1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <uapi/linux/sched.h> 5 6 #include <linux/sched/prio.h> 7 8 9 struct sched_param { 10 int sched_priority; 11 }; 12 13 #include <asm/param.h> /* for HZ */ 14 15 #include <linux/capability.h> 16 #include <linux/threads.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/timex.h> 20 #include <linux/jiffies.h> 21 #include <linux/plist.h> 22 #include <linux/rbtree.h> 23 #include <linux/thread_info.h> 24 #include <linux/cpumask.h> 25 #include <linux/errno.h> 26 #include <linux/nodemask.h> 27 #include <linux/mm_types.h> 28 #include <linux/preempt.h> 29 30 #include <asm/page.h> 31 #include <asm/ptrace.h> 32 #include <linux/cputime.h> 33 34 #include <linux/smp.h> 35 #include <linux/sem.h> 36 #include <linux/shm.h> 37 #include <linux/signal.h> 38 #include <linux/compiler.h> 39 #include <linux/completion.h> 40 #include <linux/pid.h> 41 #include <linux/percpu.h> 42 #include <linux/topology.h> 43 #include <linux/proportions.h> 44 #include <linux/seccomp.h> 45 #include <linux/rcupdate.h> 46 #include <linux/rculist.h> 47 #include <linux/rtmutex.h> 48 49 #include <linux/time.h> 50 #include <linux/param.h> 51 #include <linux/resource.h> 52 #include <linux/timer.h> 53 #include <linux/hrtimer.h> 54 #include <linux/task_io_accounting.h> 55 #include <linux/latencytop.h> 56 #include <linux/cred.h> 57 #include <linux/llist.h> 58 #include <linux/uidgid.h> 59 #include <linux/gfp.h> 60 #include <linux/magic.h> 61 #include <linux/cgroup-defs.h> 62 63 #include <asm/processor.h> 64 65 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */ 66 67 /* 68 * Extended scheduling parameters data structure. 69 * 70 * This is needed because the original struct sched_param can not be 71 * altered without introducing ABI issues with legacy applications 72 * (e.g., in sched_getparam()). 73 * 74 * However, the possibility of specifying more than just a priority for 75 * the tasks may be useful for a wide variety of application fields, e.g., 76 * multimedia, streaming, automation and control, and many others. 77 * 78 * This variant (sched_attr) is meant at describing a so-called 79 * sporadic time-constrained task. In such model a task is specified by: 80 * - the activation period or minimum instance inter-arrival time; 81 * - the maximum (or average, depending on the actual scheduling 82 * discipline) computation time of all instances, a.k.a. runtime; 83 * - the deadline (relative to the actual activation time) of each 84 * instance. 85 * Very briefly, a periodic (sporadic) task asks for the execution of 86 * some specific computation --which is typically called an instance-- 87 * (at most) every period. Moreover, each instance typically lasts no more 88 * than the runtime and must be completed by time instant t equal to 89 * the instance activation time + the deadline. 90 * 91 * This is reflected by the actual fields of the sched_attr structure: 92 * 93 * @size size of the structure, for fwd/bwd compat. 94 * 95 * @sched_policy task's scheduling policy 96 * @sched_flags for customizing the scheduler behaviour 97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH) 98 * @sched_priority task's static priority (SCHED_FIFO/RR) 99 * @sched_deadline representative of the task's deadline 100 * @sched_runtime representative of the task's runtime 101 * @sched_period representative of the task's period 102 * 103 * Given this task model, there are a multiplicity of scheduling algorithms 104 * and policies, that can be used to ensure all the tasks will make their 105 * timing constraints. 106 * 107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the 108 * only user of this new interface. More information about the algorithm 109 * available in the scheduling class file or in Documentation/. 110 */ 111 struct sched_attr { 112 u32 size; 113 114 u32 sched_policy; 115 u64 sched_flags; 116 117 /* SCHED_NORMAL, SCHED_BATCH */ 118 s32 sched_nice; 119 120 /* SCHED_FIFO, SCHED_RR */ 121 u32 sched_priority; 122 123 /* SCHED_DEADLINE */ 124 u64 sched_runtime; 125 u64 sched_deadline; 126 u64 sched_period; 127 }; 128 129 struct futex_pi_state; 130 struct robust_list_head; 131 struct bio_list; 132 struct fs_struct; 133 struct perf_event_context; 134 struct blk_plug; 135 struct filename; 136 struct nameidata; 137 138 #define VMACACHE_BITS 2 139 #define VMACACHE_SIZE (1U << VMACACHE_BITS) 140 #define VMACACHE_MASK (VMACACHE_SIZE - 1) 141 142 /* 143 * These are the constant used to fake the fixed-point load-average 144 * counting. Some notes: 145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 146 * a load-average precision of 10 bits integer + 11 bits fractional 147 * - if you want to count load-averages more often, you need more 148 * precision, or rounding will get you. With 2-second counting freq, 149 * the EXP_n values would be 1981, 2034 and 2043 if still using only 150 * 11 bit fractions. 151 */ 152 extern unsigned long avenrun[]; /* Load averages */ 153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 154 155 #define FSHIFT 11 /* nr of bits of precision */ 156 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 157 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 158 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 159 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 160 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 161 162 #define CALC_LOAD(load,exp,n) \ 163 load *= exp; \ 164 load += n*(FIXED_1-exp); \ 165 load >>= FSHIFT; 166 167 extern unsigned long total_forks; 168 extern int nr_threads; 169 DECLARE_PER_CPU(unsigned long, process_counts); 170 extern int nr_processes(void); 171 extern unsigned long nr_running(void); 172 extern bool single_task_running(void); 173 extern unsigned long nr_iowait(void); 174 extern unsigned long nr_iowait_cpu(int cpu); 175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load); 176 177 extern void calc_global_load(unsigned long ticks); 178 179 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 180 extern void update_cpu_load_nohz(void); 181 #else 182 static inline void update_cpu_load_nohz(void) { } 183 #endif 184 185 extern unsigned long get_parent_ip(unsigned long addr); 186 187 extern void dump_cpu_task(int cpu); 188 189 struct seq_file; 190 struct cfs_rq; 191 struct task_group; 192 #ifdef CONFIG_SCHED_DEBUG 193 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 194 extern void proc_sched_set_task(struct task_struct *p); 195 #endif 196 197 /* 198 * Task state bitmask. NOTE! These bits are also 199 * encoded in fs/proc/array.c: get_task_state(). 200 * 201 * We have two separate sets of flags: task->state 202 * is about runnability, while task->exit_state are 203 * about the task exiting. Confusing, but this way 204 * modifying one set can't modify the other one by 205 * mistake. 206 */ 207 #define TASK_RUNNING 0 208 #define TASK_INTERRUPTIBLE 1 209 #define TASK_UNINTERRUPTIBLE 2 210 #define __TASK_STOPPED 4 211 #define __TASK_TRACED 8 212 /* in tsk->exit_state */ 213 #define EXIT_DEAD 16 214 #define EXIT_ZOMBIE 32 215 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 216 /* in tsk->state again */ 217 #define TASK_DEAD 64 218 #define TASK_WAKEKILL 128 219 #define TASK_WAKING 256 220 #define TASK_PARKED 512 221 #define TASK_NOLOAD 1024 222 #define TASK_STATE_MAX 2048 223 224 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN" 225 226 extern char ___assert_task_state[1 - 2*!!( 227 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 228 229 /* Convenience macros for the sake of set_task_state */ 230 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 231 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 232 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 233 234 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 235 236 /* Convenience macros for the sake of wake_up */ 237 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 238 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 239 240 /* get_task_state() */ 241 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD) 244 245 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 246 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 247 #define task_is_stopped_or_traced(task) \ 248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 249 #define task_contributes_to_load(task) \ 250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 251 (task->flags & PF_FROZEN) == 0 && \ 252 (task->state & TASK_NOLOAD) == 0) 253 254 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 255 256 #define __set_task_state(tsk, state_value) \ 257 do { \ 258 (tsk)->task_state_change = _THIS_IP_; \ 259 (tsk)->state = (state_value); \ 260 } while (0) 261 #define set_task_state(tsk, state_value) \ 262 do { \ 263 (tsk)->task_state_change = _THIS_IP_; \ 264 smp_store_mb((tsk)->state, (state_value)); \ 265 } while (0) 266 267 /* 268 * set_current_state() includes a barrier so that the write of current->state 269 * is correctly serialised wrt the caller's subsequent test of whether to 270 * actually sleep: 271 * 272 * set_current_state(TASK_UNINTERRUPTIBLE); 273 * if (do_i_need_to_sleep()) 274 * schedule(); 275 * 276 * If the caller does not need such serialisation then use __set_current_state() 277 */ 278 #define __set_current_state(state_value) \ 279 do { \ 280 current->task_state_change = _THIS_IP_; \ 281 current->state = (state_value); \ 282 } while (0) 283 #define set_current_state(state_value) \ 284 do { \ 285 current->task_state_change = _THIS_IP_; \ 286 smp_store_mb(current->state, (state_value)); \ 287 } while (0) 288 289 #else 290 291 #define __set_task_state(tsk, state_value) \ 292 do { (tsk)->state = (state_value); } while (0) 293 #define set_task_state(tsk, state_value) \ 294 smp_store_mb((tsk)->state, (state_value)) 295 296 /* 297 * set_current_state() includes a barrier so that the write of current->state 298 * is correctly serialised wrt the caller's subsequent test of whether to 299 * actually sleep: 300 * 301 * set_current_state(TASK_UNINTERRUPTIBLE); 302 * if (do_i_need_to_sleep()) 303 * schedule(); 304 * 305 * If the caller does not need such serialisation then use __set_current_state() 306 */ 307 #define __set_current_state(state_value) \ 308 do { current->state = (state_value); } while (0) 309 #define set_current_state(state_value) \ 310 smp_store_mb(current->state, (state_value)) 311 312 #endif 313 314 /* Task command name length */ 315 #define TASK_COMM_LEN 16 316 317 #include <linux/spinlock.h> 318 319 /* 320 * This serializes "schedule()" and also protects 321 * the run-queue from deletions/modifications (but 322 * _adding_ to the beginning of the run-queue has 323 * a separate lock). 324 */ 325 extern rwlock_t tasklist_lock; 326 extern spinlock_t mmlist_lock; 327 328 struct task_struct; 329 330 #ifdef CONFIG_PROVE_RCU 331 extern int lockdep_tasklist_lock_is_held(void); 332 #endif /* #ifdef CONFIG_PROVE_RCU */ 333 334 extern void sched_init(void); 335 extern void sched_init_smp(void); 336 extern asmlinkage void schedule_tail(struct task_struct *prev); 337 extern void init_idle(struct task_struct *idle, int cpu); 338 extern void init_idle_bootup_task(struct task_struct *idle); 339 340 extern cpumask_var_t cpu_isolated_map; 341 342 extern int runqueue_is_locked(int cpu); 343 344 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 345 extern void nohz_balance_enter_idle(int cpu); 346 extern void set_cpu_sd_state_idle(void); 347 extern int get_nohz_timer_target(void); 348 #else 349 static inline void nohz_balance_enter_idle(int cpu) { } 350 static inline void set_cpu_sd_state_idle(void) { } 351 #endif 352 353 /* 354 * Only dump TASK_* tasks. (0 for all tasks) 355 */ 356 extern void show_state_filter(unsigned long state_filter); 357 358 static inline void show_state(void) 359 { 360 show_state_filter(0); 361 } 362 363 extern void show_regs(struct pt_regs *); 364 365 /* 366 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 367 * task), SP is the stack pointer of the first frame that should be shown in the back 368 * trace (or NULL if the entire call-chain of the task should be shown). 369 */ 370 extern void show_stack(struct task_struct *task, unsigned long *sp); 371 372 extern void cpu_init (void); 373 extern void trap_init(void); 374 extern void update_process_times(int user); 375 extern void scheduler_tick(void); 376 377 extern void sched_show_task(struct task_struct *p); 378 379 #ifdef CONFIG_LOCKUP_DETECTOR 380 extern void touch_softlockup_watchdog(void); 381 extern void touch_softlockup_watchdog_sync(void); 382 extern void touch_all_softlockup_watchdogs(void); 383 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 384 void __user *buffer, 385 size_t *lenp, loff_t *ppos); 386 extern unsigned int softlockup_panic; 387 void lockup_detector_init(void); 388 #else 389 static inline void touch_softlockup_watchdog(void) 390 { 391 } 392 static inline void touch_softlockup_watchdog_sync(void) 393 { 394 } 395 static inline void touch_all_softlockup_watchdogs(void) 396 { 397 } 398 static inline void lockup_detector_init(void) 399 { 400 } 401 #endif 402 403 #ifdef CONFIG_DETECT_HUNG_TASK 404 void reset_hung_task_detector(void); 405 #else 406 static inline void reset_hung_task_detector(void) 407 { 408 } 409 #endif 410 411 /* Attach to any functions which should be ignored in wchan output. */ 412 #define __sched __attribute__((__section__(".sched.text"))) 413 414 /* Linker adds these: start and end of __sched functions */ 415 extern char __sched_text_start[], __sched_text_end[]; 416 417 /* Is this address in the __sched functions? */ 418 extern int in_sched_functions(unsigned long addr); 419 420 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 421 extern signed long schedule_timeout(signed long timeout); 422 extern signed long schedule_timeout_interruptible(signed long timeout); 423 extern signed long schedule_timeout_killable(signed long timeout); 424 extern signed long schedule_timeout_uninterruptible(signed long timeout); 425 asmlinkage void schedule(void); 426 extern void schedule_preempt_disabled(void); 427 428 extern long io_schedule_timeout(long timeout); 429 430 static inline void io_schedule(void) 431 { 432 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT); 433 } 434 435 struct nsproxy; 436 struct user_namespace; 437 438 #ifdef CONFIG_MMU 439 extern void arch_pick_mmap_layout(struct mm_struct *mm); 440 extern unsigned long 441 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 442 unsigned long, unsigned long); 443 extern unsigned long 444 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 445 unsigned long len, unsigned long pgoff, 446 unsigned long flags); 447 #else 448 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 449 #endif 450 451 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */ 452 #define SUID_DUMP_USER 1 /* Dump as user of process */ 453 #define SUID_DUMP_ROOT 2 /* Dump as root */ 454 455 /* mm flags */ 456 457 /* for SUID_DUMP_* above */ 458 #define MMF_DUMPABLE_BITS 2 459 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 460 461 extern void set_dumpable(struct mm_struct *mm, int value); 462 /* 463 * This returns the actual value of the suid_dumpable flag. For things 464 * that are using this for checking for privilege transitions, it must 465 * test against SUID_DUMP_USER rather than treating it as a boolean 466 * value. 467 */ 468 static inline int __get_dumpable(unsigned long mm_flags) 469 { 470 return mm_flags & MMF_DUMPABLE_MASK; 471 } 472 473 static inline int get_dumpable(struct mm_struct *mm) 474 { 475 return __get_dumpable(mm->flags); 476 } 477 478 /* coredump filter bits */ 479 #define MMF_DUMP_ANON_PRIVATE 2 480 #define MMF_DUMP_ANON_SHARED 3 481 #define MMF_DUMP_MAPPED_PRIVATE 4 482 #define MMF_DUMP_MAPPED_SHARED 5 483 #define MMF_DUMP_ELF_HEADERS 6 484 #define MMF_DUMP_HUGETLB_PRIVATE 7 485 #define MMF_DUMP_HUGETLB_SHARED 8 486 487 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 488 #define MMF_DUMP_FILTER_BITS 7 489 #define MMF_DUMP_FILTER_MASK \ 490 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 491 #define MMF_DUMP_FILTER_DEFAULT \ 492 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 493 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 494 495 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 496 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 497 #else 498 # define MMF_DUMP_MASK_DEFAULT_ELF 0 499 #endif 500 /* leave room for more dump flags */ 501 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 502 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 503 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 504 505 #define MMF_HAS_UPROBES 19 /* has uprobes */ 506 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 507 508 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 509 510 struct sighand_struct { 511 atomic_t count; 512 struct k_sigaction action[_NSIG]; 513 spinlock_t siglock; 514 wait_queue_head_t signalfd_wqh; 515 }; 516 517 struct pacct_struct { 518 int ac_flag; 519 long ac_exitcode; 520 unsigned long ac_mem; 521 cputime_t ac_utime, ac_stime; 522 unsigned long ac_minflt, ac_majflt; 523 }; 524 525 struct cpu_itimer { 526 cputime_t expires; 527 cputime_t incr; 528 u32 error; 529 u32 incr_error; 530 }; 531 532 /** 533 * struct cputime - snaphsot of system and user cputime 534 * @utime: time spent in user mode 535 * @stime: time spent in system mode 536 * 537 * Gathers a generic snapshot of user and system time. 538 */ 539 struct cputime { 540 cputime_t utime; 541 cputime_t stime; 542 }; 543 544 /** 545 * struct task_cputime - collected CPU time counts 546 * @utime: time spent in user mode, in &cputime_t units 547 * @stime: time spent in kernel mode, in &cputime_t units 548 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 549 * 550 * This is an extension of struct cputime that includes the total runtime 551 * spent by the task from the scheduler point of view. 552 * 553 * As a result, this structure groups together three kinds of CPU time 554 * that are tracked for threads and thread groups. Most things considering 555 * CPU time want to group these counts together and treat all three 556 * of them in parallel. 557 */ 558 struct task_cputime { 559 cputime_t utime; 560 cputime_t stime; 561 unsigned long long sum_exec_runtime; 562 }; 563 /* Alternate field names when used to cache expirations. */ 564 #define prof_exp stime 565 #define virt_exp utime 566 #define sched_exp sum_exec_runtime 567 568 #define INIT_CPUTIME \ 569 (struct task_cputime) { \ 570 .utime = 0, \ 571 .stime = 0, \ 572 .sum_exec_runtime = 0, \ 573 } 574 575 /* 576 * This is the atomic variant of task_cputime, which can be used for 577 * storing and updating task_cputime statistics without locking. 578 */ 579 struct task_cputime_atomic { 580 atomic64_t utime; 581 atomic64_t stime; 582 atomic64_t sum_exec_runtime; 583 }; 584 585 #define INIT_CPUTIME_ATOMIC \ 586 (struct task_cputime_atomic) { \ 587 .utime = ATOMIC64_INIT(0), \ 588 .stime = ATOMIC64_INIT(0), \ 589 .sum_exec_runtime = ATOMIC64_INIT(0), \ 590 } 591 592 #ifdef CONFIG_PREEMPT_COUNT 593 #define PREEMPT_DISABLED (1 + PREEMPT_ENABLED) 594 #else 595 #define PREEMPT_DISABLED PREEMPT_ENABLED 596 #endif 597 598 /* 599 * Disable preemption until the scheduler is running. 600 * Reset by start_kernel()->sched_init()->init_idle(). 601 * 602 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 603 * before the scheduler is active -- see should_resched(). 604 */ 605 #define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE) 606 607 /** 608 * struct thread_group_cputimer - thread group interval timer counts 609 * @cputime_atomic: atomic thread group interval timers. 610 * @running: non-zero when there are timers running and 611 * @cputime receives updates. 612 * 613 * This structure contains the version of task_cputime, above, that is 614 * used for thread group CPU timer calculations. 615 */ 616 struct thread_group_cputimer { 617 struct task_cputime_atomic cputime_atomic; 618 int running; 619 }; 620 621 #include <linux/rwsem.h> 622 struct autogroup; 623 624 /* 625 * NOTE! "signal_struct" does not have its own 626 * locking, because a shared signal_struct always 627 * implies a shared sighand_struct, so locking 628 * sighand_struct is always a proper superset of 629 * the locking of signal_struct. 630 */ 631 struct signal_struct { 632 atomic_t sigcnt; 633 atomic_t live; 634 int nr_threads; 635 struct list_head thread_head; 636 637 wait_queue_head_t wait_chldexit; /* for wait4() */ 638 639 /* current thread group signal load-balancing target: */ 640 struct task_struct *curr_target; 641 642 /* shared signal handling: */ 643 struct sigpending shared_pending; 644 645 /* thread group exit support */ 646 int group_exit_code; 647 /* overloaded: 648 * - notify group_exit_task when ->count is equal to notify_count 649 * - everyone except group_exit_task is stopped during signal delivery 650 * of fatal signals, group_exit_task processes the signal. 651 */ 652 int notify_count; 653 struct task_struct *group_exit_task; 654 655 /* thread group stop support, overloads group_exit_code too */ 656 int group_stop_count; 657 unsigned int flags; /* see SIGNAL_* flags below */ 658 659 /* 660 * PR_SET_CHILD_SUBREAPER marks a process, like a service 661 * manager, to re-parent orphan (double-forking) child processes 662 * to this process instead of 'init'. The service manager is 663 * able to receive SIGCHLD signals and is able to investigate 664 * the process until it calls wait(). All children of this 665 * process will inherit a flag if they should look for a 666 * child_subreaper process at exit. 667 */ 668 unsigned int is_child_subreaper:1; 669 unsigned int has_child_subreaper:1; 670 671 /* POSIX.1b Interval Timers */ 672 int posix_timer_id; 673 struct list_head posix_timers; 674 675 /* ITIMER_REAL timer for the process */ 676 struct hrtimer real_timer; 677 struct pid *leader_pid; 678 ktime_t it_real_incr; 679 680 /* 681 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 682 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 683 * values are defined to 0 and 1 respectively 684 */ 685 struct cpu_itimer it[2]; 686 687 /* 688 * Thread group totals for process CPU timers. 689 * See thread_group_cputimer(), et al, for details. 690 */ 691 struct thread_group_cputimer cputimer; 692 693 /* Earliest-expiration cache. */ 694 struct task_cputime cputime_expires; 695 696 struct list_head cpu_timers[3]; 697 698 struct pid *tty_old_pgrp; 699 700 /* boolean value for session group leader */ 701 int leader; 702 703 struct tty_struct *tty; /* NULL if no tty */ 704 705 #ifdef CONFIG_SCHED_AUTOGROUP 706 struct autogroup *autogroup; 707 #endif 708 /* 709 * Cumulative resource counters for dead threads in the group, 710 * and for reaped dead child processes forked by this group. 711 * Live threads maintain their own counters and add to these 712 * in __exit_signal, except for the group leader. 713 */ 714 seqlock_t stats_lock; 715 cputime_t utime, stime, cutime, cstime; 716 cputime_t gtime; 717 cputime_t cgtime; 718 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 719 struct cputime prev_cputime; 720 #endif 721 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 722 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 723 unsigned long inblock, oublock, cinblock, coublock; 724 unsigned long maxrss, cmaxrss; 725 struct task_io_accounting ioac; 726 727 /* 728 * Cumulative ns of schedule CPU time fo dead threads in the 729 * group, not including a zombie group leader, (This only differs 730 * from jiffies_to_ns(utime + stime) if sched_clock uses something 731 * other than jiffies.) 732 */ 733 unsigned long long sum_sched_runtime; 734 735 /* 736 * We don't bother to synchronize most readers of this at all, 737 * because there is no reader checking a limit that actually needs 738 * to get both rlim_cur and rlim_max atomically, and either one 739 * alone is a single word that can safely be read normally. 740 * getrlimit/setrlimit use task_lock(current->group_leader) to 741 * protect this instead of the siglock, because they really 742 * have no need to disable irqs. 743 */ 744 struct rlimit rlim[RLIM_NLIMITS]; 745 746 #ifdef CONFIG_BSD_PROCESS_ACCT 747 struct pacct_struct pacct; /* per-process accounting information */ 748 #endif 749 #ifdef CONFIG_TASKSTATS 750 struct taskstats *stats; 751 #endif 752 #ifdef CONFIG_AUDIT 753 unsigned audit_tty; 754 unsigned audit_tty_log_passwd; 755 struct tty_audit_buf *tty_audit_buf; 756 #endif 757 758 oom_flags_t oom_flags; 759 short oom_score_adj; /* OOM kill score adjustment */ 760 short oom_score_adj_min; /* OOM kill score adjustment min value. 761 * Only settable by CAP_SYS_RESOURCE. */ 762 763 struct mutex cred_guard_mutex; /* guard against foreign influences on 764 * credential calculations 765 * (notably. ptrace) */ 766 }; 767 768 /* 769 * Bits in flags field of signal_struct. 770 */ 771 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 772 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 773 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 774 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 775 /* 776 * Pending notifications to parent. 777 */ 778 #define SIGNAL_CLD_STOPPED 0x00000010 779 #define SIGNAL_CLD_CONTINUED 0x00000020 780 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 781 782 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 783 784 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 785 static inline int signal_group_exit(const struct signal_struct *sig) 786 { 787 return (sig->flags & SIGNAL_GROUP_EXIT) || 788 (sig->group_exit_task != NULL); 789 } 790 791 /* 792 * Some day this will be a full-fledged user tracking system.. 793 */ 794 struct user_struct { 795 atomic_t __count; /* reference count */ 796 atomic_t processes; /* How many processes does this user have? */ 797 atomic_t sigpending; /* How many pending signals does this user have? */ 798 #ifdef CONFIG_INOTIFY_USER 799 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 800 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 801 #endif 802 #ifdef CONFIG_FANOTIFY 803 atomic_t fanotify_listeners; 804 #endif 805 #ifdef CONFIG_EPOLL 806 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 807 #endif 808 #ifdef CONFIG_POSIX_MQUEUE 809 /* protected by mq_lock */ 810 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 811 #endif 812 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 813 814 #ifdef CONFIG_KEYS 815 struct key *uid_keyring; /* UID specific keyring */ 816 struct key *session_keyring; /* UID's default session keyring */ 817 #endif 818 819 /* Hash table maintenance information */ 820 struct hlist_node uidhash_node; 821 kuid_t uid; 822 823 #ifdef CONFIG_PERF_EVENTS 824 atomic_long_t locked_vm; 825 #endif 826 }; 827 828 extern int uids_sysfs_init(void); 829 830 extern struct user_struct *find_user(kuid_t); 831 832 extern struct user_struct root_user; 833 #define INIT_USER (&root_user) 834 835 836 struct backing_dev_info; 837 struct reclaim_state; 838 839 #ifdef CONFIG_SCHED_INFO 840 struct sched_info { 841 /* cumulative counters */ 842 unsigned long pcount; /* # of times run on this cpu */ 843 unsigned long long run_delay; /* time spent waiting on a runqueue */ 844 845 /* timestamps */ 846 unsigned long long last_arrival,/* when we last ran on a cpu */ 847 last_queued; /* when we were last queued to run */ 848 }; 849 #endif /* CONFIG_SCHED_INFO */ 850 851 #ifdef CONFIG_TASK_DELAY_ACCT 852 struct task_delay_info { 853 spinlock_t lock; 854 unsigned int flags; /* Private per-task flags */ 855 856 /* For each stat XXX, add following, aligned appropriately 857 * 858 * struct timespec XXX_start, XXX_end; 859 * u64 XXX_delay; 860 * u32 XXX_count; 861 * 862 * Atomicity of updates to XXX_delay, XXX_count protected by 863 * single lock above (split into XXX_lock if contention is an issue). 864 */ 865 866 /* 867 * XXX_count is incremented on every XXX operation, the delay 868 * associated with the operation is added to XXX_delay. 869 * XXX_delay contains the accumulated delay time in nanoseconds. 870 */ 871 u64 blkio_start; /* Shared by blkio, swapin */ 872 u64 blkio_delay; /* wait for sync block io completion */ 873 u64 swapin_delay; /* wait for swapin block io completion */ 874 u32 blkio_count; /* total count of the number of sync block */ 875 /* io operations performed */ 876 u32 swapin_count; /* total count of the number of swapin block */ 877 /* io operations performed */ 878 879 u64 freepages_start; 880 u64 freepages_delay; /* wait for memory reclaim */ 881 u32 freepages_count; /* total count of memory reclaim */ 882 }; 883 #endif /* CONFIG_TASK_DELAY_ACCT */ 884 885 static inline int sched_info_on(void) 886 { 887 #ifdef CONFIG_SCHEDSTATS 888 return 1; 889 #elif defined(CONFIG_TASK_DELAY_ACCT) 890 extern int delayacct_on; 891 return delayacct_on; 892 #else 893 return 0; 894 #endif 895 } 896 897 enum cpu_idle_type { 898 CPU_IDLE, 899 CPU_NOT_IDLE, 900 CPU_NEWLY_IDLE, 901 CPU_MAX_IDLE_TYPES 902 }; 903 904 /* 905 * Increase resolution of cpu_capacity calculations 906 */ 907 #define SCHED_CAPACITY_SHIFT 10 908 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 909 910 /* 911 * Wake-queues are lists of tasks with a pending wakeup, whose 912 * callers have already marked the task as woken internally, 913 * and can thus carry on. A common use case is being able to 914 * do the wakeups once the corresponding user lock as been 915 * released. 916 * 917 * We hold reference to each task in the list across the wakeup, 918 * thus guaranteeing that the memory is still valid by the time 919 * the actual wakeups are performed in wake_up_q(). 920 * 921 * One per task suffices, because there's never a need for a task to be 922 * in two wake queues simultaneously; it is forbidden to abandon a task 923 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is 924 * already in a wake queue, the wakeup will happen soon and the second 925 * waker can just skip it. 926 * 927 * The WAKE_Q macro declares and initializes the list head. 928 * wake_up_q() does NOT reinitialize the list; it's expected to be 929 * called near the end of a function, where the fact that the queue is 930 * not used again will be easy to see by inspection. 931 * 932 * Note that this can cause spurious wakeups. schedule() callers 933 * must ensure the call is done inside a loop, confirming that the 934 * wakeup condition has in fact occurred. 935 */ 936 struct wake_q_node { 937 struct wake_q_node *next; 938 }; 939 940 struct wake_q_head { 941 struct wake_q_node *first; 942 struct wake_q_node **lastp; 943 }; 944 945 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01) 946 947 #define WAKE_Q(name) \ 948 struct wake_q_head name = { WAKE_Q_TAIL, &name.first } 949 950 extern void wake_q_add(struct wake_q_head *head, 951 struct task_struct *task); 952 extern void wake_up_q(struct wake_q_head *head); 953 954 /* 955 * sched-domains (multiprocessor balancing) declarations: 956 */ 957 #ifdef CONFIG_SMP 958 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 959 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 960 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 961 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 962 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 963 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 964 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */ 965 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */ 966 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 967 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 968 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 969 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 970 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 971 #define SD_NUMA 0x4000 /* cross-node balancing */ 972 973 #ifdef CONFIG_SCHED_SMT 974 static inline int cpu_smt_flags(void) 975 { 976 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 977 } 978 #endif 979 980 #ifdef CONFIG_SCHED_MC 981 static inline int cpu_core_flags(void) 982 { 983 return SD_SHARE_PKG_RESOURCES; 984 } 985 #endif 986 987 #ifdef CONFIG_NUMA 988 static inline int cpu_numa_flags(void) 989 { 990 return SD_NUMA; 991 } 992 #endif 993 994 struct sched_domain_attr { 995 int relax_domain_level; 996 }; 997 998 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 999 .relax_domain_level = -1, \ 1000 } 1001 1002 extern int sched_domain_level_max; 1003 1004 struct sched_group; 1005 1006 struct sched_domain { 1007 /* These fields must be setup */ 1008 struct sched_domain *parent; /* top domain must be null terminated */ 1009 struct sched_domain *child; /* bottom domain must be null terminated */ 1010 struct sched_group *groups; /* the balancing groups of the domain */ 1011 unsigned long min_interval; /* Minimum balance interval ms */ 1012 unsigned long max_interval; /* Maximum balance interval ms */ 1013 unsigned int busy_factor; /* less balancing by factor if busy */ 1014 unsigned int imbalance_pct; /* No balance until over watermark */ 1015 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 1016 unsigned int busy_idx; 1017 unsigned int idle_idx; 1018 unsigned int newidle_idx; 1019 unsigned int wake_idx; 1020 unsigned int forkexec_idx; 1021 unsigned int smt_gain; 1022 1023 int nohz_idle; /* NOHZ IDLE status */ 1024 int flags; /* See SD_* */ 1025 int level; 1026 1027 /* Runtime fields. */ 1028 unsigned long last_balance; /* init to jiffies. units in jiffies */ 1029 unsigned int balance_interval; /* initialise to 1. units in ms. */ 1030 unsigned int nr_balance_failed; /* initialise to 0 */ 1031 1032 /* idle_balance() stats */ 1033 u64 max_newidle_lb_cost; 1034 unsigned long next_decay_max_lb_cost; 1035 1036 #ifdef CONFIG_SCHEDSTATS 1037 /* load_balance() stats */ 1038 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 1039 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 1040 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 1041 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 1042 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 1043 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 1044 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 1045 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 1046 1047 /* Active load balancing */ 1048 unsigned int alb_count; 1049 unsigned int alb_failed; 1050 unsigned int alb_pushed; 1051 1052 /* SD_BALANCE_EXEC stats */ 1053 unsigned int sbe_count; 1054 unsigned int sbe_balanced; 1055 unsigned int sbe_pushed; 1056 1057 /* SD_BALANCE_FORK stats */ 1058 unsigned int sbf_count; 1059 unsigned int sbf_balanced; 1060 unsigned int sbf_pushed; 1061 1062 /* try_to_wake_up() stats */ 1063 unsigned int ttwu_wake_remote; 1064 unsigned int ttwu_move_affine; 1065 unsigned int ttwu_move_balance; 1066 #endif 1067 #ifdef CONFIG_SCHED_DEBUG 1068 char *name; 1069 #endif 1070 union { 1071 void *private; /* used during construction */ 1072 struct rcu_head rcu; /* used during destruction */ 1073 }; 1074 1075 unsigned int span_weight; 1076 /* 1077 * Span of all CPUs in this domain. 1078 * 1079 * NOTE: this field is variable length. (Allocated dynamically 1080 * by attaching extra space to the end of the structure, 1081 * depending on how many CPUs the kernel has booted up with) 1082 */ 1083 unsigned long span[0]; 1084 }; 1085 1086 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1087 { 1088 return to_cpumask(sd->span); 1089 } 1090 1091 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1092 struct sched_domain_attr *dattr_new); 1093 1094 /* Allocate an array of sched domains, for partition_sched_domains(). */ 1095 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1096 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1097 1098 bool cpus_share_cache(int this_cpu, int that_cpu); 1099 1100 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 1101 typedef int (*sched_domain_flags_f)(void); 1102 1103 #define SDTL_OVERLAP 0x01 1104 1105 struct sd_data { 1106 struct sched_domain **__percpu sd; 1107 struct sched_group **__percpu sg; 1108 struct sched_group_capacity **__percpu sgc; 1109 }; 1110 1111 struct sched_domain_topology_level { 1112 sched_domain_mask_f mask; 1113 sched_domain_flags_f sd_flags; 1114 int flags; 1115 int numa_level; 1116 struct sd_data data; 1117 #ifdef CONFIG_SCHED_DEBUG 1118 char *name; 1119 #endif 1120 }; 1121 1122 extern struct sched_domain_topology_level *sched_domain_topology; 1123 1124 extern void set_sched_topology(struct sched_domain_topology_level *tl); 1125 extern void wake_up_if_idle(int cpu); 1126 1127 #ifdef CONFIG_SCHED_DEBUG 1128 # define SD_INIT_NAME(type) .name = #type 1129 #else 1130 # define SD_INIT_NAME(type) 1131 #endif 1132 1133 #else /* CONFIG_SMP */ 1134 1135 struct sched_domain_attr; 1136 1137 static inline void 1138 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1139 struct sched_domain_attr *dattr_new) 1140 { 1141 } 1142 1143 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1144 { 1145 return true; 1146 } 1147 1148 #endif /* !CONFIG_SMP */ 1149 1150 1151 struct io_context; /* See blkdev.h */ 1152 1153 1154 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1155 extern void prefetch_stack(struct task_struct *t); 1156 #else 1157 static inline void prefetch_stack(struct task_struct *t) { } 1158 #endif 1159 1160 struct audit_context; /* See audit.c */ 1161 struct mempolicy; 1162 struct pipe_inode_info; 1163 struct uts_namespace; 1164 1165 struct load_weight { 1166 unsigned long weight; 1167 u32 inv_weight; 1168 }; 1169 1170 struct sched_avg { 1171 u64 last_runnable_update; 1172 s64 decay_count; 1173 /* 1174 * utilization_avg_contrib describes the amount of time that a 1175 * sched_entity is running on a CPU. It is based on running_avg_sum 1176 * and is scaled in the range [0..SCHED_LOAD_SCALE]. 1177 * load_avg_contrib described the amount of time that a sched_entity 1178 * is runnable on a rq. It is based on both runnable_avg_sum and the 1179 * weight of the task. 1180 */ 1181 unsigned long load_avg_contrib, utilization_avg_contrib; 1182 /* 1183 * These sums represent an infinite geometric series and so are bound 1184 * above by 1024/(1-y). Thus we only need a u32 to store them for all 1185 * choices of y < 1-2^(-32)*1024. 1186 * running_avg_sum reflects the time that the sched_entity is 1187 * effectively running on the CPU. 1188 * runnable_avg_sum represents the amount of time a sched_entity is on 1189 * a runqueue which includes the running time that is monitored by 1190 * running_avg_sum. 1191 */ 1192 u32 runnable_avg_sum, avg_period, running_avg_sum; 1193 }; 1194 1195 #ifdef CONFIG_SCHEDSTATS 1196 struct sched_statistics { 1197 u64 wait_start; 1198 u64 wait_max; 1199 u64 wait_count; 1200 u64 wait_sum; 1201 u64 iowait_count; 1202 u64 iowait_sum; 1203 1204 u64 sleep_start; 1205 u64 sleep_max; 1206 s64 sum_sleep_runtime; 1207 1208 u64 block_start; 1209 u64 block_max; 1210 u64 exec_max; 1211 u64 slice_max; 1212 1213 u64 nr_migrations_cold; 1214 u64 nr_failed_migrations_affine; 1215 u64 nr_failed_migrations_running; 1216 u64 nr_failed_migrations_hot; 1217 u64 nr_forced_migrations; 1218 1219 u64 nr_wakeups; 1220 u64 nr_wakeups_sync; 1221 u64 nr_wakeups_migrate; 1222 u64 nr_wakeups_local; 1223 u64 nr_wakeups_remote; 1224 u64 nr_wakeups_affine; 1225 u64 nr_wakeups_affine_attempts; 1226 u64 nr_wakeups_passive; 1227 u64 nr_wakeups_idle; 1228 }; 1229 #endif 1230 1231 struct sched_entity { 1232 struct load_weight load; /* for load-balancing */ 1233 struct rb_node run_node; 1234 struct list_head group_node; 1235 unsigned int on_rq; 1236 1237 u64 exec_start; 1238 u64 sum_exec_runtime; 1239 u64 vruntime; 1240 u64 prev_sum_exec_runtime; 1241 1242 u64 nr_migrations; 1243 1244 #ifdef CONFIG_SCHEDSTATS 1245 struct sched_statistics statistics; 1246 #endif 1247 1248 #ifdef CONFIG_FAIR_GROUP_SCHED 1249 int depth; 1250 struct sched_entity *parent; 1251 /* rq on which this entity is (to be) queued: */ 1252 struct cfs_rq *cfs_rq; 1253 /* rq "owned" by this entity/group: */ 1254 struct cfs_rq *my_q; 1255 #endif 1256 1257 #ifdef CONFIG_SMP 1258 /* Per-entity load-tracking */ 1259 struct sched_avg avg; 1260 #endif 1261 }; 1262 1263 struct sched_rt_entity { 1264 struct list_head run_list; 1265 unsigned long timeout; 1266 unsigned long watchdog_stamp; 1267 unsigned int time_slice; 1268 1269 struct sched_rt_entity *back; 1270 #ifdef CONFIG_RT_GROUP_SCHED 1271 struct sched_rt_entity *parent; 1272 /* rq on which this entity is (to be) queued: */ 1273 struct rt_rq *rt_rq; 1274 /* rq "owned" by this entity/group: */ 1275 struct rt_rq *my_q; 1276 #endif 1277 }; 1278 1279 struct sched_dl_entity { 1280 struct rb_node rb_node; 1281 1282 /* 1283 * Original scheduling parameters. Copied here from sched_attr 1284 * during sched_setattr(), they will remain the same until 1285 * the next sched_setattr(). 1286 */ 1287 u64 dl_runtime; /* maximum runtime for each instance */ 1288 u64 dl_deadline; /* relative deadline of each instance */ 1289 u64 dl_period; /* separation of two instances (period) */ 1290 u64 dl_bw; /* dl_runtime / dl_deadline */ 1291 1292 /* 1293 * Actual scheduling parameters. Initialized with the values above, 1294 * they are continously updated during task execution. Note that 1295 * the remaining runtime could be < 0 in case we are in overrun. 1296 */ 1297 s64 runtime; /* remaining runtime for this instance */ 1298 u64 deadline; /* absolute deadline for this instance */ 1299 unsigned int flags; /* specifying the scheduler behaviour */ 1300 1301 /* 1302 * Some bool flags: 1303 * 1304 * @dl_throttled tells if we exhausted the runtime. If so, the 1305 * task has to wait for a replenishment to be performed at the 1306 * next firing of dl_timer. 1307 * 1308 * @dl_new tells if a new instance arrived. If so we must 1309 * start executing it with full runtime and reset its absolute 1310 * deadline; 1311 * 1312 * @dl_boosted tells if we are boosted due to DI. If so we are 1313 * outside bandwidth enforcement mechanism (but only until we 1314 * exit the critical section); 1315 * 1316 * @dl_yielded tells if task gave up the cpu before consuming 1317 * all its available runtime during the last job. 1318 */ 1319 int dl_throttled, dl_new, dl_boosted, dl_yielded; 1320 1321 /* 1322 * Bandwidth enforcement timer. Each -deadline task has its 1323 * own bandwidth to be enforced, thus we need one timer per task. 1324 */ 1325 struct hrtimer dl_timer; 1326 }; 1327 1328 union rcu_special { 1329 struct { 1330 bool blocked; 1331 bool need_qs; 1332 } b; 1333 short s; 1334 }; 1335 struct rcu_node; 1336 1337 enum perf_event_task_context { 1338 perf_invalid_context = -1, 1339 perf_hw_context = 0, 1340 perf_sw_context, 1341 perf_nr_task_contexts, 1342 }; 1343 1344 struct task_struct { 1345 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1346 void *stack; 1347 atomic_t usage; 1348 unsigned int flags; /* per process flags, defined below */ 1349 unsigned int ptrace; 1350 1351 #ifdef CONFIG_SMP 1352 struct llist_node wake_entry; 1353 int on_cpu; 1354 struct task_struct *last_wakee; 1355 unsigned long wakee_flips; 1356 unsigned long wakee_flip_decay_ts; 1357 1358 int wake_cpu; 1359 #endif 1360 int on_rq; 1361 1362 int prio, static_prio, normal_prio; 1363 unsigned int rt_priority; 1364 const struct sched_class *sched_class; 1365 struct sched_entity se; 1366 struct sched_rt_entity rt; 1367 #ifdef CONFIG_CGROUP_SCHED 1368 struct task_group *sched_task_group; 1369 #endif 1370 struct sched_dl_entity dl; 1371 1372 #ifdef CONFIG_PREEMPT_NOTIFIERS 1373 /* list of struct preempt_notifier: */ 1374 struct hlist_head preempt_notifiers; 1375 #endif 1376 1377 #ifdef CONFIG_BLK_DEV_IO_TRACE 1378 unsigned int btrace_seq; 1379 #endif 1380 1381 unsigned int policy; 1382 int nr_cpus_allowed; 1383 cpumask_t cpus_allowed; 1384 1385 #ifdef CONFIG_PREEMPT_RCU 1386 int rcu_read_lock_nesting; 1387 union rcu_special rcu_read_unlock_special; 1388 struct list_head rcu_node_entry; 1389 struct rcu_node *rcu_blocked_node; 1390 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1391 #ifdef CONFIG_TASKS_RCU 1392 unsigned long rcu_tasks_nvcsw; 1393 bool rcu_tasks_holdout; 1394 struct list_head rcu_tasks_holdout_list; 1395 int rcu_tasks_idle_cpu; 1396 #endif /* #ifdef CONFIG_TASKS_RCU */ 1397 1398 #ifdef CONFIG_SCHED_INFO 1399 struct sched_info sched_info; 1400 #endif 1401 1402 struct list_head tasks; 1403 #ifdef CONFIG_SMP 1404 struct plist_node pushable_tasks; 1405 struct rb_node pushable_dl_tasks; 1406 #endif 1407 1408 struct mm_struct *mm, *active_mm; 1409 /* per-thread vma caching */ 1410 u32 vmacache_seqnum; 1411 struct vm_area_struct *vmacache[VMACACHE_SIZE]; 1412 #if defined(SPLIT_RSS_COUNTING) 1413 struct task_rss_stat rss_stat; 1414 #endif 1415 /* task state */ 1416 int exit_state; 1417 int exit_code, exit_signal; 1418 int pdeath_signal; /* The signal sent when the parent dies */ 1419 unsigned long jobctl; /* JOBCTL_*, siglock protected */ 1420 1421 /* Used for emulating ABI behavior of previous Linux versions */ 1422 unsigned int personality; 1423 1424 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1425 * execve */ 1426 unsigned in_iowait:1; 1427 1428 /* Revert to default priority/policy when forking */ 1429 unsigned sched_reset_on_fork:1; 1430 unsigned sched_contributes_to_load:1; 1431 unsigned sched_migrated:1; 1432 1433 #ifdef CONFIG_MEMCG_KMEM 1434 unsigned memcg_kmem_skip_account:1; 1435 #endif 1436 #ifdef CONFIG_COMPAT_BRK 1437 unsigned brk_randomized:1; 1438 #endif 1439 1440 unsigned long atomic_flags; /* Flags needing atomic access. */ 1441 1442 struct restart_block restart_block; 1443 1444 pid_t pid; 1445 pid_t tgid; 1446 1447 #ifdef CONFIG_CC_STACKPROTECTOR 1448 /* Canary value for the -fstack-protector gcc feature */ 1449 unsigned long stack_canary; 1450 #endif 1451 /* 1452 * pointers to (original) parent process, youngest child, younger sibling, 1453 * older sibling, respectively. (p->father can be replaced with 1454 * p->real_parent->pid) 1455 */ 1456 struct task_struct __rcu *real_parent; /* real parent process */ 1457 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1458 /* 1459 * children/sibling forms the list of my natural children 1460 */ 1461 struct list_head children; /* list of my children */ 1462 struct list_head sibling; /* linkage in my parent's children list */ 1463 struct task_struct *group_leader; /* threadgroup leader */ 1464 1465 /* 1466 * ptraced is the list of tasks this task is using ptrace on. 1467 * This includes both natural children and PTRACE_ATTACH targets. 1468 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1469 */ 1470 struct list_head ptraced; 1471 struct list_head ptrace_entry; 1472 1473 /* PID/PID hash table linkage. */ 1474 struct pid_link pids[PIDTYPE_MAX]; 1475 struct list_head thread_group; 1476 struct list_head thread_node; 1477 1478 struct completion *vfork_done; /* for vfork() */ 1479 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1480 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1481 1482 cputime_t utime, stime, utimescaled, stimescaled; 1483 cputime_t gtime; 1484 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1485 struct cputime prev_cputime; 1486 #endif 1487 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1488 seqlock_t vtime_seqlock; 1489 unsigned long long vtime_snap; 1490 enum { 1491 VTIME_SLEEPING = 0, 1492 VTIME_USER, 1493 VTIME_SYS, 1494 } vtime_snap_whence; 1495 #endif 1496 unsigned long nvcsw, nivcsw; /* context switch counts */ 1497 u64 start_time; /* monotonic time in nsec */ 1498 u64 real_start_time; /* boot based time in nsec */ 1499 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1500 unsigned long min_flt, maj_flt; 1501 1502 struct task_cputime cputime_expires; 1503 struct list_head cpu_timers[3]; 1504 1505 /* process credentials */ 1506 const struct cred __rcu *real_cred; /* objective and real subjective task 1507 * credentials (COW) */ 1508 const struct cred __rcu *cred; /* effective (overridable) subjective task 1509 * credentials (COW) */ 1510 char comm[TASK_COMM_LEN]; /* executable name excluding path 1511 - access with [gs]et_task_comm (which lock 1512 it with task_lock()) 1513 - initialized normally by setup_new_exec */ 1514 /* file system info */ 1515 struct nameidata *nameidata; 1516 #ifdef CONFIG_SYSVIPC 1517 /* ipc stuff */ 1518 struct sysv_sem sysvsem; 1519 struct sysv_shm sysvshm; 1520 #endif 1521 #ifdef CONFIG_DETECT_HUNG_TASK 1522 /* hung task detection */ 1523 unsigned long last_switch_count; 1524 #endif 1525 /* filesystem information */ 1526 struct fs_struct *fs; 1527 /* open file information */ 1528 struct files_struct *files; 1529 /* namespaces */ 1530 struct nsproxy *nsproxy; 1531 /* signal handlers */ 1532 struct signal_struct *signal; 1533 struct sighand_struct *sighand; 1534 1535 sigset_t blocked, real_blocked; 1536 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1537 struct sigpending pending; 1538 1539 unsigned long sas_ss_sp; 1540 size_t sas_ss_size; 1541 int (*notifier)(void *priv); 1542 void *notifier_data; 1543 sigset_t *notifier_mask; 1544 struct callback_head *task_works; 1545 1546 struct audit_context *audit_context; 1547 #ifdef CONFIG_AUDITSYSCALL 1548 kuid_t loginuid; 1549 unsigned int sessionid; 1550 #endif 1551 struct seccomp seccomp; 1552 1553 /* Thread group tracking */ 1554 u32 parent_exec_id; 1555 u32 self_exec_id; 1556 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1557 * mempolicy */ 1558 spinlock_t alloc_lock; 1559 1560 /* Protection of the PI data structures: */ 1561 raw_spinlock_t pi_lock; 1562 1563 struct wake_q_node wake_q; 1564 1565 #ifdef CONFIG_RT_MUTEXES 1566 /* PI waiters blocked on a rt_mutex held by this task */ 1567 struct rb_root pi_waiters; 1568 struct rb_node *pi_waiters_leftmost; 1569 /* Deadlock detection and priority inheritance handling */ 1570 struct rt_mutex_waiter *pi_blocked_on; 1571 #endif 1572 1573 #ifdef CONFIG_DEBUG_MUTEXES 1574 /* mutex deadlock detection */ 1575 struct mutex_waiter *blocked_on; 1576 #endif 1577 #ifdef CONFIG_TRACE_IRQFLAGS 1578 unsigned int irq_events; 1579 unsigned long hardirq_enable_ip; 1580 unsigned long hardirq_disable_ip; 1581 unsigned int hardirq_enable_event; 1582 unsigned int hardirq_disable_event; 1583 int hardirqs_enabled; 1584 int hardirq_context; 1585 unsigned long softirq_disable_ip; 1586 unsigned long softirq_enable_ip; 1587 unsigned int softirq_disable_event; 1588 unsigned int softirq_enable_event; 1589 int softirqs_enabled; 1590 int softirq_context; 1591 #endif 1592 #ifdef CONFIG_LOCKDEP 1593 # define MAX_LOCK_DEPTH 48UL 1594 u64 curr_chain_key; 1595 int lockdep_depth; 1596 unsigned int lockdep_recursion; 1597 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1598 gfp_t lockdep_reclaim_gfp; 1599 #endif 1600 1601 /* journalling filesystem info */ 1602 void *journal_info; 1603 1604 /* stacked block device info */ 1605 struct bio_list *bio_list; 1606 1607 #ifdef CONFIG_BLOCK 1608 /* stack plugging */ 1609 struct blk_plug *plug; 1610 #endif 1611 1612 /* VM state */ 1613 struct reclaim_state *reclaim_state; 1614 1615 struct backing_dev_info *backing_dev_info; 1616 1617 struct io_context *io_context; 1618 1619 unsigned long ptrace_message; 1620 siginfo_t *last_siginfo; /* For ptrace use. */ 1621 struct task_io_accounting ioac; 1622 #if defined(CONFIG_TASK_XACCT) 1623 u64 acct_rss_mem1; /* accumulated rss usage */ 1624 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1625 cputime_t acct_timexpd; /* stime + utime since last update */ 1626 #endif 1627 #ifdef CONFIG_CPUSETS 1628 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1629 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1630 int cpuset_mem_spread_rotor; 1631 int cpuset_slab_spread_rotor; 1632 #endif 1633 #ifdef CONFIG_CGROUPS 1634 /* Control Group info protected by css_set_lock */ 1635 struct css_set __rcu *cgroups; 1636 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1637 struct list_head cg_list; 1638 #endif 1639 #ifdef CONFIG_FUTEX 1640 struct robust_list_head __user *robust_list; 1641 #ifdef CONFIG_COMPAT 1642 struct compat_robust_list_head __user *compat_robust_list; 1643 #endif 1644 struct list_head pi_state_list; 1645 struct futex_pi_state *pi_state_cache; 1646 #endif 1647 #ifdef CONFIG_PERF_EVENTS 1648 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1649 struct mutex perf_event_mutex; 1650 struct list_head perf_event_list; 1651 #endif 1652 #ifdef CONFIG_DEBUG_PREEMPT 1653 unsigned long preempt_disable_ip; 1654 #endif 1655 #ifdef CONFIG_NUMA 1656 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1657 short il_next; 1658 short pref_node_fork; 1659 #endif 1660 #ifdef CONFIG_NUMA_BALANCING 1661 int numa_scan_seq; 1662 unsigned int numa_scan_period; 1663 unsigned int numa_scan_period_max; 1664 int numa_preferred_nid; 1665 unsigned long numa_migrate_retry; 1666 u64 node_stamp; /* migration stamp */ 1667 u64 last_task_numa_placement; 1668 u64 last_sum_exec_runtime; 1669 struct callback_head numa_work; 1670 1671 struct list_head numa_entry; 1672 struct numa_group *numa_group; 1673 1674 /* 1675 * numa_faults is an array split into four regions: 1676 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1677 * in this precise order. 1678 * 1679 * faults_memory: Exponential decaying average of faults on a per-node 1680 * basis. Scheduling placement decisions are made based on these 1681 * counts. The values remain static for the duration of a PTE scan. 1682 * faults_cpu: Track the nodes the process was running on when a NUMA 1683 * hinting fault was incurred. 1684 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1685 * during the current scan window. When the scan completes, the counts 1686 * in faults_memory and faults_cpu decay and these values are copied. 1687 */ 1688 unsigned long *numa_faults; 1689 unsigned long total_numa_faults; 1690 1691 /* 1692 * numa_faults_locality tracks if faults recorded during the last 1693 * scan window were remote/local or failed to migrate. The task scan 1694 * period is adapted based on the locality of the faults with different 1695 * weights depending on whether they were shared or private faults 1696 */ 1697 unsigned long numa_faults_locality[3]; 1698 1699 unsigned long numa_pages_migrated; 1700 #endif /* CONFIG_NUMA_BALANCING */ 1701 1702 struct rcu_head rcu; 1703 1704 /* 1705 * cache last used pipe for splice 1706 */ 1707 struct pipe_inode_info *splice_pipe; 1708 1709 struct page_frag task_frag; 1710 1711 #ifdef CONFIG_TASK_DELAY_ACCT 1712 struct task_delay_info *delays; 1713 #endif 1714 #ifdef CONFIG_FAULT_INJECTION 1715 int make_it_fail; 1716 #endif 1717 /* 1718 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1719 * balance_dirty_pages() for some dirty throttling pause 1720 */ 1721 int nr_dirtied; 1722 int nr_dirtied_pause; 1723 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1724 1725 #ifdef CONFIG_LATENCYTOP 1726 int latency_record_count; 1727 struct latency_record latency_record[LT_SAVECOUNT]; 1728 #endif 1729 /* 1730 * time slack values; these are used to round up poll() and 1731 * select() etc timeout values. These are in nanoseconds. 1732 */ 1733 unsigned long timer_slack_ns; 1734 unsigned long default_timer_slack_ns; 1735 1736 #ifdef CONFIG_KASAN 1737 unsigned int kasan_depth; 1738 #endif 1739 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1740 /* Index of current stored address in ret_stack */ 1741 int curr_ret_stack; 1742 /* Stack of return addresses for return function tracing */ 1743 struct ftrace_ret_stack *ret_stack; 1744 /* time stamp for last schedule */ 1745 unsigned long long ftrace_timestamp; 1746 /* 1747 * Number of functions that haven't been traced 1748 * because of depth overrun. 1749 */ 1750 atomic_t trace_overrun; 1751 /* Pause for the tracing */ 1752 atomic_t tracing_graph_pause; 1753 #endif 1754 #ifdef CONFIG_TRACING 1755 /* state flags for use by tracers */ 1756 unsigned long trace; 1757 /* bitmask and counter of trace recursion */ 1758 unsigned long trace_recursion; 1759 #endif /* CONFIG_TRACING */ 1760 #ifdef CONFIG_MEMCG 1761 struct memcg_oom_info { 1762 struct mem_cgroup *memcg; 1763 gfp_t gfp_mask; 1764 int order; 1765 unsigned int may_oom:1; 1766 } memcg_oom; 1767 #endif 1768 #ifdef CONFIG_UPROBES 1769 struct uprobe_task *utask; 1770 #endif 1771 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1772 unsigned int sequential_io; 1773 unsigned int sequential_io_avg; 1774 #endif 1775 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1776 unsigned long task_state_change; 1777 #endif 1778 int pagefault_disabled; 1779 /* CPU-specific state of this task */ 1780 struct thread_struct thread; 1781 /* 1782 * WARNING: on x86, 'thread_struct' contains a variable-sized 1783 * structure. It *MUST* be at the end of 'task_struct'. 1784 * 1785 * Do not put anything below here! 1786 */ 1787 }; 1788 1789 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1790 extern int arch_task_struct_size __read_mostly; 1791 #else 1792 # define arch_task_struct_size (sizeof(struct task_struct)) 1793 #endif 1794 1795 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1796 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1797 1798 #define TNF_MIGRATED 0x01 1799 #define TNF_NO_GROUP 0x02 1800 #define TNF_SHARED 0x04 1801 #define TNF_FAULT_LOCAL 0x08 1802 #define TNF_MIGRATE_FAIL 0x10 1803 1804 #ifdef CONFIG_NUMA_BALANCING 1805 extern void task_numa_fault(int last_node, int node, int pages, int flags); 1806 extern pid_t task_numa_group_id(struct task_struct *p); 1807 extern void set_numabalancing_state(bool enabled); 1808 extern void task_numa_free(struct task_struct *p); 1809 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page, 1810 int src_nid, int dst_cpu); 1811 #else 1812 static inline void task_numa_fault(int last_node, int node, int pages, 1813 int flags) 1814 { 1815 } 1816 static inline pid_t task_numa_group_id(struct task_struct *p) 1817 { 1818 return 0; 1819 } 1820 static inline void set_numabalancing_state(bool enabled) 1821 { 1822 } 1823 static inline void task_numa_free(struct task_struct *p) 1824 { 1825 } 1826 static inline bool should_numa_migrate_memory(struct task_struct *p, 1827 struct page *page, int src_nid, int dst_cpu) 1828 { 1829 return true; 1830 } 1831 #endif 1832 1833 static inline struct pid *task_pid(struct task_struct *task) 1834 { 1835 return task->pids[PIDTYPE_PID].pid; 1836 } 1837 1838 static inline struct pid *task_tgid(struct task_struct *task) 1839 { 1840 return task->group_leader->pids[PIDTYPE_PID].pid; 1841 } 1842 1843 /* 1844 * Without tasklist or rcu lock it is not safe to dereference 1845 * the result of task_pgrp/task_session even if task == current, 1846 * we can race with another thread doing sys_setsid/sys_setpgid. 1847 */ 1848 static inline struct pid *task_pgrp(struct task_struct *task) 1849 { 1850 return task->group_leader->pids[PIDTYPE_PGID].pid; 1851 } 1852 1853 static inline struct pid *task_session(struct task_struct *task) 1854 { 1855 return task->group_leader->pids[PIDTYPE_SID].pid; 1856 } 1857 1858 struct pid_namespace; 1859 1860 /* 1861 * the helpers to get the task's different pids as they are seen 1862 * from various namespaces 1863 * 1864 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1865 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1866 * current. 1867 * task_xid_nr_ns() : id seen from the ns specified; 1868 * 1869 * set_task_vxid() : assigns a virtual id to a task; 1870 * 1871 * see also pid_nr() etc in include/linux/pid.h 1872 */ 1873 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1874 struct pid_namespace *ns); 1875 1876 static inline pid_t task_pid_nr(struct task_struct *tsk) 1877 { 1878 return tsk->pid; 1879 } 1880 1881 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1882 struct pid_namespace *ns) 1883 { 1884 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1885 } 1886 1887 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1888 { 1889 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1890 } 1891 1892 1893 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1894 { 1895 return tsk->tgid; 1896 } 1897 1898 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1899 1900 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1901 { 1902 return pid_vnr(task_tgid(tsk)); 1903 } 1904 1905 1906 static inline int pid_alive(const struct task_struct *p); 1907 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1908 { 1909 pid_t pid = 0; 1910 1911 rcu_read_lock(); 1912 if (pid_alive(tsk)) 1913 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1914 rcu_read_unlock(); 1915 1916 return pid; 1917 } 1918 1919 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1920 { 1921 return task_ppid_nr_ns(tsk, &init_pid_ns); 1922 } 1923 1924 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1925 struct pid_namespace *ns) 1926 { 1927 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1928 } 1929 1930 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1931 { 1932 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1933 } 1934 1935 1936 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1937 struct pid_namespace *ns) 1938 { 1939 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1940 } 1941 1942 static inline pid_t task_session_vnr(struct task_struct *tsk) 1943 { 1944 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1945 } 1946 1947 /* obsolete, do not use */ 1948 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1949 { 1950 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1951 } 1952 1953 /** 1954 * pid_alive - check that a task structure is not stale 1955 * @p: Task structure to be checked. 1956 * 1957 * Test if a process is not yet dead (at most zombie state) 1958 * If pid_alive fails, then pointers within the task structure 1959 * can be stale and must not be dereferenced. 1960 * 1961 * Return: 1 if the process is alive. 0 otherwise. 1962 */ 1963 static inline int pid_alive(const struct task_struct *p) 1964 { 1965 return p->pids[PIDTYPE_PID].pid != NULL; 1966 } 1967 1968 /** 1969 * is_global_init - check if a task structure is init 1970 * @tsk: Task structure to be checked. 1971 * 1972 * Check if a task structure is the first user space task the kernel created. 1973 * 1974 * Return: 1 if the task structure is init. 0 otherwise. 1975 */ 1976 static inline int is_global_init(struct task_struct *tsk) 1977 { 1978 return tsk->pid == 1; 1979 } 1980 1981 extern struct pid *cad_pid; 1982 1983 extern void free_task(struct task_struct *tsk); 1984 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1985 1986 extern void __put_task_struct(struct task_struct *t); 1987 1988 static inline void put_task_struct(struct task_struct *t) 1989 { 1990 if (atomic_dec_and_test(&t->usage)) 1991 __put_task_struct(t); 1992 } 1993 1994 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1995 extern void task_cputime(struct task_struct *t, 1996 cputime_t *utime, cputime_t *stime); 1997 extern void task_cputime_scaled(struct task_struct *t, 1998 cputime_t *utimescaled, cputime_t *stimescaled); 1999 extern cputime_t task_gtime(struct task_struct *t); 2000 #else 2001 static inline void task_cputime(struct task_struct *t, 2002 cputime_t *utime, cputime_t *stime) 2003 { 2004 if (utime) 2005 *utime = t->utime; 2006 if (stime) 2007 *stime = t->stime; 2008 } 2009 2010 static inline void task_cputime_scaled(struct task_struct *t, 2011 cputime_t *utimescaled, 2012 cputime_t *stimescaled) 2013 { 2014 if (utimescaled) 2015 *utimescaled = t->utimescaled; 2016 if (stimescaled) 2017 *stimescaled = t->stimescaled; 2018 } 2019 2020 static inline cputime_t task_gtime(struct task_struct *t) 2021 { 2022 return t->gtime; 2023 } 2024 #endif 2025 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2026 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2027 2028 /* 2029 * Per process flags 2030 */ 2031 #define PF_EXITING 0x00000004 /* getting shut down */ 2032 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 2033 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 2034 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 2035 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 2036 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 2037 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 2038 #define PF_DUMPCORE 0x00000200 /* dumped core */ 2039 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 2040 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 2041 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 2042 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 2043 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 2044 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 2045 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 2046 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 2047 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 2048 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 2049 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 2050 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 2051 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 2052 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 2053 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 2054 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 2055 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 2056 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 2057 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ 2058 2059 /* 2060 * Only the _current_ task can read/write to tsk->flags, but other 2061 * tasks can access tsk->flags in readonly mode for example 2062 * with tsk_used_math (like during threaded core dumping). 2063 * There is however an exception to this rule during ptrace 2064 * or during fork: the ptracer task is allowed to write to the 2065 * child->flags of its traced child (same goes for fork, the parent 2066 * can write to the child->flags), because we're guaranteed the 2067 * child is not running and in turn not changing child->flags 2068 * at the same time the parent does it. 2069 */ 2070 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 2071 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 2072 #define clear_used_math() clear_stopped_child_used_math(current) 2073 #define set_used_math() set_stopped_child_used_math(current) 2074 #define conditional_stopped_child_used_math(condition, child) \ 2075 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 2076 #define conditional_used_math(condition) \ 2077 conditional_stopped_child_used_math(condition, current) 2078 #define copy_to_stopped_child_used_math(child) \ 2079 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 2080 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 2081 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 2082 #define used_math() tsk_used_math(current) 2083 2084 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags 2085 * __GFP_FS is also cleared as it implies __GFP_IO. 2086 */ 2087 static inline gfp_t memalloc_noio_flags(gfp_t flags) 2088 { 2089 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 2090 flags &= ~(__GFP_IO | __GFP_FS); 2091 return flags; 2092 } 2093 2094 static inline unsigned int memalloc_noio_save(void) 2095 { 2096 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 2097 current->flags |= PF_MEMALLOC_NOIO; 2098 return flags; 2099 } 2100 2101 static inline void memalloc_noio_restore(unsigned int flags) 2102 { 2103 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 2104 } 2105 2106 /* Per-process atomic flags. */ 2107 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 2108 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 2109 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 2110 2111 2112 #define TASK_PFA_TEST(name, func) \ 2113 static inline bool task_##func(struct task_struct *p) \ 2114 { return test_bit(PFA_##name, &p->atomic_flags); } 2115 #define TASK_PFA_SET(name, func) \ 2116 static inline void task_set_##func(struct task_struct *p) \ 2117 { set_bit(PFA_##name, &p->atomic_flags); } 2118 #define TASK_PFA_CLEAR(name, func) \ 2119 static inline void task_clear_##func(struct task_struct *p) \ 2120 { clear_bit(PFA_##name, &p->atomic_flags); } 2121 2122 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 2123 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 2124 2125 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 2126 TASK_PFA_SET(SPREAD_PAGE, spread_page) 2127 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 2128 2129 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 2130 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 2131 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 2132 2133 /* 2134 * task->jobctl flags 2135 */ 2136 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 2137 2138 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 2139 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 2140 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 2141 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 2142 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 2143 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 2144 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 2145 2146 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT) 2147 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT) 2148 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT) 2149 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT) 2150 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT) 2151 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT) 2152 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT) 2153 2154 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 2155 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 2156 2157 extern bool task_set_jobctl_pending(struct task_struct *task, 2158 unsigned long mask); 2159 extern void task_clear_jobctl_trapping(struct task_struct *task); 2160 extern void task_clear_jobctl_pending(struct task_struct *task, 2161 unsigned long mask); 2162 2163 static inline void rcu_copy_process(struct task_struct *p) 2164 { 2165 #ifdef CONFIG_PREEMPT_RCU 2166 p->rcu_read_lock_nesting = 0; 2167 p->rcu_read_unlock_special.s = 0; 2168 p->rcu_blocked_node = NULL; 2169 INIT_LIST_HEAD(&p->rcu_node_entry); 2170 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 2171 #ifdef CONFIG_TASKS_RCU 2172 p->rcu_tasks_holdout = false; 2173 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 2174 p->rcu_tasks_idle_cpu = -1; 2175 #endif /* #ifdef CONFIG_TASKS_RCU */ 2176 } 2177 2178 static inline void tsk_restore_flags(struct task_struct *task, 2179 unsigned long orig_flags, unsigned long flags) 2180 { 2181 task->flags &= ~flags; 2182 task->flags |= orig_flags & flags; 2183 } 2184 2185 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, 2186 const struct cpumask *trial); 2187 extern int task_can_attach(struct task_struct *p, 2188 const struct cpumask *cs_cpus_allowed); 2189 #ifdef CONFIG_SMP 2190 extern void do_set_cpus_allowed(struct task_struct *p, 2191 const struct cpumask *new_mask); 2192 2193 extern int set_cpus_allowed_ptr(struct task_struct *p, 2194 const struct cpumask *new_mask); 2195 #else 2196 static inline void do_set_cpus_allowed(struct task_struct *p, 2197 const struct cpumask *new_mask) 2198 { 2199 } 2200 static inline int set_cpus_allowed_ptr(struct task_struct *p, 2201 const struct cpumask *new_mask) 2202 { 2203 if (!cpumask_test_cpu(0, new_mask)) 2204 return -EINVAL; 2205 return 0; 2206 } 2207 #endif 2208 2209 #ifdef CONFIG_NO_HZ_COMMON 2210 void calc_load_enter_idle(void); 2211 void calc_load_exit_idle(void); 2212 #else 2213 static inline void calc_load_enter_idle(void) { } 2214 static inline void calc_load_exit_idle(void) { } 2215 #endif /* CONFIG_NO_HZ_COMMON */ 2216 2217 #ifndef CONFIG_CPUMASK_OFFSTACK 2218 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 2219 { 2220 return set_cpus_allowed_ptr(p, &new_mask); 2221 } 2222 #endif 2223 2224 /* 2225 * Do not use outside of architecture code which knows its limitations. 2226 * 2227 * sched_clock() has no promise of monotonicity or bounded drift between 2228 * CPUs, use (which you should not) requires disabling IRQs. 2229 * 2230 * Please use one of the three interfaces below. 2231 */ 2232 extern unsigned long long notrace sched_clock(void); 2233 /* 2234 * See the comment in kernel/sched/clock.c 2235 */ 2236 extern u64 cpu_clock(int cpu); 2237 extern u64 local_clock(void); 2238 extern u64 running_clock(void); 2239 extern u64 sched_clock_cpu(int cpu); 2240 2241 2242 extern void sched_clock_init(void); 2243 2244 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2245 static inline void sched_clock_tick(void) 2246 { 2247 } 2248 2249 static inline void sched_clock_idle_sleep_event(void) 2250 { 2251 } 2252 2253 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 2254 { 2255 } 2256 #else 2257 /* 2258 * Architectures can set this to 1 if they have specified 2259 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 2260 * but then during bootup it turns out that sched_clock() 2261 * is reliable after all: 2262 */ 2263 extern int sched_clock_stable(void); 2264 extern void set_sched_clock_stable(void); 2265 extern void clear_sched_clock_stable(void); 2266 2267 extern void sched_clock_tick(void); 2268 extern void sched_clock_idle_sleep_event(void); 2269 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2270 #endif 2271 2272 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2273 /* 2274 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 2275 * The reason for this explicit opt-in is not to have perf penalty with 2276 * slow sched_clocks. 2277 */ 2278 extern void enable_sched_clock_irqtime(void); 2279 extern void disable_sched_clock_irqtime(void); 2280 #else 2281 static inline void enable_sched_clock_irqtime(void) {} 2282 static inline void disable_sched_clock_irqtime(void) {} 2283 #endif 2284 2285 extern unsigned long long 2286 task_sched_runtime(struct task_struct *task); 2287 2288 /* sched_exec is called by processes performing an exec */ 2289 #ifdef CONFIG_SMP 2290 extern void sched_exec(void); 2291 #else 2292 #define sched_exec() {} 2293 #endif 2294 2295 extern void sched_clock_idle_sleep_event(void); 2296 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2297 2298 #ifdef CONFIG_HOTPLUG_CPU 2299 extern void idle_task_exit(void); 2300 #else 2301 static inline void idle_task_exit(void) {} 2302 #endif 2303 2304 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 2305 extern void wake_up_nohz_cpu(int cpu); 2306 #else 2307 static inline void wake_up_nohz_cpu(int cpu) { } 2308 #endif 2309 2310 #ifdef CONFIG_NO_HZ_FULL 2311 extern bool sched_can_stop_tick(void); 2312 extern u64 scheduler_tick_max_deferment(void); 2313 #else 2314 static inline bool sched_can_stop_tick(void) { return false; } 2315 #endif 2316 2317 #ifdef CONFIG_SCHED_AUTOGROUP 2318 extern void sched_autogroup_create_attach(struct task_struct *p); 2319 extern void sched_autogroup_detach(struct task_struct *p); 2320 extern void sched_autogroup_fork(struct signal_struct *sig); 2321 extern void sched_autogroup_exit(struct signal_struct *sig); 2322 #ifdef CONFIG_PROC_FS 2323 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2324 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2325 #endif 2326 #else 2327 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2328 static inline void sched_autogroup_detach(struct task_struct *p) { } 2329 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2330 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2331 #endif 2332 2333 extern int yield_to(struct task_struct *p, bool preempt); 2334 extern void set_user_nice(struct task_struct *p, long nice); 2335 extern int task_prio(const struct task_struct *p); 2336 /** 2337 * task_nice - return the nice value of a given task. 2338 * @p: the task in question. 2339 * 2340 * Return: The nice value [ -20 ... 0 ... 19 ]. 2341 */ 2342 static inline int task_nice(const struct task_struct *p) 2343 { 2344 return PRIO_TO_NICE((p)->static_prio); 2345 } 2346 extern int can_nice(const struct task_struct *p, const int nice); 2347 extern int task_curr(const struct task_struct *p); 2348 extern int idle_cpu(int cpu); 2349 extern int sched_setscheduler(struct task_struct *, int, 2350 const struct sched_param *); 2351 extern int sched_setscheduler_nocheck(struct task_struct *, int, 2352 const struct sched_param *); 2353 extern int sched_setattr(struct task_struct *, 2354 const struct sched_attr *); 2355 extern struct task_struct *idle_task(int cpu); 2356 /** 2357 * is_idle_task - is the specified task an idle task? 2358 * @p: the task in question. 2359 * 2360 * Return: 1 if @p is an idle task. 0 otherwise. 2361 */ 2362 static inline bool is_idle_task(const struct task_struct *p) 2363 { 2364 return p->pid == 0; 2365 } 2366 extern struct task_struct *curr_task(int cpu); 2367 extern void set_curr_task(int cpu, struct task_struct *p); 2368 2369 void yield(void); 2370 2371 union thread_union { 2372 struct thread_info thread_info; 2373 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2374 }; 2375 2376 #ifndef __HAVE_ARCH_KSTACK_END 2377 static inline int kstack_end(void *addr) 2378 { 2379 /* Reliable end of stack detection: 2380 * Some APM bios versions misalign the stack 2381 */ 2382 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2383 } 2384 #endif 2385 2386 extern union thread_union init_thread_union; 2387 extern struct task_struct init_task; 2388 2389 extern struct mm_struct init_mm; 2390 2391 extern struct pid_namespace init_pid_ns; 2392 2393 /* 2394 * find a task by one of its numerical ids 2395 * 2396 * find_task_by_pid_ns(): 2397 * finds a task by its pid in the specified namespace 2398 * find_task_by_vpid(): 2399 * finds a task by its virtual pid 2400 * 2401 * see also find_vpid() etc in include/linux/pid.h 2402 */ 2403 2404 extern struct task_struct *find_task_by_vpid(pid_t nr); 2405 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2406 struct pid_namespace *ns); 2407 2408 /* per-UID process charging. */ 2409 extern struct user_struct * alloc_uid(kuid_t); 2410 static inline struct user_struct *get_uid(struct user_struct *u) 2411 { 2412 atomic_inc(&u->__count); 2413 return u; 2414 } 2415 extern void free_uid(struct user_struct *); 2416 2417 #include <asm/current.h> 2418 2419 extern void xtime_update(unsigned long ticks); 2420 2421 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2422 extern int wake_up_process(struct task_struct *tsk); 2423 extern void wake_up_new_task(struct task_struct *tsk); 2424 #ifdef CONFIG_SMP 2425 extern void kick_process(struct task_struct *tsk); 2426 #else 2427 static inline void kick_process(struct task_struct *tsk) { } 2428 #endif 2429 extern int sched_fork(unsigned long clone_flags, struct task_struct *p); 2430 extern void sched_dead(struct task_struct *p); 2431 2432 extern void proc_caches_init(void); 2433 extern void flush_signals(struct task_struct *); 2434 extern void ignore_signals(struct task_struct *); 2435 extern void flush_signal_handlers(struct task_struct *, int force_default); 2436 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2437 2438 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2439 { 2440 unsigned long flags; 2441 int ret; 2442 2443 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2444 ret = dequeue_signal(tsk, mask, info); 2445 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2446 2447 return ret; 2448 } 2449 2450 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2451 sigset_t *mask); 2452 extern void unblock_all_signals(void); 2453 extern void release_task(struct task_struct * p); 2454 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2455 extern int force_sigsegv(int, struct task_struct *); 2456 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2457 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2458 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2459 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2460 const struct cred *, u32); 2461 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2462 extern int kill_pid(struct pid *pid, int sig, int priv); 2463 extern int kill_proc_info(int, struct siginfo *, pid_t); 2464 extern __must_check bool do_notify_parent(struct task_struct *, int); 2465 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2466 extern void force_sig(int, struct task_struct *); 2467 extern int send_sig(int, struct task_struct *, int); 2468 extern int zap_other_threads(struct task_struct *p); 2469 extern struct sigqueue *sigqueue_alloc(void); 2470 extern void sigqueue_free(struct sigqueue *); 2471 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2472 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2473 2474 static inline void restore_saved_sigmask(void) 2475 { 2476 if (test_and_clear_restore_sigmask()) 2477 __set_current_blocked(¤t->saved_sigmask); 2478 } 2479 2480 static inline sigset_t *sigmask_to_save(void) 2481 { 2482 sigset_t *res = ¤t->blocked; 2483 if (unlikely(test_restore_sigmask())) 2484 res = ¤t->saved_sigmask; 2485 return res; 2486 } 2487 2488 static inline int kill_cad_pid(int sig, int priv) 2489 { 2490 return kill_pid(cad_pid, sig, priv); 2491 } 2492 2493 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2494 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2495 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2496 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2497 2498 /* 2499 * True if we are on the alternate signal stack. 2500 */ 2501 static inline int on_sig_stack(unsigned long sp) 2502 { 2503 #ifdef CONFIG_STACK_GROWSUP 2504 return sp >= current->sas_ss_sp && 2505 sp - current->sas_ss_sp < current->sas_ss_size; 2506 #else 2507 return sp > current->sas_ss_sp && 2508 sp - current->sas_ss_sp <= current->sas_ss_size; 2509 #endif 2510 } 2511 2512 static inline int sas_ss_flags(unsigned long sp) 2513 { 2514 if (!current->sas_ss_size) 2515 return SS_DISABLE; 2516 2517 return on_sig_stack(sp) ? SS_ONSTACK : 0; 2518 } 2519 2520 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2521 { 2522 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2523 #ifdef CONFIG_STACK_GROWSUP 2524 return current->sas_ss_sp; 2525 #else 2526 return current->sas_ss_sp + current->sas_ss_size; 2527 #endif 2528 return sp; 2529 } 2530 2531 /* 2532 * Routines for handling mm_structs 2533 */ 2534 extern struct mm_struct * mm_alloc(void); 2535 2536 /* mmdrop drops the mm and the page tables */ 2537 extern void __mmdrop(struct mm_struct *); 2538 static inline void mmdrop(struct mm_struct * mm) 2539 { 2540 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2541 __mmdrop(mm); 2542 } 2543 2544 /* mmput gets rid of the mappings and all user-space */ 2545 extern void mmput(struct mm_struct *); 2546 /* Grab a reference to a task's mm, if it is not already going away */ 2547 extern struct mm_struct *get_task_mm(struct task_struct *task); 2548 /* 2549 * Grab a reference to a task's mm, if it is not already going away 2550 * and ptrace_may_access with the mode parameter passed to it 2551 * succeeds. 2552 */ 2553 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2554 /* Remove the current tasks stale references to the old mm_struct */ 2555 extern void mm_release(struct task_struct *, struct mm_struct *); 2556 2557 #ifdef CONFIG_HAVE_COPY_THREAD_TLS 2558 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long, 2559 struct task_struct *, unsigned long); 2560 #else 2561 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2562 struct task_struct *); 2563 2564 /* Architectures that haven't opted into copy_thread_tls get the tls argument 2565 * via pt_regs, so ignore the tls argument passed via C. */ 2566 static inline int copy_thread_tls( 2567 unsigned long clone_flags, unsigned long sp, unsigned long arg, 2568 struct task_struct *p, unsigned long tls) 2569 { 2570 return copy_thread(clone_flags, sp, arg, p); 2571 } 2572 #endif 2573 extern void flush_thread(void); 2574 extern void exit_thread(void); 2575 2576 extern void exit_files(struct task_struct *); 2577 extern void __cleanup_sighand(struct sighand_struct *); 2578 2579 extern void exit_itimers(struct signal_struct *); 2580 extern void flush_itimer_signals(void); 2581 2582 extern void do_group_exit(int); 2583 2584 extern int do_execve(struct filename *, 2585 const char __user * const __user *, 2586 const char __user * const __user *); 2587 extern int do_execveat(int, struct filename *, 2588 const char __user * const __user *, 2589 const char __user * const __user *, 2590 int); 2591 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long); 2592 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2593 struct task_struct *fork_idle(int); 2594 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2595 2596 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 2597 static inline void set_task_comm(struct task_struct *tsk, const char *from) 2598 { 2599 __set_task_comm(tsk, from, false); 2600 } 2601 extern char *get_task_comm(char *to, struct task_struct *tsk); 2602 2603 #ifdef CONFIG_SMP 2604 void scheduler_ipi(void); 2605 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2606 #else 2607 static inline void scheduler_ipi(void) { } 2608 static inline unsigned long wait_task_inactive(struct task_struct *p, 2609 long match_state) 2610 { 2611 return 1; 2612 } 2613 #endif 2614 2615 #define tasklist_empty() \ 2616 list_empty(&init_task.tasks) 2617 2618 #define next_task(p) \ 2619 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2620 2621 #define for_each_process(p) \ 2622 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2623 2624 extern bool current_is_single_threaded(void); 2625 2626 /* 2627 * Careful: do_each_thread/while_each_thread is a double loop so 2628 * 'break' will not work as expected - use goto instead. 2629 */ 2630 #define do_each_thread(g, t) \ 2631 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2632 2633 #define while_each_thread(g, t) \ 2634 while ((t = next_thread(t)) != g) 2635 2636 #define __for_each_thread(signal, t) \ 2637 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 2638 2639 #define for_each_thread(p, t) \ 2640 __for_each_thread((p)->signal, t) 2641 2642 /* Careful: this is a double loop, 'break' won't work as expected. */ 2643 #define for_each_process_thread(p, t) \ 2644 for_each_process(p) for_each_thread(p, t) 2645 2646 static inline int get_nr_threads(struct task_struct *tsk) 2647 { 2648 return tsk->signal->nr_threads; 2649 } 2650 2651 static inline bool thread_group_leader(struct task_struct *p) 2652 { 2653 return p->exit_signal >= 0; 2654 } 2655 2656 /* Do to the insanities of de_thread it is possible for a process 2657 * to have the pid of the thread group leader without actually being 2658 * the thread group leader. For iteration through the pids in proc 2659 * all we care about is that we have a task with the appropriate 2660 * pid, we don't actually care if we have the right task. 2661 */ 2662 static inline bool has_group_leader_pid(struct task_struct *p) 2663 { 2664 return task_pid(p) == p->signal->leader_pid; 2665 } 2666 2667 static inline 2668 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 2669 { 2670 return p1->signal == p2->signal; 2671 } 2672 2673 static inline struct task_struct *next_thread(const struct task_struct *p) 2674 { 2675 return list_entry_rcu(p->thread_group.next, 2676 struct task_struct, thread_group); 2677 } 2678 2679 static inline int thread_group_empty(struct task_struct *p) 2680 { 2681 return list_empty(&p->thread_group); 2682 } 2683 2684 #define delay_group_leader(p) \ 2685 (thread_group_leader(p) && !thread_group_empty(p)) 2686 2687 /* 2688 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2689 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2690 * pins the final release of task.io_context. Also protects ->cpuset and 2691 * ->cgroup.subsys[]. And ->vfork_done. 2692 * 2693 * Nests both inside and outside of read_lock(&tasklist_lock). 2694 * It must not be nested with write_lock_irq(&tasklist_lock), 2695 * neither inside nor outside. 2696 */ 2697 static inline void task_lock(struct task_struct *p) 2698 { 2699 spin_lock(&p->alloc_lock); 2700 } 2701 2702 static inline void task_unlock(struct task_struct *p) 2703 { 2704 spin_unlock(&p->alloc_lock); 2705 } 2706 2707 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2708 unsigned long *flags); 2709 2710 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2711 unsigned long *flags) 2712 { 2713 struct sighand_struct *ret; 2714 2715 ret = __lock_task_sighand(tsk, flags); 2716 (void)__cond_lock(&tsk->sighand->siglock, ret); 2717 return ret; 2718 } 2719 2720 static inline void unlock_task_sighand(struct task_struct *tsk, 2721 unsigned long *flags) 2722 { 2723 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2724 } 2725 2726 /** 2727 * threadgroup_change_begin - mark the beginning of changes to a threadgroup 2728 * @tsk: task causing the changes 2729 * 2730 * All operations which modify a threadgroup - a new thread joining the 2731 * group, death of a member thread (the assertion of PF_EXITING) and 2732 * exec(2) dethreading the process and replacing the leader - are wrapped 2733 * by threadgroup_change_{begin|end}(). This is to provide a place which 2734 * subsystems needing threadgroup stability can hook into for 2735 * synchronization. 2736 */ 2737 static inline void threadgroup_change_begin(struct task_struct *tsk) 2738 { 2739 might_sleep(); 2740 cgroup_threadgroup_change_begin(tsk); 2741 } 2742 2743 /** 2744 * threadgroup_change_end - mark the end of changes to a threadgroup 2745 * @tsk: task causing the changes 2746 * 2747 * See threadgroup_change_begin(). 2748 */ 2749 static inline void threadgroup_change_end(struct task_struct *tsk) 2750 { 2751 cgroup_threadgroup_change_end(tsk); 2752 } 2753 2754 #ifndef __HAVE_THREAD_FUNCTIONS 2755 2756 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2757 #define task_stack_page(task) ((task)->stack) 2758 2759 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2760 { 2761 *task_thread_info(p) = *task_thread_info(org); 2762 task_thread_info(p)->task = p; 2763 } 2764 2765 /* 2766 * Return the address of the last usable long on the stack. 2767 * 2768 * When the stack grows down, this is just above the thread 2769 * info struct. Going any lower will corrupt the threadinfo. 2770 * 2771 * When the stack grows up, this is the highest address. 2772 * Beyond that position, we corrupt data on the next page. 2773 */ 2774 static inline unsigned long *end_of_stack(struct task_struct *p) 2775 { 2776 #ifdef CONFIG_STACK_GROWSUP 2777 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1; 2778 #else 2779 return (unsigned long *)(task_thread_info(p) + 1); 2780 #endif 2781 } 2782 2783 #endif 2784 #define task_stack_end_corrupted(task) \ 2785 (*(end_of_stack(task)) != STACK_END_MAGIC) 2786 2787 static inline int object_is_on_stack(void *obj) 2788 { 2789 void *stack = task_stack_page(current); 2790 2791 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2792 } 2793 2794 extern void thread_info_cache_init(void); 2795 2796 #ifdef CONFIG_DEBUG_STACK_USAGE 2797 static inline unsigned long stack_not_used(struct task_struct *p) 2798 { 2799 unsigned long *n = end_of_stack(p); 2800 2801 do { /* Skip over canary */ 2802 n++; 2803 } while (!*n); 2804 2805 return (unsigned long)n - (unsigned long)end_of_stack(p); 2806 } 2807 #endif 2808 extern void set_task_stack_end_magic(struct task_struct *tsk); 2809 2810 /* set thread flags in other task's structures 2811 * - see asm/thread_info.h for TIF_xxxx flags available 2812 */ 2813 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2814 { 2815 set_ti_thread_flag(task_thread_info(tsk), flag); 2816 } 2817 2818 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2819 { 2820 clear_ti_thread_flag(task_thread_info(tsk), flag); 2821 } 2822 2823 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2824 { 2825 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2826 } 2827 2828 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2829 { 2830 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2831 } 2832 2833 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2834 { 2835 return test_ti_thread_flag(task_thread_info(tsk), flag); 2836 } 2837 2838 static inline void set_tsk_need_resched(struct task_struct *tsk) 2839 { 2840 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2841 } 2842 2843 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2844 { 2845 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2846 } 2847 2848 static inline int test_tsk_need_resched(struct task_struct *tsk) 2849 { 2850 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2851 } 2852 2853 static inline int restart_syscall(void) 2854 { 2855 set_tsk_thread_flag(current, TIF_SIGPENDING); 2856 return -ERESTARTNOINTR; 2857 } 2858 2859 static inline int signal_pending(struct task_struct *p) 2860 { 2861 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2862 } 2863 2864 static inline int __fatal_signal_pending(struct task_struct *p) 2865 { 2866 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2867 } 2868 2869 static inline int fatal_signal_pending(struct task_struct *p) 2870 { 2871 return signal_pending(p) && __fatal_signal_pending(p); 2872 } 2873 2874 static inline int signal_pending_state(long state, struct task_struct *p) 2875 { 2876 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2877 return 0; 2878 if (!signal_pending(p)) 2879 return 0; 2880 2881 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2882 } 2883 2884 /* 2885 * cond_resched() and cond_resched_lock(): latency reduction via 2886 * explicit rescheduling in places that are safe. The return 2887 * value indicates whether a reschedule was done in fact. 2888 * cond_resched_lock() will drop the spinlock before scheduling, 2889 * cond_resched_softirq() will enable bhs before scheduling. 2890 */ 2891 extern int _cond_resched(void); 2892 2893 #define cond_resched() ({ \ 2894 ___might_sleep(__FILE__, __LINE__, 0); \ 2895 _cond_resched(); \ 2896 }) 2897 2898 extern int __cond_resched_lock(spinlock_t *lock); 2899 2900 #ifdef CONFIG_PREEMPT_COUNT 2901 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2902 #else 2903 #define PREEMPT_LOCK_OFFSET 0 2904 #endif 2905 2906 #define cond_resched_lock(lock) ({ \ 2907 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 2908 __cond_resched_lock(lock); \ 2909 }) 2910 2911 extern int __cond_resched_softirq(void); 2912 2913 #define cond_resched_softirq() ({ \ 2914 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2915 __cond_resched_softirq(); \ 2916 }) 2917 2918 static inline void cond_resched_rcu(void) 2919 { 2920 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 2921 rcu_read_unlock(); 2922 cond_resched(); 2923 rcu_read_lock(); 2924 #endif 2925 } 2926 2927 /* 2928 * Does a critical section need to be broken due to another 2929 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2930 * but a general need for low latency) 2931 */ 2932 static inline int spin_needbreak(spinlock_t *lock) 2933 { 2934 #ifdef CONFIG_PREEMPT 2935 return spin_is_contended(lock); 2936 #else 2937 return 0; 2938 #endif 2939 } 2940 2941 /* 2942 * Idle thread specific functions to determine the need_resched 2943 * polling state. 2944 */ 2945 #ifdef TIF_POLLING_NRFLAG 2946 static inline int tsk_is_polling(struct task_struct *p) 2947 { 2948 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 2949 } 2950 2951 static inline void __current_set_polling(void) 2952 { 2953 set_thread_flag(TIF_POLLING_NRFLAG); 2954 } 2955 2956 static inline bool __must_check current_set_polling_and_test(void) 2957 { 2958 __current_set_polling(); 2959 2960 /* 2961 * Polling state must be visible before we test NEED_RESCHED, 2962 * paired by resched_curr() 2963 */ 2964 smp_mb__after_atomic(); 2965 2966 return unlikely(tif_need_resched()); 2967 } 2968 2969 static inline void __current_clr_polling(void) 2970 { 2971 clear_thread_flag(TIF_POLLING_NRFLAG); 2972 } 2973 2974 static inline bool __must_check current_clr_polling_and_test(void) 2975 { 2976 __current_clr_polling(); 2977 2978 /* 2979 * Polling state must be visible before we test NEED_RESCHED, 2980 * paired by resched_curr() 2981 */ 2982 smp_mb__after_atomic(); 2983 2984 return unlikely(tif_need_resched()); 2985 } 2986 2987 #else 2988 static inline int tsk_is_polling(struct task_struct *p) { return 0; } 2989 static inline void __current_set_polling(void) { } 2990 static inline void __current_clr_polling(void) { } 2991 2992 static inline bool __must_check current_set_polling_and_test(void) 2993 { 2994 return unlikely(tif_need_resched()); 2995 } 2996 static inline bool __must_check current_clr_polling_and_test(void) 2997 { 2998 return unlikely(tif_need_resched()); 2999 } 3000 #endif 3001 3002 static inline void current_clr_polling(void) 3003 { 3004 __current_clr_polling(); 3005 3006 /* 3007 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit. 3008 * Once the bit is cleared, we'll get IPIs with every new 3009 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also 3010 * fold. 3011 */ 3012 smp_mb(); /* paired with resched_curr() */ 3013 3014 preempt_fold_need_resched(); 3015 } 3016 3017 static __always_inline bool need_resched(void) 3018 { 3019 return unlikely(tif_need_resched()); 3020 } 3021 3022 /* 3023 * Thread group CPU time accounting. 3024 */ 3025 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 3026 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 3027 3028 /* 3029 * Reevaluate whether the task has signals pending delivery. 3030 * Wake the task if so. 3031 * This is required every time the blocked sigset_t changes. 3032 * callers must hold sighand->siglock. 3033 */ 3034 extern void recalc_sigpending_and_wake(struct task_struct *t); 3035 extern void recalc_sigpending(void); 3036 3037 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 3038 3039 static inline void signal_wake_up(struct task_struct *t, bool resume) 3040 { 3041 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 3042 } 3043 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 3044 { 3045 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 3046 } 3047 3048 /* 3049 * Wrappers for p->thread_info->cpu access. No-op on UP. 3050 */ 3051 #ifdef CONFIG_SMP 3052 3053 static inline unsigned int task_cpu(const struct task_struct *p) 3054 { 3055 return task_thread_info(p)->cpu; 3056 } 3057 3058 static inline int task_node(const struct task_struct *p) 3059 { 3060 return cpu_to_node(task_cpu(p)); 3061 } 3062 3063 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 3064 3065 #else 3066 3067 static inline unsigned int task_cpu(const struct task_struct *p) 3068 { 3069 return 0; 3070 } 3071 3072 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 3073 { 3074 } 3075 3076 #endif /* CONFIG_SMP */ 3077 3078 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 3079 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 3080 3081 #ifdef CONFIG_CGROUP_SCHED 3082 extern struct task_group root_task_group; 3083 #endif /* CONFIG_CGROUP_SCHED */ 3084 3085 extern int task_can_switch_user(struct user_struct *up, 3086 struct task_struct *tsk); 3087 3088 #ifdef CONFIG_TASK_XACCT 3089 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3090 { 3091 tsk->ioac.rchar += amt; 3092 } 3093 3094 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3095 { 3096 tsk->ioac.wchar += amt; 3097 } 3098 3099 static inline void inc_syscr(struct task_struct *tsk) 3100 { 3101 tsk->ioac.syscr++; 3102 } 3103 3104 static inline void inc_syscw(struct task_struct *tsk) 3105 { 3106 tsk->ioac.syscw++; 3107 } 3108 #else 3109 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3110 { 3111 } 3112 3113 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3114 { 3115 } 3116 3117 static inline void inc_syscr(struct task_struct *tsk) 3118 { 3119 } 3120 3121 static inline void inc_syscw(struct task_struct *tsk) 3122 { 3123 } 3124 #endif 3125 3126 #ifndef TASK_SIZE_OF 3127 #define TASK_SIZE_OF(tsk) TASK_SIZE 3128 #endif 3129 3130 #ifdef CONFIG_MEMCG 3131 extern void mm_update_next_owner(struct mm_struct *mm); 3132 #else 3133 static inline void mm_update_next_owner(struct mm_struct *mm) 3134 { 3135 } 3136 #endif /* CONFIG_MEMCG */ 3137 3138 static inline unsigned long task_rlimit(const struct task_struct *tsk, 3139 unsigned int limit) 3140 { 3141 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur); 3142 } 3143 3144 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 3145 unsigned int limit) 3146 { 3147 return READ_ONCE(tsk->signal->rlim[limit].rlim_max); 3148 } 3149 3150 static inline unsigned long rlimit(unsigned int limit) 3151 { 3152 return task_rlimit(current, limit); 3153 } 3154 3155 static inline unsigned long rlimit_max(unsigned int limit) 3156 { 3157 return task_rlimit_max(current, limit); 3158 } 3159 3160 #endif 3161