1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_RMAP_H 3 #define _LINUX_RMAP_H 4 /* 5 * Declarations for Reverse Mapping functions in mm/rmap.c 6 */ 7 8 #include <linux/list.h> 9 #include <linux/slab.h> 10 #include <linux/mm.h> 11 #include <linux/rwsem.h> 12 #include <linux/memcontrol.h> 13 #include <linux/highmem.h> 14 #include <linux/pagemap.h> 15 #include <linux/memremap.h> 16 17 /* 18 * The anon_vma heads a list of private "related" vmas, to scan if 19 * an anonymous page pointing to this anon_vma needs to be unmapped: 20 * the vmas on the list will be related by forking, or by splitting. 21 * 22 * Since vmas come and go as they are split and merged (particularly 23 * in mprotect), the mapping field of an anonymous page cannot point 24 * directly to a vma: instead it points to an anon_vma, on whose list 25 * the related vmas can be easily linked or unlinked. 26 * 27 * After unlinking the last vma on the list, we must garbage collect 28 * the anon_vma object itself: we're guaranteed no page can be 29 * pointing to this anon_vma once its vma list is empty. 30 */ 31 struct anon_vma { 32 struct anon_vma *root; /* Root of this anon_vma tree */ 33 struct rw_semaphore rwsem; /* W: modification, R: walking the list */ 34 /* 35 * The refcount is taken on an anon_vma when there is no 36 * guarantee that the vma of page tables will exist for 37 * the duration of the operation. A caller that takes 38 * the reference is responsible for clearing up the 39 * anon_vma if they are the last user on release 40 */ 41 atomic_t refcount; 42 43 /* 44 * Count of child anon_vmas. Equals to the count of all anon_vmas that 45 * have ->parent pointing to this one, including itself. 46 * 47 * This counter is used for making decision about reusing anon_vma 48 * instead of forking new one. See comments in function anon_vma_clone. 49 */ 50 unsigned long num_children; 51 /* Count of VMAs whose ->anon_vma pointer points to this object. */ 52 unsigned long num_active_vmas; 53 54 struct anon_vma *parent; /* Parent of this anon_vma */ 55 56 /* 57 * NOTE: the LSB of the rb_root.rb_node is set by 58 * mm_take_all_locks() _after_ taking the above lock. So the 59 * rb_root must only be read/written after taking the above lock 60 * to be sure to see a valid next pointer. The LSB bit itself 61 * is serialized by a system wide lock only visible to 62 * mm_take_all_locks() (mm_all_locks_mutex). 63 */ 64 65 /* Interval tree of private "related" vmas */ 66 struct rb_root_cached rb_root; 67 }; 68 69 /* 70 * The copy-on-write semantics of fork mean that an anon_vma 71 * can become associated with multiple processes. Furthermore, 72 * each child process will have its own anon_vma, where new 73 * pages for that process are instantiated. 74 * 75 * This structure allows us to find the anon_vmas associated 76 * with a VMA, or the VMAs associated with an anon_vma. 77 * The "same_vma" list contains the anon_vma_chains linking 78 * all the anon_vmas associated with this VMA. 79 * The "rb" field indexes on an interval tree the anon_vma_chains 80 * which link all the VMAs associated with this anon_vma. 81 */ 82 struct anon_vma_chain { 83 struct vm_area_struct *vma; 84 struct anon_vma *anon_vma; 85 struct list_head same_vma; /* locked by mmap_lock & page_table_lock */ 86 struct rb_node rb; /* locked by anon_vma->rwsem */ 87 unsigned long rb_subtree_last; 88 #ifdef CONFIG_DEBUG_VM_RB 89 unsigned long cached_vma_start, cached_vma_last; 90 #endif 91 }; 92 93 enum ttu_flags { 94 TTU_SPLIT_HUGE_PMD = 0x4, /* split huge PMD if any */ 95 TTU_IGNORE_MLOCK = 0x8, /* ignore mlock */ 96 TTU_SYNC = 0x10, /* avoid racy checks with PVMW_SYNC */ 97 TTU_HWPOISON = 0x20, /* do convert pte to hwpoison entry */ 98 TTU_BATCH_FLUSH = 0x40, /* Batch TLB flushes where possible 99 * and caller guarantees they will 100 * do a final flush if necessary */ 101 TTU_RMAP_LOCKED = 0x80, /* do not grab rmap lock: 102 * caller holds it */ 103 }; 104 105 #ifdef CONFIG_MMU 106 static inline void get_anon_vma(struct anon_vma *anon_vma) 107 { 108 atomic_inc(&anon_vma->refcount); 109 } 110 111 void __put_anon_vma(struct anon_vma *anon_vma); 112 113 static inline void put_anon_vma(struct anon_vma *anon_vma) 114 { 115 if (atomic_dec_and_test(&anon_vma->refcount)) 116 __put_anon_vma(anon_vma); 117 } 118 119 static inline void anon_vma_lock_write(struct anon_vma *anon_vma) 120 { 121 down_write(&anon_vma->root->rwsem); 122 } 123 124 static inline int anon_vma_trylock_write(struct anon_vma *anon_vma) 125 { 126 return down_write_trylock(&anon_vma->root->rwsem); 127 } 128 129 static inline void anon_vma_unlock_write(struct anon_vma *anon_vma) 130 { 131 up_write(&anon_vma->root->rwsem); 132 } 133 134 static inline void anon_vma_lock_read(struct anon_vma *anon_vma) 135 { 136 down_read(&anon_vma->root->rwsem); 137 } 138 139 static inline int anon_vma_trylock_read(struct anon_vma *anon_vma) 140 { 141 return down_read_trylock(&anon_vma->root->rwsem); 142 } 143 144 static inline void anon_vma_unlock_read(struct anon_vma *anon_vma) 145 { 146 up_read(&anon_vma->root->rwsem); 147 } 148 149 150 /* 151 * anon_vma helper functions. 152 */ 153 void anon_vma_init(void); /* create anon_vma_cachep */ 154 int __anon_vma_prepare(struct vm_area_struct *); 155 void unlink_anon_vmas(struct vm_area_struct *); 156 int anon_vma_clone(struct vm_area_struct *, struct vm_area_struct *); 157 int anon_vma_fork(struct vm_area_struct *, struct vm_area_struct *); 158 159 static inline int anon_vma_prepare(struct vm_area_struct *vma) 160 { 161 if (likely(vma->anon_vma)) 162 return 0; 163 164 return __anon_vma_prepare(vma); 165 } 166 167 static inline void anon_vma_merge(struct vm_area_struct *vma, 168 struct vm_area_struct *next) 169 { 170 VM_BUG_ON_VMA(vma->anon_vma != next->anon_vma, vma); 171 unlink_anon_vmas(next); 172 } 173 174 struct anon_vma *folio_get_anon_vma(struct folio *folio); 175 176 /* RMAP flags, currently only relevant for some anon rmap operations. */ 177 typedef int __bitwise rmap_t; 178 179 /* 180 * No special request: A mapped anonymous (sub)page is possibly shared between 181 * processes. 182 */ 183 #define RMAP_NONE ((__force rmap_t)0) 184 185 /* The anonymous (sub)page is exclusive to a single process. */ 186 #define RMAP_EXCLUSIVE ((__force rmap_t)BIT(0)) 187 188 /* 189 * Internally, we're using an enum to specify the granularity. We make the 190 * compiler emit specialized code for each granularity. 191 */ 192 enum rmap_level { 193 RMAP_LEVEL_PTE = 0, 194 RMAP_LEVEL_PMD, 195 }; 196 197 static inline void __folio_rmap_sanity_checks(struct folio *folio, 198 struct page *page, int nr_pages, enum rmap_level level) 199 { 200 /* hugetlb folios are handled separately. */ 201 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); 202 203 /* 204 * TODO: we get driver-allocated folios that have nothing to do with 205 * the rmap using vm_insert_page(); therefore, we cannot assume that 206 * folio_test_large_rmappable() holds for large folios. We should 207 * handle any desired mapcount+stats accounting for these folios in 208 * VM_MIXEDMAP VMAs separately, and then sanity-check here that 209 * we really only get rmappable folios. 210 */ 211 212 VM_WARN_ON_ONCE(nr_pages <= 0); 213 VM_WARN_ON_FOLIO(page_folio(page) != folio, folio); 214 VM_WARN_ON_FOLIO(page_folio(page + nr_pages - 1) != folio, folio); 215 216 switch (level) { 217 case RMAP_LEVEL_PTE: 218 break; 219 case RMAP_LEVEL_PMD: 220 /* 221 * We don't support folios larger than a single PMD yet. So 222 * when RMAP_LEVEL_PMD is set, we assume that we are creating 223 * a single "entire" mapping of the folio. 224 */ 225 VM_WARN_ON_FOLIO(folio_nr_pages(folio) != HPAGE_PMD_NR, folio); 226 VM_WARN_ON_FOLIO(nr_pages != HPAGE_PMD_NR, folio); 227 break; 228 default: 229 VM_WARN_ON_ONCE(true); 230 } 231 } 232 233 /* 234 * rmap interfaces called when adding or removing pte of page 235 */ 236 void folio_move_anon_rmap(struct folio *, struct vm_area_struct *); 237 void folio_add_anon_rmap_ptes(struct folio *, struct page *, int nr_pages, 238 struct vm_area_struct *, unsigned long address, rmap_t flags); 239 #define folio_add_anon_rmap_pte(folio, page, vma, address, flags) \ 240 folio_add_anon_rmap_ptes(folio, page, 1, vma, address, flags) 241 void folio_add_anon_rmap_pmd(struct folio *, struct page *, 242 struct vm_area_struct *, unsigned long address, rmap_t flags); 243 void folio_add_new_anon_rmap(struct folio *, struct vm_area_struct *, 244 unsigned long address); 245 void folio_add_file_rmap_ptes(struct folio *, struct page *, int nr_pages, 246 struct vm_area_struct *); 247 #define folio_add_file_rmap_pte(folio, page, vma) \ 248 folio_add_file_rmap_ptes(folio, page, 1, vma) 249 void folio_add_file_rmap_pmd(struct folio *, struct page *, 250 struct vm_area_struct *); 251 void folio_remove_rmap_ptes(struct folio *, struct page *, int nr_pages, 252 struct vm_area_struct *); 253 #define folio_remove_rmap_pte(folio, page, vma) \ 254 folio_remove_rmap_ptes(folio, page, 1, vma) 255 void folio_remove_rmap_pmd(struct folio *, struct page *, 256 struct vm_area_struct *); 257 258 void hugetlb_add_anon_rmap(struct folio *, struct vm_area_struct *, 259 unsigned long address, rmap_t flags); 260 void hugetlb_add_new_anon_rmap(struct folio *, struct vm_area_struct *, 261 unsigned long address); 262 263 /* See folio_try_dup_anon_rmap_*() */ 264 static inline int hugetlb_try_dup_anon_rmap(struct folio *folio, 265 struct vm_area_struct *vma) 266 { 267 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 268 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 269 270 if (PageAnonExclusive(&folio->page)) { 271 if (unlikely(folio_needs_cow_for_dma(vma, folio))) 272 return -EBUSY; 273 ClearPageAnonExclusive(&folio->page); 274 } 275 atomic_inc(&folio->_entire_mapcount); 276 return 0; 277 } 278 279 /* See folio_try_share_anon_rmap_*() */ 280 static inline int hugetlb_try_share_anon_rmap(struct folio *folio) 281 { 282 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 283 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 284 VM_WARN_ON_FOLIO(!PageAnonExclusive(&folio->page), folio); 285 286 /* Paired with the memory barrier in try_grab_folio(). */ 287 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP)) 288 smp_mb(); 289 290 if (unlikely(folio_maybe_dma_pinned(folio))) 291 return -EBUSY; 292 ClearPageAnonExclusive(&folio->page); 293 294 /* 295 * This is conceptually a smp_wmb() paired with the smp_rmb() in 296 * gup_must_unshare(). 297 */ 298 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP)) 299 smp_mb__after_atomic(); 300 return 0; 301 } 302 303 static inline void hugetlb_add_file_rmap(struct folio *folio) 304 { 305 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 306 VM_WARN_ON_FOLIO(folio_test_anon(folio), folio); 307 308 atomic_inc(&folio->_entire_mapcount); 309 } 310 311 static inline void hugetlb_remove_rmap(struct folio *folio) 312 { 313 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 314 315 atomic_dec(&folio->_entire_mapcount); 316 } 317 318 static __always_inline void __folio_dup_file_rmap(struct folio *folio, 319 struct page *page, int nr_pages, enum rmap_level level) 320 { 321 __folio_rmap_sanity_checks(folio, page, nr_pages, level); 322 323 switch (level) { 324 case RMAP_LEVEL_PTE: 325 do { 326 atomic_inc(&page->_mapcount); 327 } while (page++, --nr_pages > 0); 328 break; 329 case RMAP_LEVEL_PMD: 330 atomic_inc(&folio->_entire_mapcount); 331 break; 332 } 333 } 334 335 /** 336 * folio_dup_file_rmap_ptes - duplicate PTE mappings of a page range of a folio 337 * @folio: The folio to duplicate the mappings of 338 * @page: The first page to duplicate the mappings of 339 * @nr_pages: The number of pages of which the mapping will be duplicated 340 * 341 * The page range of the folio is defined by [page, page + nr_pages) 342 * 343 * The caller needs to hold the page table lock. 344 */ 345 static inline void folio_dup_file_rmap_ptes(struct folio *folio, 346 struct page *page, int nr_pages) 347 { 348 __folio_dup_file_rmap(folio, page, nr_pages, RMAP_LEVEL_PTE); 349 } 350 #define folio_dup_file_rmap_pte(folio, page) \ 351 folio_dup_file_rmap_ptes(folio, page, 1) 352 353 /** 354 * folio_dup_file_rmap_pmd - duplicate a PMD mapping of a page range of a folio 355 * @folio: The folio to duplicate the mapping of 356 * @page: The first page to duplicate the mapping of 357 * 358 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) 359 * 360 * The caller needs to hold the page table lock. 361 */ 362 static inline void folio_dup_file_rmap_pmd(struct folio *folio, 363 struct page *page) 364 { 365 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 366 __folio_dup_file_rmap(folio, page, HPAGE_PMD_NR, RMAP_LEVEL_PTE); 367 #else 368 WARN_ON_ONCE(true); 369 #endif 370 } 371 372 static __always_inline int __folio_try_dup_anon_rmap(struct folio *folio, 373 struct page *page, int nr_pages, struct vm_area_struct *src_vma, 374 enum rmap_level level) 375 { 376 bool maybe_pinned; 377 int i; 378 379 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 380 __folio_rmap_sanity_checks(folio, page, nr_pages, level); 381 382 /* 383 * If this folio may have been pinned by the parent process, 384 * don't allow to duplicate the mappings but instead require to e.g., 385 * copy the subpage immediately for the child so that we'll always 386 * guarantee the pinned folio won't be randomly replaced in the 387 * future on write faults. 388 */ 389 maybe_pinned = likely(!folio_is_device_private(folio)) && 390 unlikely(folio_needs_cow_for_dma(src_vma, folio)); 391 392 /* 393 * No need to check+clear for already shared PTEs/PMDs of the 394 * folio. But if any page is PageAnonExclusive, we must fallback to 395 * copying if the folio maybe pinned. 396 */ 397 switch (level) { 398 case RMAP_LEVEL_PTE: 399 if (unlikely(maybe_pinned)) { 400 for (i = 0; i < nr_pages; i++) 401 if (PageAnonExclusive(page + i)) 402 return -EBUSY; 403 } 404 do { 405 if (PageAnonExclusive(page)) 406 ClearPageAnonExclusive(page); 407 atomic_inc(&page->_mapcount); 408 } while (page++, --nr_pages > 0); 409 break; 410 case RMAP_LEVEL_PMD: 411 if (PageAnonExclusive(page)) { 412 if (unlikely(maybe_pinned)) 413 return -EBUSY; 414 ClearPageAnonExclusive(page); 415 } 416 atomic_inc(&folio->_entire_mapcount); 417 break; 418 } 419 return 0; 420 } 421 422 /** 423 * folio_try_dup_anon_rmap_ptes - try duplicating PTE mappings of a page range 424 * of a folio 425 * @folio: The folio to duplicate the mappings of 426 * @page: The first page to duplicate the mappings of 427 * @nr_pages: The number of pages of which the mapping will be duplicated 428 * @src_vma: The vm area from which the mappings are duplicated 429 * 430 * The page range of the folio is defined by [page, page + nr_pages) 431 * 432 * The caller needs to hold the page table lock and the 433 * vma->vma_mm->write_protect_seq. 434 * 435 * Duplicating the mappings can only fail if the folio may be pinned; device 436 * private folios cannot get pinned and consequently this function cannot fail 437 * for them. 438 * 439 * If duplicating the mappings succeeded, the duplicated PTEs have to be R/O in 440 * the parent and the child. They must *not* be writable after this call 441 * succeeded. 442 * 443 * Returns 0 if duplicating the mappings succeeded. Returns -EBUSY otherwise. 444 */ 445 static inline int folio_try_dup_anon_rmap_ptes(struct folio *folio, 446 struct page *page, int nr_pages, struct vm_area_struct *src_vma) 447 { 448 return __folio_try_dup_anon_rmap(folio, page, nr_pages, src_vma, 449 RMAP_LEVEL_PTE); 450 } 451 #define folio_try_dup_anon_rmap_pte(folio, page, vma) \ 452 folio_try_dup_anon_rmap_ptes(folio, page, 1, vma) 453 454 /** 455 * folio_try_dup_anon_rmap_pmd - try duplicating a PMD mapping of a page range 456 * of a folio 457 * @folio: The folio to duplicate the mapping of 458 * @page: The first page to duplicate the mapping of 459 * @src_vma: The vm area from which the mapping is duplicated 460 * 461 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) 462 * 463 * The caller needs to hold the page table lock and the 464 * vma->vma_mm->write_protect_seq. 465 * 466 * Duplicating the mapping can only fail if the folio may be pinned; device 467 * private folios cannot get pinned and consequently this function cannot fail 468 * for them. 469 * 470 * If duplicating the mapping succeeds, the duplicated PMD has to be R/O in 471 * the parent and the child. They must *not* be writable after this call 472 * succeeded. 473 * 474 * Returns 0 if duplicating the mapping succeeded. Returns -EBUSY otherwise. 475 */ 476 static inline int folio_try_dup_anon_rmap_pmd(struct folio *folio, 477 struct page *page, struct vm_area_struct *src_vma) 478 { 479 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 480 return __folio_try_dup_anon_rmap(folio, page, HPAGE_PMD_NR, src_vma, 481 RMAP_LEVEL_PMD); 482 #else 483 WARN_ON_ONCE(true); 484 return -EBUSY; 485 #endif 486 } 487 488 static __always_inline int __folio_try_share_anon_rmap(struct folio *folio, 489 struct page *page, int nr_pages, enum rmap_level level) 490 { 491 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 492 VM_WARN_ON_FOLIO(!PageAnonExclusive(page), folio); 493 __folio_rmap_sanity_checks(folio, page, nr_pages, level); 494 495 /* device private folios cannot get pinned via GUP. */ 496 if (unlikely(folio_is_device_private(folio))) { 497 ClearPageAnonExclusive(page); 498 return 0; 499 } 500 501 /* 502 * We have to make sure that when we clear PageAnonExclusive, that 503 * the page is not pinned and that concurrent GUP-fast won't succeed in 504 * concurrently pinning the page. 505 * 506 * Conceptually, PageAnonExclusive clearing consists of: 507 * (A1) Clear PTE 508 * (A2) Check if the page is pinned; back off if so. 509 * (A3) Clear PageAnonExclusive 510 * (A4) Restore PTE (optional, but certainly not writable) 511 * 512 * When clearing PageAnonExclusive, we cannot possibly map the page 513 * writable again, because anon pages that may be shared must never 514 * be writable. So in any case, if the PTE was writable it cannot 515 * be writable anymore afterwards and there would be a PTE change. Only 516 * if the PTE wasn't writable, there might not be a PTE change. 517 * 518 * Conceptually, GUP-fast pinning of an anon page consists of: 519 * (B1) Read the PTE 520 * (B2) FOLL_WRITE: check if the PTE is not writable; back off if so. 521 * (B3) Pin the mapped page 522 * (B4) Check if the PTE changed by re-reading it; back off if so. 523 * (B5) If the original PTE is not writable, check if 524 * PageAnonExclusive is not set; back off if so. 525 * 526 * If the PTE was writable, we only have to make sure that GUP-fast 527 * observes a PTE change and properly backs off. 528 * 529 * If the PTE was not writable, we have to make sure that GUP-fast either 530 * detects a (temporary) PTE change or that PageAnonExclusive is cleared 531 * and properly backs off. 532 * 533 * Consequently, when clearing PageAnonExclusive(), we have to make 534 * sure that (A1), (A2)/(A3) and (A4) happen in the right memory 535 * order. In GUP-fast pinning code, we have to make sure that (B3),(B4) 536 * and (B5) happen in the right memory order. 537 * 538 * We assume that there might not be a memory barrier after 539 * clearing/invalidating the PTE (A1) and before restoring the PTE (A4), 540 * so we use explicit ones here. 541 */ 542 543 /* Paired with the memory barrier in try_grab_folio(). */ 544 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP)) 545 smp_mb(); 546 547 if (unlikely(folio_maybe_dma_pinned(folio))) 548 return -EBUSY; 549 ClearPageAnonExclusive(page); 550 551 /* 552 * This is conceptually a smp_wmb() paired with the smp_rmb() in 553 * gup_must_unshare(). 554 */ 555 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP)) 556 smp_mb__after_atomic(); 557 return 0; 558 } 559 560 /** 561 * folio_try_share_anon_rmap_pte - try marking an exclusive anonymous page 562 * mapped by a PTE possibly shared to prepare 563 * for KSM or temporary unmapping 564 * @folio: The folio to share a mapping of 565 * @page: The mapped exclusive page 566 * 567 * The caller needs to hold the page table lock and has to have the page table 568 * entries cleared/invalidated. 569 * 570 * This is similar to folio_try_dup_anon_rmap_pte(), however, not used during 571 * fork() to duplicate mappings, but instead to prepare for KSM or temporarily 572 * unmapping parts of a folio (swap, migration) via folio_remove_rmap_pte(). 573 * 574 * Marking the mapped page shared can only fail if the folio maybe pinned; 575 * device private folios cannot get pinned and consequently this function cannot 576 * fail. 577 * 578 * Returns 0 if marking the mapped page possibly shared succeeded. Returns 579 * -EBUSY otherwise. 580 */ 581 static inline int folio_try_share_anon_rmap_pte(struct folio *folio, 582 struct page *page) 583 { 584 return __folio_try_share_anon_rmap(folio, page, 1, RMAP_LEVEL_PTE); 585 } 586 587 /** 588 * folio_try_share_anon_rmap_pmd - try marking an exclusive anonymous page 589 * range mapped by a PMD possibly shared to 590 * prepare for temporary unmapping 591 * @folio: The folio to share the mapping of 592 * @page: The first page to share the mapping of 593 * 594 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) 595 * 596 * The caller needs to hold the page table lock and has to have the page table 597 * entries cleared/invalidated. 598 * 599 * This is similar to folio_try_dup_anon_rmap_pmd(), however, not used during 600 * fork() to duplicate a mapping, but instead to prepare for temporarily 601 * unmapping parts of a folio (swap, migration) via folio_remove_rmap_pmd(). 602 * 603 * Marking the mapped pages shared can only fail if the folio maybe pinned; 604 * device private folios cannot get pinned and consequently this function cannot 605 * fail. 606 * 607 * Returns 0 if marking the mapped pages possibly shared succeeded. Returns 608 * -EBUSY otherwise. 609 */ 610 static inline int folio_try_share_anon_rmap_pmd(struct folio *folio, 611 struct page *page) 612 { 613 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 614 return __folio_try_share_anon_rmap(folio, page, HPAGE_PMD_NR, 615 RMAP_LEVEL_PMD); 616 #else 617 WARN_ON_ONCE(true); 618 return -EBUSY; 619 #endif 620 } 621 622 /* 623 * Called from mm/vmscan.c to handle paging out 624 */ 625 int folio_referenced(struct folio *, int is_locked, 626 struct mem_cgroup *memcg, unsigned long *vm_flags); 627 628 void try_to_migrate(struct folio *folio, enum ttu_flags flags); 629 void try_to_unmap(struct folio *, enum ttu_flags flags); 630 631 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, 632 unsigned long end, struct page **pages, 633 void *arg); 634 635 /* Avoid racy checks */ 636 #define PVMW_SYNC (1 << 0) 637 /* Look for migration entries rather than present PTEs */ 638 #define PVMW_MIGRATION (1 << 1) 639 640 struct page_vma_mapped_walk { 641 unsigned long pfn; 642 unsigned long nr_pages; 643 pgoff_t pgoff; 644 struct vm_area_struct *vma; 645 unsigned long address; 646 pmd_t *pmd; 647 pte_t *pte; 648 spinlock_t *ptl; 649 unsigned int flags; 650 }; 651 652 #define DEFINE_PAGE_VMA_WALK(name, _page, _vma, _address, _flags) \ 653 struct page_vma_mapped_walk name = { \ 654 .pfn = page_to_pfn(_page), \ 655 .nr_pages = compound_nr(_page), \ 656 .pgoff = page_to_pgoff(_page), \ 657 .vma = _vma, \ 658 .address = _address, \ 659 .flags = _flags, \ 660 } 661 662 #define DEFINE_FOLIO_VMA_WALK(name, _folio, _vma, _address, _flags) \ 663 struct page_vma_mapped_walk name = { \ 664 .pfn = folio_pfn(_folio), \ 665 .nr_pages = folio_nr_pages(_folio), \ 666 .pgoff = folio_pgoff(_folio), \ 667 .vma = _vma, \ 668 .address = _address, \ 669 .flags = _flags, \ 670 } 671 672 static inline void page_vma_mapped_walk_done(struct page_vma_mapped_walk *pvmw) 673 { 674 /* HugeTLB pte is set to the relevant page table entry without pte_mapped. */ 675 if (pvmw->pte && !is_vm_hugetlb_page(pvmw->vma)) 676 pte_unmap(pvmw->pte); 677 if (pvmw->ptl) 678 spin_unlock(pvmw->ptl); 679 } 680 681 bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw); 682 683 /* 684 * Used by swapoff to help locate where page is expected in vma. 685 */ 686 unsigned long page_address_in_vma(struct page *, struct vm_area_struct *); 687 688 /* 689 * Cleans the PTEs of shared mappings. 690 * (and since clean PTEs should also be readonly, write protects them too) 691 * 692 * returns the number of cleaned PTEs. 693 */ 694 int folio_mkclean(struct folio *); 695 696 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, 697 struct vm_area_struct *vma); 698 699 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked); 700 701 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma); 702 703 /* 704 * rmap_walk_control: To control rmap traversing for specific needs 705 * 706 * arg: passed to rmap_one() and invalid_vma() 707 * try_lock: bail out if the rmap lock is contended 708 * contended: indicate the rmap traversal bailed out due to lock contention 709 * rmap_one: executed on each vma where page is mapped 710 * done: for checking traversing termination condition 711 * anon_lock: for getting anon_lock by optimized way rather than default 712 * invalid_vma: for skipping uninterested vma 713 */ 714 struct rmap_walk_control { 715 void *arg; 716 bool try_lock; 717 bool contended; 718 /* 719 * Return false if page table scanning in rmap_walk should be stopped. 720 * Otherwise, return true. 721 */ 722 bool (*rmap_one)(struct folio *folio, struct vm_area_struct *vma, 723 unsigned long addr, void *arg); 724 int (*done)(struct folio *folio); 725 struct anon_vma *(*anon_lock)(struct folio *folio, 726 struct rmap_walk_control *rwc); 727 bool (*invalid_vma)(struct vm_area_struct *vma, void *arg); 728 }; 729 730 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc); 731 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc); 732 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio, 733 struct rmap_walk_control *rwc); 734 735 #else /* !CONFIG_MMU */ 736 737 #define anon_vma_init() do {} while (0) 738 #define anon_vma_prepare(vma) (0) 739 740 static inline int folio_referenced(struct folio *folio, int is_locked, 741 struct mem_cgroup *memcg, 742 unsigned long *vm_flags) 743 { 744 *vm_flags = 0; 745 return 0; 746 } 747 748 static inline void try_to_unmap(struct folio *folio, enum ttu_flags flags) 749 { 750 } 751 752 static inline int folio_mkclean(struct folio *folio) 753 { 754 return 0; 755 } 756 #endif /* CONFIG_MMU */ 757 758 static inline int page_mkclean(struct page *page) 759 { 760 return folio_mkclean(page_folio(page)); 761 } 762 #endif /* _LINUX_RMAP_H */ 763