xref: /linux-6.15/include/linux/rmap.h (revision cfd6ed45)
1 #ifndef _LINUX_RMAP_H
2 #define _LINUX_RMAP_H
3 /*
4  * Declarations for Reverse Mapping functions in mm/rmap.c
5  */
6 
7 #include <linux/list.h>
8 #include <linux/slab.h>
9 #include <linux/mm.h>
10 #include <linux/rwsem.h>
11 #include <linux/memcontrol.h>
12 #include <linux/highmem.h>
13 
14 /*
15  * The anon_vma heads a list of private "related" vmas, to scan if
16  * an anonymous page pointing to this anon_vma needs to be unmapped:
17  * the vmas on the list will be related by forking, or by splitting.
18  *
19  * Since vmas come and go as they are split and merged (particularly
20  * in mprotect), the mapping field of an anonymous page cannot point
21  * directly to a vma: instead it points to an anon_vma, on whose list
22  * the related vmas can be easily linked or unlinked.
23  *
24  * After unlinking the last vma on the list, we must garbage collect
25  * the anon_vma object itself: we're guaranteed no page can be
26  * pointing to this anon_vma once its vma list is empty.
27  */
28 struct anon_vma {
29 	struct anon_vma *root;		/* Root of this anon_vma tree */
30 	struct rw_semaphore rwsem;	/* W: modification, R: walking the list */
31 	/*
32 	 * The refcount is taken on an anon_vma when there is no
33 	 * guarantee that the vma of page tables will exist for
34 	 * the duration of the operation. A caller that takes
35 	 * the reference is responsible for clearing up the
36 	 * anon_vma if they are the last user on release
37 	 */
38 	atomic_t refcount;
39 
40 	/*
41 	 * Count of child anon_vmas and VMAs which points to this anon_vma.
42 	 *
43 	 * This counter is used for making decision about reusing anon_vma
44 	 * instead of forking new one. See comments in function anon_vma_clone.
45 	 */
46 	unsigned degree;
47 
48 	struct anon_vma *parent;	/* Parent of this anon_vma */
49 
50 	/*
51 	 * NOTE: the LSB of the rb_root.rb_node is set by
52 	 * mm_take_all_locks() _after_ taking the above lock. So the
53 	 * rb_root must only be read/written after taking the above lock
54 	 * to be sure to see a valid next pointer. The LSB bit itself
55 	 * is serialized by a system wide lock only visible to
56 	 * mm_take_all_locks() (mm_all_locks_mutex).
57 	 */
58 	struct rb_root rb_root;	/* Interval tree of private "related" vmas */
59 };
60 
61 /*
62  * The copy-on-write semantics of fork mean that an anon_vma
63  * can become associated with multiple processes. Furthermore,
64  * each child process will have its own anon_vma, where new
65  * pages for that process are instantiated.
66  *
67  * This structure allows us to find the anon_vmas associated
68  * with a VMA, or the VMAs associated with an anon_vma.
69  * The "same_vma" list contains the anon_vma_chains linking
70  * all the anon_vmas associated with this VMA.
71  * The "rb" field indexes on an interval tree the anon_vma_chains
72  * which link all the VMAs associated with this anon_vma.
73  */
74 struct anon_vma_chain {
75 	struct vm_area_struct *vma;
76 	struct anon_vma *anon_vma;
77 	struct list_head same_vma;   /* locked by mmap_sem & page_table_lock */
78 	struct rb_node rb;			/* locked by anon_vma->rwsem */
79 	unsigned long rb_subtree_last;
80 #ifdef CONFIG_DEBUG_VM_RB
81 	unsigned long cached_vma_start, cached_vma_last;
82 #endif
83 };
84 
85 enum ttu_flags {
86 	TTU_UNMAP = 1,			/* unmap mode */
87 	TTU_MIGRATION = 2,		/* migration mode */
88 	TTU_MUNLOCK = 4,		/* munlock mode */
89 	TTU_LZFREE = 8,			/* lazy free mode */
90 	TTU_SPLIT_HUGE_PMD = 16,	/* split huge PMD if any */
91 
92 	TTU_IGNORE_MLOCK = (1 << 8),	/* ignore mlock */
93 	TTU_IGNORE_ACCESS = (1 << 9),	/* don't age */
94 	TTU_IGNORE_HWPOISON = (1 << 10),/* corrupted page is recoverable */
95 	TTU_BATCH_FLUSH = (1 << 11),	/* Batch TLB flushes where possible
96 					 * and caller guarantees they will
97 					 * do a final flush if necessary */
98 	TTU_RMAP_LOCKED = (1 << 12)	/* do not grab rmap lock:
99 					 * caller holds it */
100 };
101 
102 #ifdef CONFIG_MMU
103 static inline void get_anon_vma(struct anon_vma *anon_vma)
104 {
105 	atomic_inc(&anon_vma->refcount);
106 }
107 
108 void __put_anon_vma(struct anon_vma *anon_vma);
109 
110 static inline void put_anon_vma(struct anon_vma *anon_vma)
111 {
112 	if (atomic_dec_and_test(&anon_vma->refcount))
113 		__put_anon_vma(anon_vma);
114 }
115 
116 static inline void anon_vma_lock_write(struct anon_vma *anon_vma)
117 {
118 	down_write(&anon_vma->root->rwsem);
119 }
120 
121 static inline void anon_vma_unlock_write(struct anon_vma *anon_vma)
122 {
123 	up_write(&anon_vma->root->rwsem);
124 }
125 
126 static inline void anon_vma_lock_read(struct anon_vma *anon_vma)
127 {
128 	down_read(&anon_vma->root->rwsem);
129 }
130 
131 static inline void anon_vma_unlock_read(struct anon_vma *anon_vma)
132 {
133 	up_read(&anon_vma->root->rwsem);
134 }
135 
136 
137 /*
138  * anon_vma helper functions.
139  */
140 void anon_vma_init(void);	/* create anon_vma_cachep */
141 int  __anon_vma_prepare(struct vm_area_struct *);
142 void unlink_anon_vmas(struct vm_area_struct *);
143 int anon_vma_clone(struct vm_area_struct *, struct vm_area_struct *);
144 int anon_vma_fork(struct vm_area_struct *, struct vm_area_struct *);
145 
146 static inline int anon_vma_prepare(struct vm_area_struct *vma)
147 {
148 	if (likely(vma->anon_vma))
149 		return 0;
150 
151 	return __anon_vma_prepare(vma);
152 }
153 
154 static inline void anon_vma_merge(struct vm_area_struct *vma,
155 				  struct vm_area_struct *next)
156 {
157 	VM_BUG_ON_VMA(vma->anon_vma != next->anon_vma, vma);
158 	unlink_anon_vmas(next);
159 }
160 
161 struct anon_vma *page_get_anon_vma(struct page *page);
162 
163 /* bitflags for do_page_add_anon_rmap() */
164 #define RMAP_EXCLUSIVE 0x01
165 #define RMAP_COMPOUND 0x02
166 
167 /*
168  * rmap interfaces called when adding or removing pte of page
169  */
170 void page_move_anon_rmap(struct page *, struct vm_area_struct *);
171 void page_add_anon_rmap(struct page *, struct vm_area_struct *,
172 		unsigned long, bool);
173 void do_page_add_anon_rmap(struct page *, struct vm_area_struct *,
174 			   unsigned long, int);
175 void page_add_new_anon_rmap(struct page *, struct vm_area_struct *,
176 		unsigned long, bool);
177 void page_add_file_rmap(struct page *, bool);
178 void page_remove_rmap(struct page *, bool);
179 
180 void hugepage_add_anon_rmap(struct page *, struct vm_area_struct *,
181 			    unsigned long);
182 void hugepage_add_new_anon_rmap(struct page *, struct vm_area_struct *,
183 				unsigned long);
184 
185 static inline void page_dup_rmap(struct page *page, bool compound)
186 {
187 	atomic_inc(compound ? compound_mapcount_ptr(page) : &page->_mapcount);
188 }
189 
190 /*
191  * Called from mm/vmscan.c to handle paging out
192  */
193 int page_referenced(struct page *, int is_locked,
194 			struct mem_cgroup *memcg, unsigned long *vm_flags);
195 
196 #define TTU_ACTION(x) ((x) & TTU_ACTION_MASK)
197 
198 int try_to_unmap(struct page *, enum ttu_flags flags);
199 
200 /* Avoid racy checks */
201 #define PVMW_SYNC		(1 << 0)
202 /* Look for migarion entries rather than present PTEs */
203 #define PVMW_MIGRATION		(1 << 1)
204 
205 struct page_vma_mapped_walk {
206 	struct page *page;
207 	struct vm_area_struct *vma;
208 	unsigned long address;
209 	pmd_t *pmd;
210 	pte_t *pte;
211 	spinlock_t *ptl;
212 	unsigned int flags;
213 };
214 
215 static inline void page_vma_mapped_walk_done(struct page_vma_mapped_walk *pvmw)
216 {
217 	if (pvmw->pte)
218 		pte_unmap(pvmw->pte);
219 	if (pvmw->ptl)
220 		spin_unlock(pvmw->ptl);
221 }
222 
223 bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw);
224 
225 /*
226  * Used by swapoff to help locate where page is expected in vma.
227  */
228 unsigned long page_address_in_vma(struct page *, struct vm_area_struct *);
229 
230 /*
231  * Cleans the PTEs of shared mappings.
232  * (and since clean PTEs should also be readonly, write protects them too)
233  *
234  * returns the number of cleaned PTEs.
235  */
236 int page_mkclean(struct page *);
237 
238 /*
239  * called in munlock()/munmap() path to check for other vmas holding
240  * the page mlocked.
241  */
242 int try_to_munlock(struct page *);
243 
244 void remove_migration_ptes(struct page *old, struct page *new, bool locked);
245 
246 /*
247  * Called by memory-failure.c to kill processes.
248  */
249 struct anon_vma *page_lock_anon_vma_read(struct page *page);
250 void page_unlock_anon_vma_read(struct anon_vma *anon_vma);
251 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma);
252 
253 /*
254  * rmap_walk_control: To control rmap traversing for specific needs
255  *
256  * arg: passed to rmap_one() and invalid_vma()
257  * rmap_one: executed on each vma where page is mapped
258  * done: for checking traversing termination condition
259  * anon_lock: for getting anon_lock by optimized way rather than default
260  * invalid_vma: for skipping uninterested vma
261  */
262 struct rmap_walk_control {
263 	void *arg;
264 	int (*rmap_one)(struct page *page, struct vm_area_struct *vma,
265 					unsigned long addr, void *arg);
266 	int (*done)(struct page *page);
267 	struct anon_vma *(*anon_lock)(struct page *page);
268 	bool (*invalid_vma)(struct vm_area_struct *vma, void *arg);
269 };
270 
271 int rmap_walk(struct page *page, struct rmap_walk_control *rwc);
272 int rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc);
273 
274 #else	/* !CONFIG_MMU */
275 
276 #define anon_vma_init()		do {} while (0)
277 #define anon_vma_prepare(vma)	(0)
278 #define anon_vma_link(vma)	do {} while (0)
279 
280 static inline int page_referenced(struct page *page, int is_locked,
281 				  struct mem_cgroup *memcg,
282 				  unsigned long *vm_flags)
283 {
284 	*vm_flags = 0;
285 	return 0;
286 }
287 
288 #define try_to_unmap(page, refs) SWAP_FAIL
289 
290 static inline int page_mkclean(struct page *page)
291 {
292 	return 0;
293 }
294 
295 
296 #endif	/* CONFIG_MMU */
297 
298 /*
299  * Return values of try_to_unmap
300  */
301 #define SWAP_SUCCESS	0
302 #define SWAP_AGAIN	1
303 #define SWAP_FAIL	2
304 #define SWAP_MLOCK	3
305 #define SWAP_LZFREE	4
306 
307 #endif	/* _LINUX_RMAP_H */
308