xref: /linux-6.15/include/linux/rmap.h (revision fc5dfebc)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_RMAP_H
3 #define _LINUX_RMAP_H
4 /*
5  * Declarations for Reverse Mapping functions in mm/rmap.c
6  */
7 
8 #include <linux/list.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/rwsem.h>
12 #include <linux/memcontrol.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/memremap.h>
16 
17 /*
18  * The anon_vma heads a list of private "related" vmas, to scan if
19  * an anonymous page pointing to this anon_vma needs to be unmapped:
20  * the vmas on the list will be related by forking, or by splitting.
21  *
22  * Since vmas come and go as they are split and merged (particularly
23  * in mprotect), the mapping field of an anonymous page cannot point
24  * directly to a vma: instead it points to an anon_vma, on whose list
25  * the related vmas can be easily linked or unlinked.
26  *
27  * After unlinking the last vma on the list, we must garbage collect
28  * the anon_vma object itself: we're guaranteed no page can be
29  * pointing to this anon_vma once its vma list is empty.
30  */
31 struct anon_vma {
32 	struct anon_vma *root;		/* Root of this anon_vma tree */
33 	struct rw_semaphore rwsem;	/* W: modification, R: walking the list */
34 	/*
35 	 * The refcount is taken on an anon_vma when there is no
36 	 * guarantee that the vma of page tables will exist for
37 	 * the duration of the operation. A caller that takes
38 	 * the reference is responsible for clearing up the
39 	 * anon_vma if they are the last user on release
40 	 */
41 	atomic_t refcount;
42 
43 	/*
44 	 * Count of child anon_vmas and VMAs which points to this anon_vma.
45 	 *
46 	 * This counter is used for making decision about reusing anon_vma
47 	 * instead of forking new one. See comments in function anon_vma_clone.
48 	 */
49 	unsigned degree;
50 
51 	struct anon_vma *parent;	/* Parent of this anon_vma */
52 
53 	/*
54 	 * NOTE: the LSB of the rb_root.rb_node is set by
55 	 * mm_take_all_locks() _after_ taking the above lock. So the
56 	 * rb_root must only be read/written after taking the above lock
57 	 * to be sure to see a valid next pointer. The LSB bit itself
58 	 * is serialized by a system wide lock only visible to
59 	 * mm_take_all_locks() (mm_all_locks_mutex).
60 	 */
61 
62 	/* Interval tree of private "related" vmas */
63 	struct rb_root_cached rb_root;
64 };
65 
66 /*
67  * The copy-on-write semantics of fork mean that an anon_vma
68  * can become associated with multiple processes. Furthermore,
69  * each child process will have its own anon_vma, where new
70  * pages for that process are instantiated.
71  *
72  * This structure allows us to find the anon_vmas associated
73  * with a VMA, or the VMAs associated with an anon_vma.
74  * The "same_vma" list contains the anon_vma_chains linking
75  * all the anon_vmas associated with this VMA.
76  * The "rb" field indexes on an interval tree the anon_vma_chains
77  * which link all the VMAs associated with this anon_vma.
78  */
79 struct anon_vma_chain {
80 	struct vm_area_struct *vma;
81 	struct anon_vma *anon_vma;
82 	struct list_head same_vma;   /* locked by mmap_lock & page_table_lock */
83 	struct rb_node rb;			/* locked by anon_vma->rwsem */
84 	unsigned long rb_subtree_last;
85 #ifdef CONFIG_DEBUG_VM_RB
86 	unsigned long cached_vma_start, cached_vma_last;
87 #endif
88 };
89 
90 enum ttu_flags {
91 	TTU_SPLIT_HUGE_PMD	= 0x4,	/* split huge PMD if any */
92 	TTU_IGNORE_MLOCK	= 0x8,	/* ignore mlock */
93 	TTU_SYNC		= 0x10,	/* avoid racy checks with PVMW_SYNC */
94 	TTU_IGNORE_HWPOISON	= 0x20,	/* corrupted page is recoverable */
95 	TTU_BATCH_FLUSH		= 0x40,	/* Batch TLB flushes where possible
96 					 * and caller guarantees they will
97 					 * do a final flush if necessary */
98 	TTU_RMAP_LOCKED		= 0x80,	/* do not grab rmap lock:
99 					 * caller holds it */
100 };
101 
102 #ifdef CONFIG_MMU
103 static inline void get_anon_vma(struct anon_vma *anon_vma)
104 {
105 	atomic_inc(&anon_vma->refcount);
106 }
107 
108 void __put_anon_vma(struct anon_vma *anon_vma);
109 
110 static inline void put_anon_vma(struct anon_vma *anon_vma)
111 {
112 	if (atomic_dec_and_test(&anon_vma->refcount))
113 		__put_anon_vma(anon_vma);
114 }
115 
116 static inline void anon_vma_lock_write(struct anon_vma *anon_vma)
117 {
118 	down_write(&anon_vma->root->rwsem);
119 }
120 
121 static inline void anon_vma_unlock_write(struct anon_vma *anon_vma)
122 {
123 	up_write(&anon_vma->root->rwsem);
124 }
125 
126 static inline void anon_vma_lock_read(struct anon_vma *anon_vma)
127 {
128 	down_read(&anon_vma->root->rwsem);
129 }
130 
131 static inline int anon_vma_trylock_read(struct anon_vma *anon_vma)
132 {
133 	return down_read_trylock(&anon_vma->root->rwsem);
134 }
135 
136 static inline void anon_vma_unlock_read(struct anon_vma *anon_vma)
137 {
138 	up_read(&anon_vma->root->rwsem);
139 }
140 
141 
142 /*
143  * anon_vma helper functions.
144  */
145 void anon_vma_init(void);	/* create anon_vma_cachep */
146 int  __anon_vma_prepare(struct vm_area_struct *);
147 void unlink_anon_vmas(struct vm_area_struct *);
148 int anon_vma_clone(struct vm_area_struct *, struct vm_area_struct *);
149 int anon_vma_fork(struct vm_area_struct *, struct vm_area_struct *);
150 
151 static inline int anon_vma_prepare(struct vm_area_struct *vma)
152 {
153 	if (likely(vma->anon_vma))
154 		return 0;
155 
156 	return __anon_vma_prepare(vma);
157 }
158 
159 static inline void anon_vma_merge(struct vm_area_struct *vma,
160 				  struct vm_area_struct *next)
161 {
162 	VM_BUG_ON_VMA(vma->anon_vma != next->anon_vma, vma);
163 	unlink_anon_vmas(next);
164 }
165 
166 struct anon_vma *folio_get_anon_vma(struct folio *folio);
167 
168 /* RMAP flags, currently only relevant for some anon rmap operations. */
169 typedef int __bitwise rmap_t;
170 
171 /*
172  * No special request: if the page is a subpage of a compound page, it is
173  * mapped via a PTE. The mapped (sub)page is possibly shared between processes.
174  */
175 #define RMAP_NONE		((__force rmap_t)0)
176 
177 /* The (sub)page is exclusive to a single process. */
178 #define RMAP_EXCLUSIVE		((__force rmap_t)BIT(0))
179 
180 /*
181  * The compound page is not mapped via PTEs, but instead via a single PMD and
182  * should be accounted accordingly.
183  */
184 #define RMAP_COMPOUND		((__force rmap_t)BIT(1))
185 
186 /*
187  * rmap interfaces called when adding or removing pte of page
188  */
189 void page_move_anon_rmap(struct page *, struct vm_area_struct *);
190 void page_add_anon_rmap(struct page *, struct vm_area_struct *,
191 		unsigned long address, rmap_t flags);
192 void page_add_new_anon_rmap(struct page *, struct vm_area_struct *,
193 		unsigned long address);
194 void page_add_file_rmap(struct page *, struct vm_area_struct *,
195 		bool compound);
196 void page_remove_rmap(struct page *, struct vm_area_struct *,
197 		bool compound);
198 
199 void hugepage_add_anon_rmap(struct page *, struct vm_area_struct *,
200 		unsigned long address, rmap_t flags);
201 void hugepage_add_new_anon_rmap(struct page *, struct vm_area_struct *,
202 		unsigned long address);
203 
204 static inline void __page_dup_rmap(struct page *page, bool compound)
205 {
206 	atomic_inc(compound ? compound_mapcount_ptr(page) : &page->_mapcount);
207 }
208 
209 static inline void page_dup_file_rmap(struct page *page, bool compound)
210 {
211 	__page_dup_rmap(page, compound);
212 }
213 
214 /**
215  * page_try_dup_anon_rmap - try duplicating a mapping of an already mapped
216  *			    anonymous page
217  * @page: the page to duplicate the mapping for
218  * @compound: the page is mapped as compound or as a small page
219  * @vma: the source vma
220  *
221  * The caller needs to hold the PT lock and the vma->vma_mm->write_protect_seq.
222  *
223  * Duplicating the mapping can only fail if the page may be pinned; device
224  * private pages cannot get pinned and consequently this function cannot fail.
225  *
226  * If duplicating the mapping succeeds, the page has to be mapped R/O into
227  * the parent and the child. It must *not* get mapped writable after this call.
228  *
229  * Returns 0 if duplicating the mapping succeeded. Returns -EBUSY otherwise.
230  */
231 static inline int page_try_dup_anon_rmap(struct page *page, bool compound,
232 					 struct vm_area_struct *vma)
233 {
234 	VM_BUG_ON_PAGE(!PageAnon(page), page);
235 
236 	/*
237 	 * No need to check+clear for already shared pages, including KSM
238 	 * pages.
239 	 */
240 	if (!PageAnonExclusive(page))
241 		goto dup;
242 
243 	/*
244 	 * If this page may have been pinned by the parent process,
245 	 * don't allow to duplicate the mapping but instead require to e.g.,
246 	 * copy the page immediately for the child so that we'll always
247 	 * guarantee the pinned page won't be randomly replaced in the
248 	 * future on write faults.
249 	 */
250 	if (likely(!is_device_private_page(page) &&
251 	    unlikely(page_needs_cow_for_dma(vma, page))))
252 		return -EBUSY;
253 
254 	ClearPageAnonExclusive(page);
255 	/*
256 	 * It's okay to share the anon page between both processes, mapping
257 	 * the page R/O into both processes.
258 	 */
259 dup:
260 	__page_dup_rmap(page, compound);
261 	return 0;
262 }
263 
264 /**
265  * page_try_share_anon_rmap - try marking an exclusive anonymous page possibly
266  *			      shared to prepare for KSM or temporary unmapping
267  * @page: the exclusive anonymous page to try marking possibly shared
268  *
269  * The caller needs to hold the PT lock and has to have the page table entry
270  * cleared/invalidated.
271  *
272  * This is similar to page_try_dup_anon_rmap(), however, not used during fork()
273  * to duplicate a mapping, but instead to prepare for KSM or temporarily
274  * unmapping a page (swap, migration) via page_remove_rmap().
275  *
276  * Marking the page shared can only fail if the page may be pinned; device
277  * private pages cannot get pinned and consequently this function cannot fail.
278  *
279  * Returns 0 if marking the page possibly shared succeeded. Returns -EBUSY
280  * otherwise.
281  */
282 static inline int page_try_share_anon_rmap(struct page *page)
283 {
284 	VM_BUG_ON_PAGE(!PageAnon(page) || !PageAnonExclusive(page), page);
285 
286 	/* device private pages cannot get pinned via GUP. */
287 	if (unlikely(is_device_private_page(page))) {
288 		ClearPageAnonExclusive(page);
289 		return 0;
290 	}
291 
292 	/*
293 	 * We have to make sure that when we clear PageAnonExclusive, that
294 	 * the page is not pinned and that concurrent GUP-fast won't succeed in
295 	 * concurrently pinning the page.
296 	 *
297 	 * Conceptually, PageAnonExclusive clearing consists of:
298 	 * (A1) Clear PTE
299 	 * (A2) Check if the page is pinned; back off if so.
300 	 * (A3) Clear PageAnonExclusive
301 	 * (A4) Restore PTE (optional, but certainly not writable)
302 	 *
303 	 * When clearing PageAnonExclusive, we cannot possibly map the page
304 	 * writable again, because anon pages that may be shared must never
305 	 * be writable. So in any case, if the PTE was writable it cannot
306 	 * be writable anymore afterwards and there would be a PTE change. Only
307 	 * if the PTE wasn't writable, there might not be a PTE change.
308 	 *
309 	 * Conceptually, GUP-fast pinning of an anon page consists of:
310 	 * (B1) Read the PTE
311 	 * (B2) FOLL_WRITE: check if the PTE is not writable; back off if so.
312 	 * (B3) Pin the mapped page
313 	 * (B4) Check if the PTE changed by re-reading it; back off if so.
314 	 * (B5) If the original PTE is not writable, check if
315 	 *	PageAnonExclusive is not set; back off if so.
316 	 *
317 	 * If the PTE was writable, we only have to make sure that GUP-fast
318 	 * observes a PTE change and properly backs off.
319 	 *
320 	 * If the PTE was not writable, we have to make sure that GUP-fast either
321 	 * detects a (temporary) PTE change or that PageAnonExclusive is cleared
322 	 * and properly backs off.
323 	 *
324 	 * Consequently, when clearing PageAnonExclusive(), we have to make
325 	 * sure that (A1), (A2)/(A3) and (A4) happen in the right memory
326 	 * order. In GUP-fast pinning code, we have to make sure that (B3),(B4)
327 	 * and (B5) happen in the right memory order.
328 	 *
329 	 * We assume that there might not be a memory barrier after
330 	 * clearing/invalidating the PTE (A1) and before restoring the PTE (A4),
331 	 * so we use explicit ones here.
332 	 */
333 
334 	/* Paired with the memory barrier in try_grab_folio(). */
335 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
336 		smp_mb();
337 
338 	if (unlikely(page_maybe_dma_pinned(page)))
339 		return -EBUSY;
340 	ClearPageAnonExclusive(page);
341 
342 	/*
343 	 * This is conceptually a smp_wmb() paired with the smp_rmb() in
344 	 * gup_must_unshare().
345 	 */
346 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
347 		smp_mb__after_atomic();
348 	return 0;
349 }
350 
351 /*
352  * Called from mm/vmscan.c to handle paging out
353  */
354 int folio_referenced(struct folio *, int is_locked,
355 			struct mem_cgroup *memcg, unsigned long *vm_flags);
356 
357 void try_to_migrate(struct folio *folio, enum ttu_flags flags);
358 void try_to_unmap(struct folio *, enum ttu_flags flags);
359 
360 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
361 				unsigned long end, struct page **pages,
362 				void *arg);
363 
364 /* Avoid racy checks */
365 #define PVMW_SYNC		(1 << 0)
366 /* Look for migration entries rather than present PTEs */
367 #define PVMW_MIGRATION		(1 << 1)
368 
369 struct page_vma_mapped_walk {
370 	unsigned long pfn;
371 	unsigned long nr_pages;
372 	pgoff_t pgoff;
373 	struct vm_area_struct *vma;
374 	unsigned long address;
375 	pmd_t *pmd;
376 	pte_t *pte;
377 	spinlock_t *ptl;
378 	unsigned int flags;
379 };
380 
381 #define DEFINE_PAGE_VMA_WALK(name, _page, _vma, _address, _flags)	\
382 	struct page_vma_mapped_walk name = {				\
383 		.pfn = page_to_pfn(_page),				\
384 		.nr_pages = compound_nr(_page),				\
385 		.pgoff = page_to_pgoff(_page),				\
386 		.vma = _vma,						\
387 		.address = _address,					\
388 		.flags = _flags,					\
389 	}
390 
391 #define DEFINE_FOLIO_VMA_WALK(name, _folio, _vma, _address, _flags)	\
392 	struct page_vma_mapped_walk name = {				\
393 		.pfn = folio_pfn(_folio),				\
394 		.nr_pages = folio_nr_pages(_folio),			\
395 		.pgoff = folio_pgoff(_folio),				\
396 		.vma = _vma,						\
397 		.address = _address,					\
398 		.flags = _flags,					\
399 	}
400 
401 static inline void page_vma_mapped_walk_done(struct page_vma_mapped_walk *pvmw)
402 {
403 	/* HugeTLB pte is set to the relevant page table entry without pte_mapped. */
404 	if (pvmw->pte && !is_vm_hugetlb_page(pvmw->vma))
405 		pte_unmap(pvmw->pte);
406 	if (pvmw->ptl)
407 		spin_unlock(pvmw->ptl);
408 }
409 
410 bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw);
411 
412 /*
413  * Used by swapoff to help locate where page is expected in vma.
414  */
415 unsigned long page_address_in_vma(struct page *, struct vm_area_struct *);
416 
417 /*
418  * Cleans the PTEs of shared mappings.
419  * (and since clean PTEs should also be readonly, write protects them too)
420  *
421  * returns the number of cleaned PTEs.
422  */
423 int folio_mkclean(struct folio *);
424 
425 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
426 		      struct vm_area_struct *vma);
427 
428 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked);
429 
430 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma);
431 
432 /*
433  * rmap_walk_control: To control rmap traversing for specific needs
434  *
435  * arg: passed to rmap_one() and invalid_vma()
436  * try_lock: bail out if the rmap lock is contended
437  * contended: indicate the rmap traversal bailed out due to lock contention
438  * rmap_one: executed on each vma where page is mapped
439  * done: for checking traversing termination condition
440  * anon_lock: for getting anon_lock by optimized way rather than default
441  * invalid_vma: for skipping uninterested vma
442  */
443 struct rmap_walk_control {
444 	void *arg;
445 	bool try_lock;
446 	bool contended;
447 	/*
448 	 * Return false if page table scanning in rmap_walk should be stopped.
449 	 * Otherwise, return true.
450 	 */
451 	bool (*rmap_one)(struct folio *folio, struct vm_area_struct *vma,
452 					unsigned long addr, void *arg);
453 	int (*done)(struct folio *folio);
454 	struct anon_vma *(*anon_lock)(struct folio *folio,
455 				      struct rmap_walk_control *rwc);
456 	bool (*invalid_vma)(struct vm_area_struct *vma, void *arg);
457 };
458 
459 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc);
460 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc);
461 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
462 					  struct rmap_walk_control *rwc);
463 
464 #else	/* !CONFIG_MMU */
465 
466 #define anon_vma_init()		do {} while (0)
467 #define anon_vma_prepare(vma)	(0)
468 #define anon_vma_link(vma)	do {} while (0)
469 
470 static inline int folio_referenced(struct folio *folio, int is_locked,
471 				  struct mem_cgroup *memcg,
472 				  unsigned long *vm_flags)
473 {
474 	*vm_flags = 0;
475 	return 0;
476 }
477 
478 static inline void try_to_unmap(struct folio *folio, enum ttu_flags flags)
479 {
480 }
481 
482 static inline int folio_mkclean(struct folio *folio)
483 {
484 	return 0;
485 }
486 #endif	/* CONFIG_MMU */
487 
488 static inline int page_mkclean(struct page *page)
489 {
490 	return folio_mkclean(page_folio(page));
491 }
492 #endif	/* _LINUX_RMAP_H */
493