESOLUTION 10 784 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION) 785 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION) 786 #else 787 # define SCHED_LOAD_RESOLUTION 0 788 # define scale_load(w) (w) 789 # define scale_load_down(w) (w) 790 #endif 791 792 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION) 793 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 794 795 /* 796 * Increase resolution of cpu_power calculations 797 */ 798 #define SCHED_POWER_SHIFT 10 799 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT) 800 801 /* 802 * sched-domains (multiprocessor balancing) declarations: 803 */ 804 #ifdef CONFIG_SMP 805 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 806 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 807 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 808 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 809 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 810 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 811 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 812 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 813 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 814 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 815 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 816 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 817 818 extern int __weak arch_sd_sibiling_asym_packing(void); 819 820 struct sched_group_power { 821 atomic_t ref; 822 /* 823 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 824 * single CPU. 825 */ 826 unsigned int power, power_orig; 827 unsigned long next_update; 828 /* 829 * Number of busy cpus in this group. 830 */ 831 atomic_t nr_busy_cpus; 832 833 unsigned long cpumask[0]; /* iteration mask */ 834 }; 835 836 struct sched_group { 837 struct sched_group *next; /* Must be a circular list */ 838 atomic_t ref; 839 840 unsigned int group_weight; 841 struct sched_group_power *sgp; 842 843 /* 844 * The CPUs this group covers. 845 * 846 * NOTE: this field is variable length. (Allocated dynamically 847 * by attaching extra space to the end of the structure, 848 * depending on how many CPUs the kernel has booted up with) 849 */ 850 unsigned long cpumask[0]; 851 }; 852 853 static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 854 { 855 return to_cpumask(sg->cpumask); 856 } 857 858 /* 859 * cpumask masking which cpus in the group are allowed to iterate up the domain 860 * tree. 861 */ 862 static inline struct cpumask *sched_group_mask(struct sched_group *sg) 863 { 864 return to_cpumask(sg->sgp->cpumask); 865 } 866 867 /** 868 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. 869 * @group: The group whose first cpu is to be returned. 870 */ 871 static inline unsigned int group_first_cpu(struct sched_group *group) 872 { 873 return cpumask_first(sched_group_cpus(group)); 874 } 875 876 struct sched_domain_attr { 877 int relax_domain_level; 878 }; 879 880 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 881 .relax_domain_level = -1, \ 882 } 883 884 extern int sched_domain_level_max; 885 886 struct sched_domain { 887 /* These fields must be setup */ 888 struct sched_domain *parent; /* top domain must be null terminated */ 889 struct sched_domain *child; /* bottom domain must be null terminated */ 890 struct sched_group *groups; /* the balancing groups of the domain */ 891 unsigned long min_interval; /* Minimum balance interval ms */ 892 unsigned long max_interval; /* Maximum balance interval ms */ 893 unsigned int busy_factor; /* less balancing by factor if busy */ 894 unsigned int imbalance_pct; /* No balance until over watermark */ 895 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 896 unsigned int busy_idx; 897 unsigned int idle_idx; 898 unsigned int newidle_idx; 899 unsigned int wake_idx; 900 unsigned int forkexec_idx; 901 unsigned int smt_gain; 902 int flags; /* See SD_* */ 903 int level; 904 905 /* Runtime fields. */ 906 unsigned long last_balance; /* init to jiffies. units in jiffies */ 907 unsigned int balance_interval; /* initialise to 1. units in ms. */ 908 unsigned int nr_balance_failed; /* initialise to 0 */ 909 910 u64 last_update; 911 912 #ifdef CONFIG_SCHEDSTATS 913 /* load_balance() stats */ 914 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 915 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 916 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 917 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 918 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 919 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 920 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 921 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 922 923 /* Active load balancing */ 924 unsigned int alb_count; 925 unsigned int alb_failed; 926 unsigned int alb_pushed; 927 928 /* SD_BALANCE_EXEC stats */ 929 unsigned int sbe_count; 930 unsigned int sbe_balanced; 931 unsigned int sbe_pushed; 932 933 /* SD_BALANCE_FORK stats */ 934 unsigned int sbf_count; 935 unsigned int sbf_balanced; 936 unsigned int sbf_pushed; 937 938 /* try_to_wake_up() stats */ 939 unsigned int ttwu_wake_remote; 940 unsigned int ttwu_move_affine; 941 unsigned int ttwu_move_balance; 942 #endif 943 #ifdef CONFIG_SCHED_DEBUG 944 char *name; 945 #endif 946 union { 947 void *private; /* used during construction */ 948 struct rcu_head rcu; /* used during destruction */ 949 }; 950 951 unsigned int span_weight; 952 /* 953 * Span of all CPUs in this domain. 954 * 955 * NOTE: this field is variable length. (Allocated dynamically 956 * by attaching extra space to the end of the structure, 957 * depending on how many CPUs the kernel has booted up with) 958 */ 959 unsigned long span[0]; 960 }; 961 962 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 963 { 964 return to_cpumask(sd->span); 965 } 966 967 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 968 struct sched_domain_attr *dattr_new); 969 970 /* Allocate an array of sched domains, for partition_sched_domains(). */ 971 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 972 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 973 974 /* Test a flag in parent sched domain */ 975 static inline int test_sd_parent(struct sched_domain *sd, int flag) 976 { 977 if (sd->parent && (sd->parent->flags & flag)) 978 return 1; 979 980 return 0; 981 } 982 983 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu); 984 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu); 985 986 bool cpus_share_cache(int this_cpu, int that_cpu); 987 988 #else /* CONFIG_SMP */ 989 990 struct sched_domain_attr; 991 992 static inline void 993 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 994 struct sched_domain_attr *dattr_new) 995 { 996 } 997 998 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 999 { 1000 return true; 1001 } 1002 1003 #endif /* !CONFIG_SMP */ 1004 1005 1006 struct io_context; /* See blkdev.h */ 1007 1008 1009 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1010 extern void prefetch_stack(struct task_struct *t); 1011 #else 1012 static inline void prefetch_stack(struct task_struct *t) { } 1013 #endif 1014 1015 struct audit_context; /* See audit.c */ 1016 struct mempolicy; 1017 struct pipe_inode_info; 1018 struct uts_namespace; 1019 1020 struct rq; 1021 struct sched_domain; 1022 1023 /* 1024 * wake flags 1025 */ 1026 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */ 1027 #define WF_FORK 0x02 /* child wakeup after fork */ 1028 #define WF_MIGRATED 0x04 /* internal use, task got migrated */ 1029 1030 #define ENQUEUE_WAKEUP 1 1031 #define ENQUEUE_HEAD 2 1032 #ifdef CONFIG_SMP 1033 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */ 1034 #else 1035 #define ENQUEUE_WAKING 0 1036 #endif 1037 1038 #define DEQUEUE_SLEEP 1 1039 1040 struct sched_class { 1041 const struct sched_class *next; 1042 1043 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1044 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1045 void (*yield_task) (struct rq *rq); 1046 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); 1047 1048 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1049 1050 struct task_struct * (*pick_next_task) (struct rq *rq); 1051 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1052 1053 #ifdef CONFIG_SMP 1054 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags); 1055 void (*migrate_task_rq)(struct task_struct *p, int next_cpu); 1056 1057 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 1058 void (*post_schedule) (struct rq *this_rq); 1059 void (*task_waking) (struct task_struct *task); 1060 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1061 1062 void (*set_cpus_allowed)(struct task_struct *p, 1063 const struct cpumask *newmask); 1064 1065 void (*rq_online)(struct rq *rq); 1066 void (*rq_offline)(struct rq *rq); 1067 #endif 1068 1069 void (*set_curr_task) (struct rq *rq); 1070 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1071 void (*task_fork) (struct task_struct *p); 1072 1073 void (*switched_from) (struct rq *this_rq, struct task_struct *task); 1074 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1075 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1076 int oldprio); 1077 1078 unsigned int (*get_rr_interval) (struct rq *rq, 1079 struct task_struct *task); 1080 1081 #ifdef CONFIG_FAIR_GROUP_SCHED 1082 void (*task_move_group) (struct task_struct *p, int on_rq); 1083 #endif 1084 }; 1085 1086 struct load_weight { 1087 unsigned long weight, inv_weight; 1088 }; 1089 1090 struct sched_avg { 1091 /* 1092 * These sums represent an infinite geometric series and so are bound 1093 * above by 1024/(1-y). Thus we only need a u32 to store them for for all 1094 * choices of y < 1-2^(-32)*1024. 1095 */ 1096 u32 runnable_avg_sum, runnable_avg_period; 1097 u64 last_runnable_update; 1098 s64 decay_count; 1099 unsigned long load_avg_contrib; 1100 }; 1101 1102 #ifdef CONFIG_SCHEDSTATS 1103 struct sched_statistics { 1104 u64 wait_start; 1105 u64 wait_max; 1106 u64 wait_count; 1107 u64 wait_sum; 1108 u64 iowait_count; 1109 u64 iowait_sum; 1110 1111 u64 sleep_start; 1112 u64 sleep_max; 1113 s64 sum_sleep_runtime; 1114 1115 u64 block_start; 1116 u64 block_max; 1117 u64 exec_max; 1118 u64 slice_max; 1119 1120 u64 nr_migrations_cold; 1121 u64 nr_failed_migrations_affine; 1122 u64 nr_failed_migrations_running; 1123 u64 nr_failed_migrations_hot; 1124 u64 nr_forced_migrations; 1125 1126 u64 nr_wakeups; 1127 u64 nr_wakeups_sync; 1128 u64 nr_wakeups_migrate; 1129 u64 nr_wakeups_local; 1130 u64 nr_wakeups_remote; 1131 u64 nr_wakeups_affine; 1132 u64 nr_wakeups_affine_attempts; 1133 u64 nr_wakeups_passive; 1134 u64 nr_wakeups_idle; 1135 }; 1136 #endif 1137 1138 struct sched_entity { 1139 struct load_weight load; /* for load-balancing */ 1140 struct rb_node run_node; 1141 struct list_head group_node; 1142 unsigned int on_rq; 1143 1144 u64 exec_start; 1145 u64 sum_exec_runtime; 1146 u64 vruntime; 1147 u64 prev_sum_exec_runtime; 1148 1149 u64 nr_migrations; 1150 1151 #ifdef CONFIG_SCHEDSTATS 1152 struct sched_statistics statistics; 1153 #endif 1154 1155 #ifdef CONFIG_FAIR_GROUP_SCHED 1156 struct sched_entity *parent; 1157 /* rq on which this entity is (to be) queued: */ 1158 struct cfs_rq *cfs_rq; 1159 /* rq "owned" by this entity/group: */ 1160 struct cfs_rq *my_q; 1161 #endif 1162 1163 /* 1164 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be 1165 * removed when useful for applications beyond shares distribution (e.g. 1166 * load-balance). 1167 */ 1168 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED) 1169 /* Per-entity load-tracking */ 1170 struct sched_avg avg; 1171 #endif 1172 }; 1173 1174 struct sched_rt_entity { 1175 struct list_head run_list; 1176 unsigned long timeout; 1177 unsigned long watchdog_stamp; 1178 unsigned int time_slice; 1179 1180 struct sched_rt_entity *back; 1181 #ifdef CONFIG_RT_GROUP_SCHED 1182 struct sched_rt_entity *parent; 1183 /* rq on which this entity is (to be) queued: */ 1184 struct rt_rq *rt_rq; 1185 /* rq "owned" by this entity/group: */ 1186 struct rt_rq *my_q; 1187 #endif 1188 }; 1189 1190 1191 struct rcu_node; 1192 1193 enum perf_event_task_context { 1194 perf_invalid_context = -1, 1195 perf_hw_context = 0, 1196 perf_sw_context, 1197 perf_nr_task_contexts, 1198 }; 1199 1200 struct task_struct { 1201 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1202 void *stack; 1203 atomic_t usage; 1204 unsigned int flags; /* per process flags, defined below */ 1205 unsigned int ptrace; 1206 1207 #ifdef CONFIG_SMP 1208 struct llist_node wake_entry; 1209 int on_cpu; 1210 #endif 1211 int on_rq; 1212 1213 int prio, static_prio, normal_prio; 1214 unsigned int rt_priority; 1215 const struct sched_class *sched_class; 1216 struct sched_entity se; 1217 struct sched_rt_entity rt; 1218 #ifdef CONFIG_CGROUP_SCHED 1219 struct task_group *sched_task_group; 1220 #endif 1221 1222 #ifdef CONFIG_PREEMPT_NOTIFIERS 1223 /* list of struct preempt_notifier: */ 1224 struct hlist_head preempt_notifiers; 1225 #endif 1226 1227 /* 1228 * fpu_counter contains the number of consecutive context switches 1229 * that the FPU is used. If this is over a threshold, the lazy fpu 1230 * saving becomes unlazy to save the trap. This is an unsigned char 1231 * so that after 256 times the counter wraps and the behavior turns 1232 * lazy again; this to deal with bursty apps that only use FPU for 1233 * a short time 1234 */ 1235 unsigned char fpu_counter; 1236 #ifdef CONFIG_BLK_DEV_IO_TRACE 1237 unsigned int btrace_seq; 1238 #endif 1239 1240 unsigned int policy; 1241 int nr_cpus_allowed; 1242 cpumask_t cpus_allowed; 1243 1244 #ifdef CONFIG_PREEMPT_RCU 1245 int rcu_read_lock_nesting; 1246 char rcu_read_unlock_special; 1247 struct list_head rcu_node_entry; 1248 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1249 #ifdef CONFIG_TREE_PREEMPT_RCU 1250 struct rcu_node *rcu_blocked_node; 1251 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1252 #ifdef CONFIG_RCU_BOOST 1253 struct rt_mutex *rcu_boost_mutex; 1254 #endif /* #ifdef CONFIG_RCU_BOOST */ 1255 1256 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1257 struct sched_info sched_info; 1258 #endif 1259 1260 struct list_head tasks; 1261 #ifdef CONFIG_SMP 1262 struct plist_node pushable_tasks; 1263 #endif 1264 1265 struct mm_struct *mm, *active_mm; 1266 #ifdef CONFIG_COMPAT_BRK 1267 unsigned brk_randomized:1; 1268 #endif 1269 #if defined(SPLIT_RSS_COUNTING) 1270 struct task_rss_stat rss_stat; 1271 #endif 1272 /* task state */ 1273 int exit_state; 1274 int exit_code, exit_signal; 1275 int pdeath_signal; /* The signal sent when the parent dies */ 1276 unsigned int jobctl; /* JOBCTL_*, siglock protected */ 1277 /* ??? */ 1278 unsigned int personality; 1279 unsigned did_exec:1; 1280 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1281 * execve */ 1282 unsigned in_iowait:1; 1283 1284 /* task may not gain privileges */ 1285 unsigned no_new_privs:1; 1286 1287 /* Revert to default priority/policy when forking */ 1288 unsigned sched_reset_on_fork:1; 1289 unsigned sched_contributes_to_load:1; 1290 1291 pid_t pid; 1292 pid_t tgid; 1293 1294 #ifdef CONFIG_CC_STACKPROTECTOR 1295 /* Canary value for the -fstack-protector gcc feature */ 1296 unsigned long stack_canary; 1297 #endif 1298 /* 1299 * pointers to (original) parent process, youngest child, younger sibling, 1300 * older sibling, respectively. (p->father can be replaced with 1301 * p->real_parent->pid) 1302 */ 1303 struct task_struct __rcu *real_parent; /* real parent process */ 1304 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1305 /* 1306 * children/sibling forms the list of my natural children 1307 */ 1308 struct list_head children; /* list of my children */ 1309 struct list_head sibling; /* linkage in my parent's children list */ 1310 struct task_struct *group_leader; /* threadgroup leader */ 1311 1312 /* 1313 * ptraced is the list of tasks this task is using ptrace on. 1314 * This includes both natural children and PTRACE_ATTACH targets. 1315 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1316 */ 1317 struct list_head ptraced; 1318 struct list_head ptrace_entry; 1319 1320 /* PID/PID hash table linkage. */ 1321 struct pid_link pids[PIDTYPE_MAX]; 1322 struct list_head thread_group; 1323 1324 struct completion *vfork_done; /* for vfork() */ 1325 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1326 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1327 1328 cputime_t utime, stime, utimescaled, stimescaled; 1329 cputime_t gtime; 1330 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 1331 struct cputime prev_cputime; 1332 #endif 1333 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1334 seqlock_t vtime_seqlock; 1335 unsigned long long vtime_snap; 1336 enum { 1337 VTIME_SLEEPING = 0, 1338 VTIME_USER, 1339 VTIME_SYS, 1340 } vtime_snap_whence; 1341 #endif 1342 unsigned long nvcsw, nivcsw; /* context switch counts */ 1343 struct timespec start_time; /* monotonic time */ 1344 struct timespec real_start_time; /* boot based time */ 1345 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1346 unsigned long min_flt, maj_flt; 1347 1348 struct task_cputime cputime_expires; 1349 struct list_head cpu_timers[3]; 1350 1351 /* process credentials */ 1352 const struct cred __rcu *real_cred; /* objective and real subjective task 1353 * credentials (COW) */ 1354 const struct cred __rcu *cred; /* effective (overridable) subjective task 1355 * credentials (COW) */ 1356 char comm[TASK_COMM_LEN]; /* executable name excluding path 1357 - access with [gs]et_task_comm (which lock 1358 it with task_lock()) 1359 - initialized normally by setup_new_exec */ 1360 /* file system info */ 1361 int link_count, total_link_count; 1362 #ifdef CONFIG_SYSVIPC 1363 /* ipc stuff */ 1364 struct sysv_sem sysvsem; 1365 #endif 1366 #ifdef CONFIG_DETECT_HUNG_TASK 1367 /* hung task detection */ 1368 unsigned long last_switch_count; 1369 #endif 1370 /* CPU-specific state of this task */ 1371 struct thread_struct thread; 1372 /* filesystem information */ 1373 struct fs_struct *fs; 1374 /* open file information */ 1375 struct files_struct *files; 1376 /* namespaces */ 1377 struct nsproxy *nsproxy; 1378 /* signal handlers */ 1379 struct signal_struct *signal; 1380 struct sighand_struct *sighand; 1381 1382 sigset_t blocked, real_blocked; 1383 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1384 struct sigpending pending; 1385 1386 unsigned long sas_ss_sp; 1387 size_t sas_ss_size; 1388 int (*notifier)(void *priv); 1389 void *notifier_data; 1390 sigset_t *notifier_mask; 1391 struct callback_head *task_works; 1392 1393 struct audit_context *audit_context; 1394 #ifdef CONFIG_AUDITSYSCALL 1395 kuid_t loginuid; 1396 unsigned int sessionid; 1397 #endif 1398 struct seccomp seccomp; 1399 1400 /* Thread group tracking */ 1401 u32 parent_exec_id; 1402 u32 self_exec_id; 1403 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1404 * mempolicy */ 1405 spinlock_t alloc_lock; 1406 1407 /* Protection of the PI data structures: */ 1408 raw_spinlock_t pi_lock; 1409 1410 #ifdef CONFIG_RT_MUTEXES 1411 /* PI waiters blocked on a rt_mutex held by this task */ 1412 struct plist_head pi_waiters; 1413 /* Deadlock detection and priority inheritance handling */ 1414 struct rt_mutex_waiter *pi_blocked_on; 1415 #endif 1416 1417 #ifdef CONFIG_DEBUG_MUTEXES 1418 /* mutex deadlock detection */ 1419 struct mutex_waiter *blocked_on; 1420 #endif 1421 #ifdef CONFIG_TRACE_IRQFLAGS 1422 unsigned int irq_events; 1423 unsigned long hardirq_enable_ip; 1424 unsigned long hardirq_disable_ip; 1425 unsigned int hardirq_enable_event; 1426 unsigned int hardirq_disable_event; 1427 int hardirqs_enabled; 1428 int hardirq_context; 1429 unsigned long softirq_disable_ip; 1430 unsigned long softirq_enable_ip; 1431 unsigned int softirq_disable_event; 1432 unsigned int softirq_enable_event; 1433 int softirqs_enabled; 1434 int softirq_context; 1435 #endif 1436 #ifdef CONFIG_LOCKDEP 1437 # define MAX_LOCK_DEPTH 48UL 1438 u64 curr_chain_key; 1439 int lockdep_depth; 1440 unsigned int lockdep_recursion; 1441 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1442 gfp_t lockdep_reclaim_gfp; 1443 #endif 1444 1445 /* journalling filesystem info */ 1446 void *journal_info; 1447 1448 /* stacked block device info */ 1449 struct bio_list *bio_list; 1450 1451 #ifdef CONFIG_BLOCK 1452 /* stack plugging */ 1453 struct blk_plug *plug; 1454 #endif 1455 1456 /* VM state */ 1457 struct reclaim_state *reclaim_state; 1458 1459 struct backing_dev_info *backing_dev_info; 1460 1461 struct io_context *io_context; 1462 1463 unsigned long ptrace_message; 1464 siginfo_t *last_siginfo; /* For ptrace use. */ 1465 struct task_io_accounting ioac; 1466 #if defined(CONFIG_TASK_XACCT) 1467 u64 acct_rss_mem1; /* accumulated rss usage */ 1468 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1469 cputime_t acct_timexpd; /* stime + utime since last update */ 1470 #endif 1471 #ifdef CONFIG_CPUSETS 1472 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1473 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1474 int cpuset_mem_spread_rotor; 1475 int cpuset_slab_spread_rotor; 1476 #endif 1477 #ifdef CONFIG_CGROUPS 1478 /* Control Group info protected by css_set_lock */ 1479 struct css_set __rcu *cgroups; 1480 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1481 struct list_head cg_list; 1482 #endif 1483 #ifdef CONFIG_FUTEX 1484 struct robust_list_head __user *robust_list; 1485 #ifdef CONFIG_COMPAT 1486 struct compat_robust_list_head __user *compat_robust_list; 1487 #endif 1488 struct list_head pi_state_list; 1489 struct futex_pi_state *pi_state_cache; 1490 #endif 1491 #ifdef CONFIG_PERF_EVENTS 1492 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1493 struct mutex perf_event_mutex; 1494 struct list_head perf_event_list; 1495 #endif 1496 #ifdef CONFIG_NUMA 1497 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1498 short il_next; 1499 short pref_node_fork; 1500 #endif 1501 #ifdef CONFIG_NUMA_BALANCING 1502 int numa_scan_seq; 1503 int numa_migrate_seq; 1504 unsigned int numa_scan_period; 1505 u64 node_stamp; /* migration stamp */ 1506 struct callback_head numa_work; 1507 #endif /* CONFIG_NUMA_BALANCING */ 1508 1509 struct rcu_head rcu; 1510 1511 /* 1512 * cache last used pipe for splice 1513 */ 1514 struct pipe_inode_info *splice_pipe; 1515 1516 struct page_frag task_frag; 1517 1518 #ifdef CONFIG_TASK_DELAY_ACCT 1519 struct task_delay_info *delays; 1520 #endif 1521 #ifdef CONFIG_FAULT_INJECTION 1522 int make_it_fail; 1523 #endif 1524 /* 1525 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1526 * balance_dirty_pages() for some dirty throttling pause 1527 */ 1528 int nr_dirtied; 1529 int nr_dirtied_pause; 1530 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1531 1532 #ifdef CONFIG_LATENCYTOP 1533 int latency_record_count; 1534 struct latency_record latency_record[LT_SAVECOUNT]; 1535 #endif 1536 /* 1537 * time slack values; these are used to round up poll() and 1538 * select() etc timeout values. These are in nanoseconds. 1539 */ 1540 unsigned long timer_slack_ns; 1541 unsigned long default_timer_slack_ns; 1542 1543 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1544 /* Index of current stored address in ret_stack */ 1545 int curr_ret_stack; 1546 /* Stack of return addresses for return function tracing */ 1547 struct ftrace_ret_stack *ret_stack; 1548 /* time stamp for last schedule */ 1549 unsigned long long ftrace_timestamp; 1550 /* 1551 * Number of functions that haven't been traced 1552 * because of depth overrun. 1553 */ 1554 atomic_t trace_overrun; 1555 /* Pause for the tracing */ 1556 atomic_t tracing_graph_pause; 1557 #endif 1558 #ifdef CONFIG_TRACING 1559 /* state flags for use by tracers */ 1560 unsigned long trace; 1561 /* bitmask and counter of trace recursion */ 1562 unsigned long trace_recursion; 1563 #endif /* CONFIG_TRACING */ 1564 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */ 1565 struct memcg_batch_info { 1566 int do_batch; /* incremented when batch uncharge started */ 1567 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1568 unsigned long nr_pages; /* uncharged usage */ 1569 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */ 1570 } memcg_batch; 1571 unsigned int memcg_kmem_skip_account; 1572 #endif 1573 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1574 atomic_t ptrace_bp_refcnt; 1575 #endif 1576 #ifdef CONFIG_UPROBES 1577 struct uprobe_task *utask; 1578 #endif 1579 }; 1580 1581 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1582 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1583 1584 #ifdef CONFIG_NUMA_BALANCING 1585 extern void task_numa_fault(int node, int pages, bool migrated); 1586 extern void set_numabalancing_state(bool enabled); 1587 #else 1588 static inline void task_numa_fault(int node, int pages, bool migrated) 1589 { 1590 } 1591 static inline void set_numabalancing_state(bool enabled) 1592 { 1593 } 1594 #endif 1595 1596 static inline struct pid *task_pid(struct task_struct *task) 1597 { 1598 return task->pids[PIDTYPE_PID].pid; 1599 } 1600 1601 static inline struct pid *task_tgid(struct task_struct *task) 1602 { 1603 return task->group_leader->pids[PIDTYPE_PID].pid; 1604 } 1605 1606 /* 1607 * Without tasklist or rcu lock it is not safe to dereference 1608 * the result of task_pgrp/task_session even if task == current, 1609 * we can race with another thread doing sys_setsid/sys_setpgid. 1610 */ 1611 static inline struct pid *task_pgrp(struct task_struct *task) 1612 { 1613 return task->group_leader->pids[PIDTYPE_PGID].pid; 1614 } 1615 1616 static inline struct pid *task_session(struct task_struct *task) 1617 { 1618 return task->group_leader->pids[PIDTYPE_SID].pid; 1619 } 1620 1621 struct pid_namespace; 1622 1623 /* 1624 * the helpers to get the task's different pids as they are seen 1625 * from various namespaces 1626 * 1627 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1628 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1629 * current. 1630 * task_xid_nr_ns() : id seen from the ns specified; 1631 * 1632 * set_task_vxid() : assigns a virtual id to a task; 1633 * 1634 * see also pid_nr() etc in include/linux/pid.h 1635 */ 1636 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1637 struct pid_namespace *ns); 1638 1639 static inline pid_t task_pid_nr(struct task_struct *tsk) 1640 { 1641 return tsk->pid; 1642 } 1643 1644 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1645 struct pid_namespace *ns) 1646 { 1647 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1648 } 1649 1650 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1651 { 1652 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1653 } 1654 1655 1656 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1657 { 1658 return tsk->tgid; 1659 } 1660 1661 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1662 1663 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1664 { 1665 return pid_vnr(task_tgid(tsk)); 1666 } 1667 1668 1669 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1670 struct pid_namespace *ns) 1671 { 1672 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1673 } 1674 1675 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1676 { 1677 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1678 } 1679 1680 1681 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1682 struct pid_namespace *ns) 1683 { 1684 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1685 } 1686 1687 static inline pid_t task_session_vnr(struct task_struct *tsk) 1688 { 1689 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1690 } 1691 1692 /* obsolete, do not use */ 1693 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1694 { 1695 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1696 } 1697 1698 /** 1699 * pid_alive - check that a task structure is not stale 1700 * @p: Task structure to be checked. 1701 * 1702 * Test if a process is not yet dead (at most zombie state) 1703 * If pid_alive fails, then pointers within the task structure 1704 * can be stale and must not be dereferenced. 1705 */ 1706 static inline int pid_alive(struct task_struct *p) 1707 { 1708 return p->pids[PIDTYPE_PID].pid != NULL; 1709 } 1710 1711 /** 1712 * is_global_init - check if a task structure is init 1713 * @tsk: Task structure to be checked. 1714 * 1715 * Check if a task structure is the first user space task the kernel created. 1716 */ 1717 static inline int is_global_init(struct task_struct *tsk) 1718 { 1719 return tsk->pid == 1; 1720 } 1721 1722 extern struct pid *cad_pid; 1723 1724 extern void free_task(struct task_struct *tsk); 1725 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1726 1727 extern void __put_task_struct(struct task_struct *t); 1728 1729 static inline void put_task_struct(struct task_struct *t) 1730 { 1731 if (atomic_dec_and_test(&t->usage)) 1732 __put_task_struct(t); 1733 } 1734 1735 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1736 extern void task_cputime(struct task_struct *t, 1737 cputime_t *utime, cputime_t *stime); 1738 extern void task_cputime_scaled(struct task_struct *t, 1739 cputime_t *utimescaled, cputime_t *stimescaled); 1740 extern cputime_t task_gtime(struct task_struct *t); 1741 #else 1742 static inline void task_cputime(struct task_struct *t, 1743 cputime_t *utime, cputime_t *stime) 1744 { 1745 if (utime) 1746 *utime = t->utime; 1747 if (stime) 1748 *stime = t->stime; 1749 } 1750 1751 static inline void task_cputime_scaled(struct task_struct *t, 1752 cputime_t *utimescaled, 1753 cputime_t *stimescaled) 1754 { 1755 if (utimescaled) 1756 *utimescaled = t->utimescaled; 1757 if (stimescaled) 1758 *stimescaled = t->stimescaled; 1759 } 1760 1761 static inline cputime_t task_gtime(struct task_struct *t) 1762 { 1763 return t->gtime; 1764 } 1765 #endif 1766 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1767 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1768 1769 /* 1770 * Per process flags 1771 */ 1772 #define PF_EXITING 0x00000004 /* getting shut down */ 1773 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1774 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1775 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1776 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1777 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1778 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1779 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1780 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1781 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1782 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 1783 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1784 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 1785 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1786 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1787 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1788 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1789 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 1790 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1791 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1792 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1793 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1794 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1795 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1796 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1797 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1798 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1799 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1800 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1801 1802 /* 1803 * Only the _current_ task can read/write to tsk->flags, but other 1804 * tasks can access tsk->flags in readonly mode for example 1805 * with tsk_used_math (like during threaded core dumping). 1806 * There is however an exception to this rule during ptrace 1807 * or during fork: the ptracer task is allowed to write to the 1808 * child->flags of its traced child (same goes for fork, the parent 1809 * can write to the child->flags), because we're guaranteed the 1810 * child is not running and in turn not changing child->flags 1811 * at the same time the parent does it. 1812 */ 1813 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1814 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1815 #define clear_used_math() clear_stopped_child_used_math(current) 1816 #define set_used_math() set_stopped_child_used_math(current) 1817 #define conditional_stopped_child_used_math(condition, child) \ 1818 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1819 #define conditional_used_math(condition) \ 1820 conditional_stopped_child_used_math(condition, current) 1821 #define copy_to_stopped_child_used_math(child) \ 1822 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1823 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1824 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1825 #define used_math() tsk_used_math(current) 1826 1827 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */ 1828 static inline gfp_t memalloc_noio_flags(gfp_t flags) 1829 { 1830 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 1831 flags &= ~__GFP_IO; 1832 return flags; 1833 } 1834 1835 static inline unsigned int memalloc_noio_save(void) 1836 { 1837 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 1838 current->flags |= PF_MEMALLOC_NOIO; 1839 return flags; 1840 } 1841 1842 static inline void memalloc_noio_restore(unsigned int flags) 1843 { 1844 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 1845 } 1846 1847 /* 1848 * task->jobctl flags 1849 */ 1850 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 1851 1852 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 1853 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 1854 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 1855 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 1856 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 1857 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 1858 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 1859 1860 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT) 1861 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT) 1862 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT) 1863 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT) 1864 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT) 1865 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT) 1866 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT) 1867 1868 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 1869 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 1870 1871 extern bool task_set_jobctl_pending(struct task_struct *task, 1872 unsigned int mask); 1873 extern void task_clear_jobctl_trapping(struct task_struct *task); 1874 extern void task_clear_jobctl_pending(struct task_struct *task, 1875 unsigned int mask); 1876 1877 #ifdef CONFIG_PREEMPT_RCU 1878 1879 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1880 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ 1881 1882 static inline void rcu_copy_process(struct task_struct *p) 1883 { 1884 p->rcu_read_lock_nesting = 0; 1885 p->rcu_read_unlock_special = 0; 1886 #ifdef CONFIG_TREE_PREEMPT_RCU 1887 p->rcu_blocked_node = NULL; 1888 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1889 #ifdef CONFIG_RCU_BOOST 1890 p->rcu_boost_mutex = NULL; 1891 #endif /* #ifdef CONFIG_RCU_BOOST */ 1892 INIT_LIST_HEAD(&p->rcu_node_entry); 1893 } 1894 1895 #else 1896 1897 static inline void rcu_copy_process(struct task_struct *p) 1898 { 1899 } 1900 1901 #endif 1902 1903 static inline void tsk_restore_flags(struct task_struct *task, 1904 unsigned long orig_flags, unsigned long flags) 1905 { 1906 task->flags &= ~flags; 1907 task->flags |= orig_flags & flags; 1908 } 1909 1910 #ifdef CONFIG_SMP 1911 extern void do_set_cpus_allowed(struct task_struct *p, 1912 const struct cpumask *new_mask); 1913 1914 extern int set_cpus_allowed_ptr(struct task_struct *p, 1915 const struct cpumask *new_mask); 1916 #else 1917 static inline void do_set_cpus_allowed(struct task_struct *p, 1918 const struct cpumask *new_mask) 1919 { 1920 } 1921 static inline int set_cpus_allowed_ptr(struct task_struct *p, 1922 const struct cpumask *new_mask) 1923 { 1924 if (!cpumask_test_cpu(0, new_mask)) 1925 return -EINVAL; 1926 return 0; 1927 } 1928 #endif 1929 1930 #ifdef CONFIG_NO_HZ 1931 void calc_load_enter_idle(void); 1932 void calc_load_exit_idle(void); 1933 #else 1934 static inline void calc_load_enter_idle(void) { } 1935 static inline void calc_load_exit_idle(void) { } 1936 #endif /* CONFIG_NO_HZ */ 1937 1938 #ifndef CONFIG_CPUMASK_OFFSTACK 1939 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1940 { 1941 return set_cpus_allowed_ptr(p, &new_mask); 1942 } 1943 #endif 1944 1945 /* 1946 * Do not use outside of architecture code which knows its limitations. 1947 * 1948 * sched_clock() has no promise of monotonicity or bounded drift between 1949 * CPUs, use (which you should not) requires disabling IRQs. 1950 * 1951 * Please use one of the three interfaces below. 1952 */ 1953 extern unsigned long long notrace sched_clock(void); 1954 /* 1955 * See the comment in kernel/sched/clock.c 1956 */ 1957 extern u64 cpu_clock(int cpu); 1958 extern u64 local_clock(void); 1959 extern u64 sched_clock_cpu(int cpu); 1960 1961 1962 extern void sched_clock_init(void); 1963 1964 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1965 static inline void sched_clock_tick(void) 1966 { 1967 } 1968 1969 static inline void sched_clock_idle_sleep_event(void) 1970 { 1971 } 1972 1973 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1974 { 1975 } 1976 #else 1977 /* 1978 * Architectures can set this to 1 if they have specified 1979 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1980 * but then during bootup it turns out that sched_clock() 1981 * is reliable after all: 1982 */ 1983 extern int sched_clock_stable; 1984 1985 extern void sched_clock_tick(void); 1986 extern void sched_clock_idle_sleep_event(void); 1987 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1988 #endif 1989 1990 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1991 /* 1992 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 1993 * The reason for this explicit opt-in is not to have perf penalty with 1994 * slow sched_clocks. 1995 */ 1996 extern void enable_sched_clock_irqtime(void); 1997 extern void disable_sched_clock_irqtime(void); 1998 #else 1999 static inline void enable_sched_clock_irqtime(void) {} 2000 static inline void disable_sched_clock_irqtime(void) {} 2001 #endif 2002 2003 extern unsigned long long 2004 task_sched_runtime(struct task_struct *task); 2005 2006 /* sched_exec is called by processes performing an exec */ 2007 #ifdef CONFIG_SMP 2008 extern void sched_exec(void); 2009 #else 2010 #define sched_exec() {} 2011 #endif 2012 2013 extern void sched_clock_idle_sleep_event(void); 2014 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2015 2016 #ifdef CONFIG_HOTPLUG_CPU 2017 extern void idle_task_exit(void); 2018 #else 2019 static inline void idle_task_exit(void) {} 2020 #endif 2021 2022 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 2023 extern void wake_up_idle_cpu(int cpu); 2024 #else 2025 static inline void wake_up_idle_cpu(int cpu) { } 2026 #endif 2027 2028 #ifdef CONFIG_SCHED_AUTOGROUP 2029 extern void sched_autogroup_create_attach(struct task_struct *p); 2030 extern void sched_autogroup_detach(struct task_struct *p); 2031 extern void sched_autogroup_fork(struct signal_struct *sig); 2032 extern void sched_autogroup_exit(struct signal_struct *sig); 2033 #ifdef CONFIG_PROC_FS 2034 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2035 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2036 #endif 2037 #else 2038 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2039 static inline void sched_autogroup_detach(struct task_struct *p) { } 2040 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2041 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2042 #endif 2043 2044 extern bool yield_to(struct task_struct *p, bool preempt); 2045 extern void set_user_nice(struct task_struct *p, long nice); 2046 extern int task_prio(const struct task_struct *p); 2047 extern int task_nice(const struct task_struct *p); 2048 extern int can_nice(const struct task_struct *p, const int nice); 2049 extern int task_curr(const struct task_struct *p); 2050 extern int idle_cpu(int cpu); 2051 extern int sched_setscheduler(struct task_struct *, int, 2052 const struct sched_param *); 2053 extern int sched_setscheduler_nocheck(struct task_struct *, int, 2054 const struct sched_param *); 2055 extern struct task_struct *idle_task(int cpu); 2056 /** 2057 * is_idle_task - is the specified task an idle task? 2058 * @p: the task in question. 2059 */ 2060 static inline bool is_idle_task(const struct task_struct *p) 2061 { 2062 return p->pid == 0; 2063 } 2064 extern struct task_struct *curr_task(int cpu); 2065 extern void set_curr_task(int cpu, struct task_struct *p); 2066 2067 void yield(void); 2068 2069 /* 2070 * The default (Linux) execution domain. 2071 */ 2072 extern struct exec_domain default_exec_domain; 2073 2074 union thread_union { 2075 struct thread_info thread_info; 2076 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2077 }; 2078 2079 #ifndef __HAVE_ARCH_KSTACK_END 2080 static inline int kstack_end(void *addr) 2081 { 2082 /* Reliable end of stack detection: 2083 * Some APM bios versions misalign the stack 2084 */ 2085 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2086 } 2087 #endif 2088 2089 extern union thread_union init_thread_union; 2090 extern struct task_struct init_task; 2091 2092 extern struct mm_struct init_mm; 2093 2094 extern struct pid_namespace init_pid_ns; 2095 2096 /* 2097 * find a task by one of its numerical ids 2098 * 2099 * find_task_by_pid_ns(): 2100 * finds a task by its pid in the specified namespace 2101 * find_task_by_vpid(): 2102 * finds a task by its virtual pid 2103 * 2104 * see also find_vpid() etc in include/linux/pid.h 2105 */ 2106 2107 extern struct task_struct *find_task_by_vpid(pid_t nr); 2108 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2109 struct pid_namespace *ns); 2110 2111 extern void __set_special_pids(struct pid *pid); 2112 2113 /* per-UID process charging. */ 2114 extern struct user_struct * alloc_uid(kuid_t); 2115 static inline struct user_struct *get_uid(struct user_struct *u) 2116 { 2117 atomic_inc(&u->__count); 2118 return u; 2119 } 2120 extern void free_uid(struct user_struct *); 2121 2122 #include <asm/current.h> 2123 2124 extern void xtime_update(unsigned long ticks); 2125 2126 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2127 extern int wake_up_process(struct task_struct *tsk); 2128 extern void wake_up_new_task(struct task_struct *tsk); 2129 #ifdef CONFIG_SMP 2130 extern void kick_process(struct task_struct *tsk); 2131 #else 2132 static inline void kick_process(struct task_struct *tsk) { } 2133 #endif 2134 extern void sched_fork(struct task_struct *p); 2135 extern void sched_dead(struct task_struct *p); 2136 2137 extern void proc_caches_init(void); 2138 extern void flush_signals(struct task_struct *); 2139 extern void __flush_signals(struct task_struct *); 2140 extern void ignore_signals(struct task_struct *); 2141 extern void flush_signal_handlers(struct task_struct *, int force_default); 2142 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2143 2144 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2145 { 2146 unsigned long flags; 2147 int ret; 2148 2149 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2150 ret = dequeue_signal(tsk, mask, info); 2151 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2152 2153 return ret; 2154 } 2155 2156 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2157 sigset_t *mask); 2158 extern void unblock_all_signals(void); 2159 extern void release_task(struct task_struct * p); 2160 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2161 extern int force_sigsegv(int, struct task_struct *); 2162 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2163 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2164 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2165 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2166 const struct cred *, u32); 2167 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2168 extern int kill_pid(struct pid *pid, int sig, int priv); 2169 extern int kill_proc_info(int, struct siginfo *, pid_t); 2170 extern __must_check bool do_notify_parent(struct task_struct *, int); 2171 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2172 extern void force_sig(int, struct task_struct *); 2173 extern int send_sig(int, struct task_struct *, int); 2174 extern int zap_other_threads(struct task_struct *p); 2175 extern struct sigqueue *sigqueue_alloc(void); 2176 extern void sigqueue_free(struct sigqueue *); 2177 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2178 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2179 2180 static inline void restore_saved_sigmask(void) 2181 { 2182 if (test_and_clear_restore_sigmask()) 2183 __set_current_blocked(¤t->saved_sigmask); 2184 } 2185 2186 static inline sigset_t *sigmask_to_save(void) 2187 { 2188 sigset_t *res = ¤t->blocked; 2189 if (unlikely(test_restore_sigmask())) 2190 res = ¤t->saved_sigmask; 2191 return res; 2192 } 2193 2194 static inline int kill_cad_pid(int sig, int priv) 2195 { 2196 return kill_pid(cad_pid, sig, priv); 2197 } 2198 2199 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2200 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2201 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2202 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2203 2204 /* 2205 * True if we are on the alternate signal stack. 2206 */ 2207 static inline int on_sig_stack(unsigned long sp) 2208 { 2209 #ifdef CONFIG_STACK_GROWSUP 2210 return sp >= current->sas_ss_sp && 2211 sp - current->sas_ss_sp < current->sas_ss_size; 2212 #else 2213 return sp > current->sas_ss_sp && 2214 sp - current->sas_ss_sp <= current->sas_ss_size; 2215 #endif 2216 } 2217 2218 static inline int sas_ss_flags(unsigned long sp) 2219 { 2220 return (current->sas_ss_size == 0 ? SS_DISABLE 2221 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2222 } 2223 2224 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2225 { 2226 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2227 #ifdef CONFIG_STACK_GROWSUP 2228 return current->sas_ss_sp; 2229 #else 2230 return current->sas_ss_sp + current->sas_ss_size; 2231 #endif 2232 return sp; 2233 } 2234 2235 /* 2236 * Routines for handling mm_structs 2237 */ 2238 extern struct mm_struct * mm_alloc(void); 2239 2240 /* mmdrop drops the mm and the page tables */ 2241 extern void __mmdrop(struct mm_struct *); 2242 static inline void mmdrop(struct mm_struct * mm) 2243 { 2244 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2245 __mmdrop(mm); 2246 } 2247 2248 /* mmput gets rid of the mappings and all user-space */ 2249 extern void mmput(struct mm_struct *); 2250 /* Grab a reference to a task's mm, if it is not already going away */ 2251 extern struct mm_struct *get_task_mm(struct task_struct *task); 2252 /* 2253 * Grab a reference to a task's mm, if it is not already going away 2254 * and ptrace_may_access with the mode parameter passed to it 2255 * succeeds. 2256 */ 2257 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2258 /* Remove the current tasks stale references to the old mm_struct */ 2259 extern void mm_release(struct task_struct *, struct mm_struct *); 2260 /* Allocate a new mm structure and copy contents from tsk->mm */ 2261 extern struct mm_struct *dup_mm(struct task_struct *tsk); 2262 2263 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2264 struct task_struct *); 2265 extern void flush_thread(void); 2266 extern void exit_thread(void); 2267 2268 extern void exit_files(struct task_struct *); 2269 extern void __cleanup_sighand(struct sighand_struct *); 2270 2271 extern void exit_itimers(struct signal_struct *); 2272 extern void flush_itimer_signals(void); 2273 2274 extern void do_group_exit(int); 2275 2276 extern int allow_signal(int); 2277 extern int disallow_signal(int); 2278 2279 extern int do_execve(const char *, 2280 const char __user * const __user *, 2281 const char __user * const __user *); 2282 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2283 struct task_struct *fork_idle(int); 2284 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2285 2286 extern void set_task_comm(struct task_struct *tsk, char *from); 2287 extern char *get_task_comm(char *to, struct task_struct *tsk); 2288 2289 #ifdef CONFIG_SMP 2290 void scheduler_ipi(void); 2291 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2292 #else 2293 static inline void scheduler_ipi(void) { } 2294 static inline unsigned long wait_task_inactive(struct task_struct *p, 2295 long match_state) 2296 { 2297 return 1; 2298 } 2299 #endif 2300 2301 #define next_task(p) \ 2302 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2303 2304 #define for_each_process(p) \ 2305 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2306 2307 extern bool current_is_single_threaded(void); 2308 2309 /* 2310 * Careful: do_each_thread/while_each_thread is a double loop so 2311 * 'break' will not work as expected - use goto instead. 2312 */ 2313 #define do_each_thread(g, t) \ 2314 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2315 2316 #define while_each_thread(g, t) \ 2317 while ((t = next_thread(t)) != g) 2318 2319 static inline int get_nr_threads(struct task_struct *tsk) 2320 { 2321 return tsk->signal->nr_threads; 2322 } 2323 2324 static inline bool thread_group_leader(struct task_struct *p) 2325 { 2326 return p->exit_signal >= 0; 2327 } 2328 2329 /* Do to the insanities of de_thread it is possible for a process 2330 * to have the pid of the thread group leader without actually being 2331 * the thread group leader. For iteration through the pids in proc 2332 * all we care about is that we have a task with the appropriate 2333 * pid, we don't actually care if we have the right task. 2334 */ 2335 static inline int has_group_leader_pid(struct task_struct *p) 2336 { 2337 return p->pid == p->tgid; 2338 } 2339 2340 static inline 2341 int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2342 { 2343 return p1->tgid == p2->tgid; 2344 } 2345 2346 static inline struct task_struct *next_thread(const struct task_struct *p) 2347 { 2348 return list_entry_rcu(p->thread_group.next, 2349 struct task_struct, thread_group); 2350 } 2351 2352 static inline int thread_group_empty(struct task_struct *p) 2353 { 2354 return list_empty(&p->thread_group); 2355 } 2356 2357 #define delay_group_leader(p) \ 2358 (thread_group_leader(p) && !thread_group_empty(p)) 2359 2360 /* 2361 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2362 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2363 * pins the final release of task.io_context. Also protects ->cpuset and 2364 * ->cgroup.subsys[]. And ->vfork_done. 2365 * 2366 * Nests both inside and outside of read_lock(&tasklist_lock). 2367 * It must not be nested with write_lock_irq(&tasklist_lock), 2368 * neither inside nor outside. 2369 */ 2370 static inline void task_lock(struct task_struct *p) 2371 { 2372 spin_lock(&p->alloc_lock); 2373 } 2374 2375 static inline void task_unlock(struct task_struct *p) 2376 { 2377 spin_unlock(&p->alloc_lock); 2378 } 2379 2380 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2381 unsigned long *flags); 2382 2383 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2384 unsigned long *flags) 2385 { 2386 struct sighand_struct *ret; 2387 2388 ret = __lock_task_sighand(tsk, flags); 2389 (void)__cond_lock(&tsk->sighand->siglock, ret); 2390 return ret; 2391 } 2392 2393 static inline void unlock_task_sighand(struct task_struct *tsk, 2394 unsigned long *flags) 2395 { 2396 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2397 } 2398 2399 #ifdef CONFIG_CGROUPS 2400 static inline void threadgroup_change_begin(struct task_struct *tsk) 2401 { 2402 down_read(&tsk->signal->group_rwsem); 2403 } 2404 static inline void threadgroup_change_end(struct task_struct *tsk) 2405 { 2406 up_read(&tsk->signal->group_rwsem); 2407 } 2408 2409 /** 2410 * threadgroup_lock - lock threadgroup 2411 * @tsk: member task of the threadgroup to lock 2412 * 2413 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter 2414 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or 2415 * perform exec. This is useful for cases where the threadgroup needs to 2416 * stay stable across blockable operations. 2417 * 2418 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for 2419 * synchronization. While held, no new task will be added to threadgroup 2420 * and no existing live task will have its PF_EXITING set. 2421 * 2422 * During exec, a task goes and puts its thread group through unusual 2423 * changes. After de-threading, exclusive access is assumed to resources 2424 * which are usually shared by tasks in the same group - e.g. sighand may 2425 * be replaced with a new one. Also, the exec'ing task takes over group 2426 * leader role including its pid. Exclude these changes while locked by 2427 * grabbing cred_guard_mutex which is used to synchronize exec path. 2428 */ 2429 static inline void threadgroup_lock(struct task_struct *tsk) 2430 { 2431 /* 2432 * exec uses exit for de-threading nesting group_rwsem inside 2433 * cred_guard_mutex. Grab cred_guard_mutex first. 2434 */ 2435 mutex_lock(&tsk->signal->cred_guard_mutex); 2436 down_write(&tsk->signal->group_rwsem); 2437 } 2438 2439 /** 2440 * threadgroup_unlock - unlock threadgroup 2441 * @tsk: member task of the threadgroup to unlock 2442 * 2443 * Reverse threadgroup_lock(). 2444 */ 2445 static inline void threadgroup_unlock(struct task_struct *tsk) 2446 { 2447 up_write(&tsk->signal->group_rwsem); 2448 mutex_unlock(&tsk->signal->cred_guard_mutex); 2449 } 2450 #else 2451 static inline void threadgroup_change_begin(struct task_struct *tsk) {} 2452 static inline void threadgroup_change_end(struct task_struct *tsk) {} 2453 static inline void threadgroup_lock(struct task_struct *tsk) {} 2454 static inline void threadgroup_unlock(struct task_struct *tsk) {} 2455 #endif 2456 2457 #ifndef __HAVE_THREAD_FUNCTIONS 2458 2459 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2460 #define task_stack_page(task) ((task)->stack) 2461 2462 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2463 { 2464 *task_thread_info(p) = *task_thread_info(org); 2465 task_thread_info(p)->task = p; 2466 } 2467 2468 static inline unsigned long *end_of_stack(struct task_struct *p) 2469 { 2470 return (unsigned long *)(task_thread_info(p) + 1); 2471 } 2472 2473 #endif 2474 2475 static inline int object_is_on_stack(void *obj) 2476 { 2477 void *stack = task_stack_page(current); 2478 2479 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2480 } 2481 2482 extern void thread_info_cache_init(void); 2483 2484 #ifdef CONFIG_DEBUG_STACK_USAGE 2485 static inline unsigned long stack_not_used(struct task_struct *p) 2486 { 2487 unsigned long *n = end_of_stack(p); 2488 2489 do { /* Skip over canary */ 2490 n++; 2491 } while (!*n); 2492 2493 return (unsigned long)n - (unsigned long)end_of_stack(p); 2494 } 2495 #endif 2496 2497 /* set thread flags in other task's structures 2498 * - see asm/thread_info.h for TIF_xxxx flags available 2499 */ 2500 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2501 { 2502 set_ti_thread_flag(task_thread_info(tsk), flag); 2503 } 2504 2505 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2506 { 2507 clear_ti_thread_flag(task_thread_info(tsk), flag); 2508 } 2509 2510 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2511 { 2512 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2513 } 2514 2515 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2516 { 2517 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2518 } 2519 2520 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2521 { 2522 return test_ti_thread_flag(task_thread_info(tsk), flag); 2523 } 2524 2525 static inline void set_tsk_need_resched(struct task_struct *tsk) 2526 { 2527 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2528 } 2529 2530 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2531 { 2532 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2533 } 2534 2535 static inline int test_tsk_need_resched(struct task_struct *tsk) 2536 { 2537 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2538 } 2539 2540 static inline int restart_syscall(void) 2541 { 2542 set_tsk_thread_flag(current, TIF_SIGPENDING); 2543 return -ERESTARTNOINTR; 2544 } 2545 2546 static inline int signal_pending(struct task_struct *p) 2547 { 2548 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2549 } 2550 2551 static inline int __fatal_signal_pending(struct task_struct *p) 2552 { 2553 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2554 } 2555 2556 static inline int fatal_signal_pending(struct task_struct *p) 2557 { 2558 return signal_pending(p) && __fatal_signal_pending(p); 2559 } 2560 2561 static inline int signal_pending_state(long state, struct task_struct *p) 2562 { 2563 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2564 return 0; 2565 if (!signal_pending(p)) 2566 return 0; 2567 2568 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2569 } 2570 2571 static inline int need_resched(void) 2572 { 2573 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2574 } 2575 2576 /* 2577 * cond_resched() and cond_resched_lock(): latency reduction via 2578 * explicit rescheduling in places that are safe. The return 2579 * value indicates whether a reschedule was done in fact. 2580 * cond_resched_lock() will drop the spinlock before scheduling, 2581 * cond_resched_softirq() will enable bhs before scheduling. 2582 */ 2583 extern int _cond_resched(void); 2584 2585 #define cond_resched() ({ \ 2586 __might_sleep(__FILE__, __LINE__, 0); \ 2587 _cond_resched(); \ 2588 }) 2589 2590 extern int __cond_resched_lock(spinlock_t *lock); 2591 2592 #ifdef CONFIG_PREEMPT_COUNT 2593 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2594 #else 2595 #define PREEMPT_LOCK_OFFSET 0 2596 #endif 2597 2598 #define cond_resched_lock(lock) ({ \ 2599 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2600 __cond_resched_lock(lock); \ 2601 }) 2602 2603 extern int __cond_resched_softirq(void); 2604 2605 #define cond_resched_softirq() ({ \ 2606 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2607 __cond_resched_softirq(); \ 2608 }) 2609 2610 /* 2611 * Does a critical section need to be broken due to another 2612 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2613 * but a general need for low latency) 2614 */ 2615 static inline int spin_needbreak(spinlock_t *lock) 2616 { 2617 #ifdef CONFIG_PREEMPT 2618 return spin_is_contended(lock); 2619 #else 2620 return 0; 2621 #endif 2622 } 2623 2624 /* 2625 * Thread group CPU time accounting. 2626 */ 2627 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2628 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2629 2630 static inline void thread_group_cputime_init(struct signal_struct *sig) 2631 { 2632 raw_spin_lock_init(&sig->cputimer.lock); 2633 } 2634 2635 /* 2636 * Reevaluate whether the task has signals pending delivery. 2637 * Wake the task if so. 2638 * This is required every time the blocked sigset_t changes. 2639 * callers must hold sighand->siglock. 2640 */ 2641 extern void recalc_sigpending_and_wake(struct task_struct *t); 2642 extern void recalc_sigpending(void); 2643 2644 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 2645 2646 static inline void signal_wake_up(struct task_struct *t, bool resume) 2647 { 2648 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 2649 } 2650 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 2651 { 2652 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 2653 } 2654 2655 /* 2656 * Wrappers for p->thread_info->cpu access. No-op on UP. 2657 */ 2658 #ifdef CONFIG_SMP 2659 2660 static inline unsigned int task_cpu(const struct task_struct *p) 2661 { 2662 return task_thread_info(p)->cpu; 2663 } 2664 2665 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2666 2667 #else 2668 2669 static inline unsigned int task_cpu(const struct task_struct *p) 2670 { 2671 return 0; 2672 } 2673 2674 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2675 { 2676 } 2677 2678 #endif /* CONFIG_SMP */ 2679 2680 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2681 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2682 2683 #ifdef CONFIG_CGROUP_SCHED 2684 2685 extern struct task_group root_task_group; 2686 2687 extern struct task_group *sched_create_group(struct task_group *parent); 2688 extern void sched_online_group(struct task_group *tg, 2689 struct task_group *parent); 2690 extern void sched_destroy_group(struct task_group *tg); 2691 extern void sched_offline_group(struct task_group *tg); 2692 extern void sched_move_task(struct task_struct *tsk); 2693 #ifdef CONFIG_FAIR_GROUP_SCHED 2694 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2695 extern unsigned long sched_group_shares(struct task_group *tg); 2696 #endif 2697 #ifdef CONFIG_RT_GROUP_SCHED 2698 extern int sched_group_set_rt_runtime(struct task_group *tg, 2699 long rt_runtime_us); 2700 extern long sched_group_rt_runtime(struct task_group *tg); 2701 extern int sched_group_set_rt_period(struct task_group *tg, 2702 long rt_period_us); 2703 extern long sched_group_rt_period(struct task_group *tg); 2704 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 2705 #endif 2706 #endif /* CONFIG_CGROUP_SCHED */ 2707 2708 extern int task_can_switch_user(struct user_struct *up, 2709 struct task_struct *tsk); 2710 2711 #ifdef CONFIG_TASK_XACCT 2712 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2713 { 2714 tsk->ioac.rchar += amt; 2715 } 2716 2717 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2718 { 2719 tsk->ioac.wchar += amt; 2720 } 2721 2722 static inline void inc_syscr(struct task_struct *tsk) 2723 { 2724 tsk->ioac.syscr++; 2725 } 2726 2727 static inline void inc_syscw(struct task_struct *tsk) 2728 { 2729 tsk->ioac.syscw++; 2730 } 2731 #else 2732 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2733 { 2734 } 2735 2736 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2737 { 2738 } 2739 2740 static inline void inc_syscr(struct task_struct *tsk) 2741 { 2742 } 2743 2744 static inline void inc_syscw(struct task_struct *tsk) 2745 { 2746 } 2747 #endif 2748 2749 #ifndef TASK_SIZE_OF 2750 #define TASK_SIZE_OF(tsk) TASK_SIZE 2751 #endif 2752 2753 #ifdef CONFIG_MM_OWNER 2754 extern void mm_update_next_owner(struct mm_struct *mm); 2755 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2756 #else 2757 static inline void mm_update_next_owner(struct mm_struct *mm) 2758 { 2759 } 2760 2761 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2762 { 2763 } 2764 #endif /* CONFIG_MM_OWNER */ 2765 2766 static inline unsigned long task_rlimit(const struct task_struct *tsk, 2767 unsigned int limit) 2768 { 2769 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2770 } 2771 2772 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2773 unsigned int limit) 2774 { 2775 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2776 } 2777 2778 static inline unsigned long rlimit(unsigned int limit) 2779 { 2780 return task_rlimit(current, limit); 2781 } 2782 2783 static inline unsigned long rlimit_max(unsigned int limit) 2784 { 2785 return task_rlimit_max(current, limit); 2786 } 2787 2788 #endif 2789