xref: /linux-6.15/include/linux/rmap.h (revision 4f542e3d)
1 #ifndef _LINUX_RMAP_H
2 #define _LINUX_RMAP_H
3 /*
4  * Declarations for Reverse Mapping functions in mm/rmap.c
5  */
6 
7 #include <linux/list.h>
8 #include <linux/slab.h>
9 #include <linux/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/memcontrol.h>
12 
13 /*
14  * The anon_vma heads a list of private "related" vmas, to scan if
15  * an anonymous page pointing to this anon_vma needs to be unmapped:
16  * the vmas on the list will be related by forking, or by splitting.
17  *
18  * Since vmas come and go as they are split and merged (particularly
19  * in mprotect), the mapping field of an anonymous page cannot point
20  * directly to a vma: instead it points to an anon_vma, on whose list
21  * the related vmas can be easily linked or unlinked.
22  *
23  * After unlinking the last vma on the list, we must garbage collect
24  * the anon_vma object itself: we're guaranteed no page can be
25  * pointing to this anon_vma once its vma list is empty.
26  */
27 struct anon_vma {
28 	struct anon_vma *root;	/* Root of this anon_vma tree */
29 	spinlock_t lock;	/* Serialize access to vma list */
30 #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION)
31 
32 	/*
33 	 * The external_refcount is taken by either KSM or page migration
34 	 * to take a reference to an anon_vma when there is no
35 	 * guarantee that the vma of page tables will exist for
36 	 * the duration of the operation. A caller that takes
37 	 * the reference is responsible for clearing up the
38 	 * anon_vma if they are the last user on release
39 	 */
40 	atomic_t external_refcount;
41 #endif
42 	/*
43 	 * NOTE: the LSB of the head.next is set by
44 	 * mm_take_all_locks() _after_ taking the above lock. So the
45 	 * head must only be read/written after taking the above lock
46 	 * to be sure to see a valid next pointer. The LSB bit itself
47 	 * is serialized by a system wide lock only visible to
48 	 * mm_take_all_locks() (mm_all_locks_mutex).
49 	 */
50 	struct list_head head;	/* Chain of private "related" vmas */
51 };
52 
53 /*
54  * The copy-on-write semantics of fork mean that an anon_vma
55  * can become associated with multiple processes. Furthermore,
56  * each child process will have its own anon_vma, where new
57  * pages for that process are instantiated.
58  *
59  * This structure allows us to find the anon_vmas associated
60  * with a VMA, or the VMAs associated with an anon_vma.
61  * The "same_vma" list contains the anon_vma_chains linking
62  * all the anon_vmas associated with this VMA.
63  * The "same_anon_vma" list contains the anon_vma_chains
64  * which link all the VMAs associated with this anon_vma.
65  */
66 struct anon_vma_chain {
67 	struct vm_area_struct *vma;
68 	struct anon_vma *anon_vma;
69 	struct list_head same_vma;   /* locked by mmap_sem & page_table_lock */
70 	struct list_head same_anon_vma;	/* locked by anon_vma->lock */
71 };
72 
73 #ifdef CONFIG_MMU
74 #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION)
75 static inline void anonvma_external_refcount_init(struct anon_vma *anon_vma)
76 {
77 	atomic_set(&anon_vma->external_refcount, 0);
78 }
79 
80 static inline int anonvma_external_refcount(struct anon_vma *anon_vma)
81 {
82 	return atomic_read(&anon_vma->external_refcount);
83 }
84 
85 static inline void get_anon_vma(struct anon_vma *anon_vma)
86 {
87 	atomic_inc(&anon_vma->external_refcount);
88 }
89 
90 void drop_anon_vma(struct anon_vma *);
91 #else
92 static inline void anonvma_external_refcount_init(struct anon_vma *anon_vma)
93 {
94 }
95 
96 static inline int anonvma_external_refcount(struct anon_vma *anon_vma)
97 {
98 	return 0;
99 }
100 
101 static inline void get_anon_vma(struct anon_vma *anon_vma)
102 {
103 }
104 
105 static inline void drop_anon_vma(struct anon_vma *anon_vma)
106 {
107 }
108 #endif /* CONFIG_KSM */
109 
110 static inline struct anon_vma *page_anon_vma(struct page *page)
111 {
112 	if (((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) !=
113 					    PAGE_MAPPING_ANON)
114 		return NULL;
115 	return page_rmapping(page);
116 }
117 
118 static inline void vma_lock_anon_vma(struct vm_area_struct *vma)
119 {
120 	struct anon_vma *anon_vma = vma->anon_vma;
121 	if (anon_vma)
122 		spin_lock(&anon_vma->root->lock);
123 }
124 
125 static inline void vma_unlock_anon_vma(struct vm_area_struct *vma)
126 {
127 	struct anon_vma *anon_vma = vma->anon_vma;
128 	if (anon_vma)
129 		spin_unlock(&anon_vma->root->lock);
130 }
131 
132 static inline void anon_vma_lock(struct anon_vma *anon_vma)
133 {
134 	spin_lock(&anon_vma->root->lock);
135 }
136 
137 static inline void anon_vma_unlock(struct anon_vma *anon_vma)
138 {
139 	spin_unlock(&anon_vma->root->lock);
140 }
141 
142 /*
143  * anon_vma helper functions.
144  */
145 void anon_vma_init(void);	/* create anon_vma_cachep */
146 int  anon_vma_prepare(struct vm_area_struct *);
147 void unlink_anon_vmas(struct vm_area_struct *);
148 int anon_vma_clone(struct vm_area_struct *, struct vm_area_struct *);
149 int anon_vma_fork(struct vm_area_struct *, struct vm_area_struct *);
150 void __anon_vma_link(struct vm_area_struct *);
151 void anon_vma_free(struct anon_vma *);
152 
153 static inline void anon_vma_merge(struct vm_area_struct *vma,
154 				  struct vm_area_struct *next)
155 {
156 	VM_BUG_ON(vma->anon_vma != next->anon_vma);
157 	unlink_anon_vmas(next);
158 }
159 
160 /*
161  * rmap interfaces called when adding or removing pte of page
162  */
163 void page_move_anon_rmap(struct page *, struct vm_area_struct *, unsigned long);
164 void page_add_anon_rmap(struct page *, struct vm_area_struct *, unsigned long);
165 void do_page_add_anon_rmap(struct page *, struct vm_area_struct *,
166 			   unsigned long, int);
167 void page_add_new_anon_rmap(struct page *, struct vm_area_struct *, unsigned long);
168 void page_add_file_rmap(struct page *);
169 void page_remove_rmap(struct page *);
170 
171 void hugepage_add_anon_rmap(struct page *, struct vm_area_struct *,
172 			    unsigned long);
173 void hugepage_add_new_anon_rmap(struct page *, struct vm_area_struct *,
174 				unsigned long);
175 
176 static inline void page_dup_rmap(struct page *page)
177 {
178 	atomic_inc(&page->_mapcount);
179 }
180 
181 /*
182  * Called from mm/vmscan.c to handle paging out
183  */
184 int page_referenced(struct page *, int is_locked,
185 			struct mem_cgroup *cnt, unsigned long *vm_flags);
186 int page_referenced_one(struct page *, struct vm_area_struct *,
187 	unsigned long address, unsigned int *mapcount, unsigned long *vm_flags);
188 
189 enum ttu_flags {
190 	TTU_UNMAP = 0,			/* unmap mode */
191 	TTU_MIGRATION = 1,		/* migration mode */
192 	TTU_MUNLOCK = 2,		/* munlock mode */
193 	TTU_ACTION_MASK = 0xff,
194 
195 	TTU_IGNORE_MLOCK = (1 << 8),	/* ignore mlock */
196 	TTU_IGNORE_ACCESS = (1 << 9),	/* don't age */
197 	TTU_IGNORE_HWPOISON = (1 << 10),/* corrupted page is recoverable */
198 };
199 #define TTU_ACTION(x) ((x) & TTU_ACTION_MASK)
200 
201 bool is_vma_temporary_stack(struct vm_area_struct *vma);
202 
203 int try_to_unmap(struct page *, enum ttu_flags flags);
204 int try_to_unmap_one(struct page *, struct vm_area_struct *,
205 			unsigned long address, enum ttu_flags flags);
206 
207 /*
208  * Called from mm/filemap_xip.c to unmap empty zero page
209  */
210 pte_t *__page_check_address(struct page *, struct mm_struct *,
211 				unsigned long, spinlock_t **, int);
212 
213 static inline pte_t *page_check_address(struct page *page, struct mm_struct *mm,
214 					unsigned long address,
215 					spinlock_t **ptlp, int sync)
216 {
217 	pte_t *ptep;
218 
219 	__cond_lock(*ptlp, ptep = __page_check_address(page, mm, address,
220 						       ptlp, sync));
221 	return ptep;
222 }
223 
224 /*
225  * Used by swapoff to help locate where page is expected in vma.
226  */
227 unsigned long page_address_in_vma(struct page *, struct vm_area_struct *);
228 
229 /*
230  * Cleans the PTEs of shared mappings.
231  * (and since clean PTEs should also be readonly, write protects them too)
232  *
233  * returns the number of cleaned PTEs.
234  */
235 int page_mkclean(struct page *);
236 
237 /*
238  * called in munlock()/munmap() path to check for other vmas holding
239  * the page mlocked.
240  */
241 int try_to_munlock(struct page *);
242 
243 /*
244  * Called by memory-failure.c to kill processes.
245  */
246 struct anon_vma *__page_lock_anon_vma(struct page *page);
247 
248 static inline struct anon_vma *page_lock_anon_vma(struct page *page)
249 {
250 	struct anon_vma *anon_vma;
251 
252 	__cond_lock(RCU, anon_vma = __page_lock_anon_vma(page));
253 
254 	/* (void) is needed to make gcc happy */
255 	(void) __cond_lock(&anon_vma->root->lock, anon_vma);
256 
257 	return anon_vma;
258 }
259 
260 void page_unlock_anon_vma(struct anon_vma *anon_vma);
261 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma);
262 
263 /*
264  * Called by migrate.c to remove migration ptes, but might be used more later.
265  */
266 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
267 		struct vm_area_struct *, unsigned long, void *), void *arg);
268 
269 #else	/* !CONFIG_MMU */
270 
271 #define anon_vma_init()		do {} while (0)
272 #define anon_vma_prepare(vma)	(0)
273 #define anon_vma_link(vma)	do {} while (0)
274 
275 static inline int page_referenced(struct page *page, int is_locked,
276 				  struct mem_cgroup *cnt,
277 				  unsigned long *vm_flags)
278 {
279 	*vm_flags = 0;
280 	return 0;
281 }
282 
283 #define try_to_unmap(page, refs) SWAP_FAIL
284 
285 static inline int page_mkclean(struct page *page)
286 {
287 	return 0;
288 }
289 
290 
291 #endif	/* CONFIG_MMU */
292 
293 /*
294  * Return values of try_to_unmap
295  */
296 #define SWAP_SUCCESS	0
297 #define SWAP_AGAIN	1
298 #define SWAP_FAIL	2
299 #define SWAP_MLOCK	3
300 
301 #endif	/* _LINUX_RMAP_H */
302