1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion 4 * 5 * Copyright IBM Corporation, 2001 6 * 7 * Author: Dipankar Sarma <[email protected]> 8 * 9 * Based on the original work by Paul McKenney <[email protected]> 10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 11 * Papers: 12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 14 * 15 * For detailed explanation of Read-Copy Update mechanism see - 16 * http://lse.sourceforge.net/locking/rcupdate.html 17 * 18 */ 19 20 #ifndef __LINUX_RCUPDATE_H 21 #define __LINUX_RCUPDATE_H 22 23 #include <linux/types.h> 24 #include <linux/compiler.h> 25 #include <linux/atomic.h> 26 #include <linux/irqflags.h> 27 #include <linux/preempt.h> 28 #include <linux/bottom_half.h> 29 #include <linux/lockdep.h> 30 #include <linux/cleanup.h> 31 #include <asm/processor.h> 32 #include <linux/cpumask.h> 33 #include <linux/context_tracking_irq.h> 34 35 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 36 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 37 38 /* Exported common interfaces */ 39 void call_rcu(struct rcu_head *head, rcu_callback_t func); 40 void rcu_barrier_tasks(void); 41 void rcu_barrier_tasks_rude(void); 42 void synchronize_rcu(void); 43 44 struct rcu_gp_oldstate; 45 unsigned long get_completed_synchronize_rcu(void); 46 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp); 47 48 // Maximum number of unsigned long values corresponding to 49 // not-yet-completed RCU grace periods. 50 #define NUM_ACTIVE_RCU_POLL_OLDSTATE 2 51 52 /** 53 * same_state_synchronize_rcu - Are two old-state values identical? 54 * @oldstate1: First old-state value. 55 * @oldstate2: Second old-state value. 56 * 57 * The two old-state values must have been obtained from either 58 * get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or 59 * get_completed_synchronize_rcu(). Returns @true if the two values are 60 * identical and @false otherwise. This allows structures whose lifetimes 61 * are tracked by old-state values to push these values to a list header, 62 * allowing those structures to be slightly smaller. 63 */ 64 static inline bool same_state_synchronize_rcu(unsigned long oldstate1, unsigned long oldstate2) 65 { 66 return oldstate1 == oldstate2; 67 } 68 69 #ifdef CONFIG_PREEMPT_RCU 70 71 void __rcu_read_lock(void); 72 void __rcu_read_unlock(void); 73 74 /* 75 * Defined as a macro as it is a very low level header included from 76 * areas that don't even know about current. This gives the rcu_read_lock() 77 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 78 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 79 */ 80 #define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting) 81 82 #else /* #ifdef CONFIG_PREEMPT_RCU */ 83 84 #ifdef CONFIG_TINY_RCU 85 #define rcu_read_unlock_strict() do { } while (0) 86 #else 87 void rcu_read_unlock_strict(void); 88 #endif 89 90 static inline void __rcu_read_lock(void) 91 { 92 preempt_disable(); 93 } 94 95 static inline void __rcu_read_unlock(void) 96 { 97 preempt_enable(); 98 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 99 rcu_read_unlock_strict(); 100 } 101 102 static inline int rcu_preempt_depth(void) 103 { 104 return 0; 105 } 106 107 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 108 109 #ifdef CONFIG_RCU_LAZY 110 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func); 111 #else 112 static inline void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func) 113 { 114 call_rcu(head, func); 115 } 116 #endif 117 118 /* Internal to kernel */ 119 void rcu_init(void); 120 extern int rcu_scheduler_active; 121 void rcu_sched_clock_irq(int user); 122 123 #ifdef CONFIG_TASKS_RCU_GENERIC 124 void rcu_init_tasks_generic(void); 125 #else 126 static inline void rcu_init_tasks_generic(void) { } 127 #endif 128 129 #ifdef CONFIG_RCU_STALL_COMMON 130 void rcu_sysrq_start(void); 131 void rcu_sysrq_end(void); 132 #else /* #ifdef CONFIG_RCU_STALL_COMMON */ 133 static inline void rcu_sysrq_start(void) { } 134 static inline void rcu_sysrq_end(void) { } 135 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ 136 137 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) 138 void rcu_irq_work_resched(void); 139 #else 140 static inline void rcu_irq_work_resched(void) { } 141 #endif 142 143 #ifdef CONFIG_RCU_NOCB_CPU 144 void rcu_init_nohz(void); 145 int rcu_nocb_cpu_offload(int cpu); 146 int rcu_nocb_cpu_deoffload(int cpu); 147 void rcu_nocb_flush_deferred_wakeup(void); 148 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 149 static inline void rcu_init_nohz(void) { } 150 static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; } 151 static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; } 152 static inline void rcu_nocb_flush_deferred_wakeup(void) { } 153 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 154 155 /* 156 * Note a quasi-voluntary context switch for RCU-tasks's benefit. 157 * This is a macro rather than an inline function to avoid #include hell. 158 */ 159 #ifdef CONFIG_TASKS_RCU_GENERIC 160 161 # ifdef CONFIG_TASKS_RCU 162 # define rcu_tasks_classic_qs(t, preempt) \ 163 do { \ 164 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \ 165 WRITE_ONCE((t)->rcu_tasks_holdout, false); \ 166 } while (0) 167 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func); 168 void synchronize_rcu_tasks(void); 169 # else 170 # define rcu_tasks_classic_qs(t, preempt) do { } while (0) 171 # define call_rcu_tasks call_rcu 172 # define synchronize_rcu_tasks synchronize_rcu 173 # endif 174 175 # ifdef CONFIG_TASKS_TRACE_RCU 176 // Bits for ->trc_reader_special.b.need_qs field. 177 #define TRC_NEED_QS 0x1 // Task needs a quiescent state. 178 #define TRC_NEED_QS_CHECKED 0x2 // Task has been checked for needing quiescent state. 179 180 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new); 181 void rcu_tasks_trace_qs_blkd(struct task_struct *t); 182 183 # define rcu_tasks_trace_qs(t) \ 184 do { \ 185 int ___rttq_nesting = READ_ONCE((t)->trc_reader_nesting); \ 186 \ 187 if (unlikely(READ_ONCE((t)->trc_reader_special.b.need_qs) == TRC_NEED_QS) && \ 188 likely(!___rttq_nesting)) { \ 189 rcu_trc_cmpxchg_need_qs((t), TRC_NEED_QS, TRC_NEED_QS_CHECKED); \ 190 } else if (___rttq_nesting && ___rttq_nesting != INT_MIN && \ 191 !READ_ONCE((t)->trc_reader_special.b.blocked)) { \ 192 rcu_tasks_trace_qs_blkd(t); \ 193 } \ 194 } while (0) 195 # else 196 # define rcu_tasks_trace_qs(t) do { } while (0) 197 # endif 198 199 #define rcu_tasks_qs(t, preempt) \ 200 do { \ 201 rcu_tasks_classic_qs((t), (preempt)); \ 202 rcu_tasks_trace_qs(t); \ 203 } while (0) 204 205 # ifdef CONFIG_TASKS_RUDE_RCU 206 void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func); 207 void synchronize_rcu_tasks_rude(void); 208 # endif 209 210 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false) 211 void exit_tasks_rcu_start(void); 212 void exit_tasks_rcu_finish(void); 213 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 214 #define rcu_tasks_classic_qs(t, preempt) do { } while (0) 215 #define rcu_tasks_qs(t, preempt) do { } while (0) 216 #define rcu_note_voluntary_context_switch(t) do { } while (0) 217 #define call_rcu_tasks call_rcu 218 #define synchronize_rcu_tasks synchronize_rcu 219 static inline void exit_tasks_rcu_start(void) { } 220 static inline void exit_tasks_rcu_finish(void) { } 221 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 222 223 /** 224 * rcu_trace_implies_rcu_gp - does an RCU Tasks Trace grace period imply an RCU grace period? 225 * 226 * As an accident of implementation, an RCU Tasks Trace grace period also 227 * acts as an RCU grace period. However, this could change at any time. 228 * Code relying on this accident must call this function to verify that 229 * this accident is still happening. 230 * 231 * You have been warned! 232 */ 233 static inline bool rcu_trace_implies_rcu_gp(void) { return true; } 234 235 /** 236 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU 237 * 238 * This macro resembles cond_resched(), except that it is defined to 239 * report potential quiescent states to RCU-tasks even if the cond_resched() 240 * machinery were to be shut off, as some advocate for PREEMPTION kernels. 241 */ 242 #define cond_resched_tasks_rcu_qs() \ 243 do { \ 244 rcu_tasks_qs(current, false); \ 245 cond_resched(); \ 246 } while (0) 247 248 /** 249 * rcu_softirq_qs_periodic - Report RCU and RCU-Tasks quiescent states 250 * @old_ts: jiffies at start of processing. 251 * 252 * This helper is for long-running softirq handlers, such as NAPI threads in 253 * networking. The caller should initialize the variable passed in as @old_ts 254 * at the beginning of the softirq handler. When invoked frequently, this macro 255 * will invoke rcu_softirq_qs() every 100 milliseconds thereafter, which will 256 * provide both RCU and RCU-Tasks quiescent states. Note that this macro 257 * modifies its old_ts argument. 258 * 259 * Because regions of code that have disabled softirq act as RCU read-side 260 * critical sections, this macro should be invoked with softirq (and 261 * preemption) enabled. 262 * 263 * The macro is not needed when CONFIG_PREEMPT_RT is defined. RT kernels would 264 * have more chance to invoke schedule() calls and provide necessary quiescent 265 * states. As a contrast, calling cond_resched() only won't achieve the same 266 * effect because cond_resched() does not provide RCU-Tasks quiescent states. 267 */ 268 #define rcu_softirq_qs_periodic(old_ts) \ 269 do { \ 270 if (!IS_ENABLED(CONFIG_PREEMPT_RT) && \ 271 time_after(jiffies, (old_ts) + HZ / 10)) { \ 272 preempt_disable(); \ 273 rcu_softirq_qs(); \ 274 preempt_enable(); \ 275 (old_ts) = jiffies; \ 276 } \ 277 } while (0) 278 279 /* 280 * Infrastructure to implement the synchronize_() primitives in 281 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 282 */ 283 284 #if defined(CONFIG_TREE_RCU) 285 #include <linux/rcutree.h> 286 #elif defined(CONFIG_TINY_RCU) 287 #include <linux/rcutiny.h> 288 #else 289 #error "Unknown RCU implementation specified to kernel configuration" 290 #endif 291 292 /* 293 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls 294 * are needed for dynamic initialization and destruction of rcu_head 295 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for 296 * dynamic initialization and destruction of statically allocated rcu_head 297 * structures. However, rcu_head structures allocated dynamically in the 298 * heap don't need any initialization. 299 */ 300 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 301 void init_rcu_head(struct rcu_head *head); 302 void destroy_rcu_head(struct rcu_head *head); 303 void init_rcu_head_on_stack(struct rcu_head *head); 304 void destroy_rcu_head_on_stack(struct rcu_head *head); 305 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 306 static inline void init_rcu_head(struct rcu_head *head) { } 307 static inline void destroy_rcu_head(struct rcu_head *head) { } 308 static inline void init_rcu_head_on_stack(struct rcu_head *head) { } 309 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { } 310 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 311 312 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 313 bool rcu_lockdep_current_cpu_online(void); 314 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 315 static inline bool rcu_lockdep_current_cpu_online(void) { return true; } 316 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 317 318 extern struct lockdep_map rcu_lock_map; 319 extern struct lockdep_map rcu_bh_lock_map; 320 extern struct lockdep_map rcu_sched_lock_map; 321 extern struct lockdep_map rcu_callback_map; 322 323 #ifdef CONFIG_DEBUG_LOCK_ALLOC 324 325 static inline void rcu_lock_acquire(struct lockdep_map *map) 326 { 327 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); 328 } 329 330 static inline void rcu_try_lock_acquire(struct lockdep_map *map) 331 { 332 lock_acquire(map, 0, 1, 2, 0, NULL, _THIS_IP_); 333 } 334 335 static inline void rcu_lock_release(struct lockdep_map *map) 336 { 337 lock_release(map, _THIS_IP_); 338 } 339 340 int debug_lockdep_rcu_enabled(void); 341 int rcu_read_lock_held(void); 342 int rcu_read_lock_bh_held(void); 343 int rcu_read_lock_sched_held(void); 344 int rcu_read_lock_any_held(void); 345 346 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 347 348 # define rcu_lock_acquire(a) do { } while (0) 349 # define rcu_try_lock_acquire(a) do { } while (0) 350 # define rcu_lock_release(a) do { } while (0) 351 352 static inline int rcu_read_lock_held(void) 353 { 354 return 1; 355 } 356 357 static inline int rcu_read_lock_bh_held(void) 358 { 359 return 1; 360 } 361 362 static inline int rcu_read_lock_sched_held(void) 363 { 364 return !preemptible(); 365 } 366 367 static inline int rcu_read_lock_any_held(void) 368 { 369 return !preemptible(); 370 } 371 372 static inline int debug_lockdep_rcu_enabled(void) 373 { 374 return 0; 375 } 376 377 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 378 379 #ifdef CONFIG_PROVE_RCU 380 381 /** 382 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met 383 * @c: condition to check 384 * @s: informative message 385 * 386 * This checks debug_lockdep_rcu_enabled() before checking (c) to 387 * prevent early boot splats due to lockdep not yet being initialized, 388 * and rechecks it after checking (c) to prevent false-positive splats 389 * due to races with lockdep being disabled. See commit 3066820034b5dd 390 * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail. 391 */ 392 #define RCU_LOCKDEP_WARN(c, s) \ 393 do { \ 394 static bool __section(".data.unlikely") __warned; \ 395 if (debug_lockdep_rcu_enabled() && (c) && \ 396 debug_lockdep_rcu_enabled() && !__warned) { \ 397 __warned = true; \ 398 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 399 } \ 400 } while (0) 401 402 #ifndef CONFIG_PREEMPT_RCU 403 static inline void rcu_preempt_sleep_check(void) 404 { 405 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 406 "Illegal context switch in RCU read-side critical section"); 407 } 408 #else // #ifndef CONFIG_PREEMPT_RCU 409 static inline void rcu_preempt_sleep_check(void) { } 410 #endif // #else // #ifndef CONFIG_PREEMPT_RCU 411 412 #define rcu_sleep_check() \ 413 do { \ 414 rcu_preempt_sleep_check(); \ 415 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ 416 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ 417 "Illegal context switch in RCU-bh read-side critical section"); \ 418 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ 419 "Illegal context switch in RCU-sched read-side critical section"); \ 420 } while (0) 421 422 // See RCU_LOCKDEP_WARN() for an explanation of the double call to 423 // debug_lockdep_rcu_enabled(). 424 static inline bool lockdep_assert_rcu_helper(bool c) 425 { 426 return debug_lockdep_rcu_enabled() && 427 (c || !rcu_is_watching() || !rcu_lockdep_current_cpu_online()) && 428 debug_lockdep_rcu_enabled(); 429 } 430 431 /** 432 * lockdep_assert_in_rcu_read_lock - WARN if not protected by rcu_read_lock() 433 * 434 * Splats if lockdep is enabled and there is no rcu_read_lock() in effect. 435 */ 436 #define lockdep_assert_in_rcu_read_lock() \ 437 WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_lock_map))) 438 439 /** 440 * lockdep_assert_in_rcu_read_lock_bh - WARN if not protected by rcu_read_lock_bh() 441 * 442 * Splats if lockdep is enabled and there is no rcu_read_lock_bh() in effect. 443 * Note that local_bh_disable() and friends do not suffice here, instead an 444 * actual rcu_read_lock_bh() is required. 445 */ 446 #define lockdep_assert_in_rcu_read_lock_bh() \ 447 WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_bh_lock_map))) 448 449 /** 450 * lockdep_assert_in_rcu_read_lock_sched - WARN if not protected by rcu_read_lock_sched() 451 * 452 * Splats if lockdep is enabled and there is no rcu_read_lock_sched() 453 * in effect. Note that preempt_disable() and friends do not suffice here, 454 * instead an actual rcu_read_lock_sched() is required. 455 */ 456 #define lockdep_assert_in_rcu_read_lock_sched() \ 457 WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_sched_lock_map))) 458 459 /** 460 * lockdep_assert_in_rcu_reader - WARN if not within some type of RCU reader 461 * 462 * Splats if lockdep is enabled and there is no RCU reader of any 463 * type in effect. Note that regions of code protected by things like 464 * preempt_disable, local_bh_disable(), and local_irq_disable() all qualify 465 * as RCU readers. 466 * 467 * Note that this will never trigger in PREEMPT_NONE or PREEMPT_VOLUNTARY 468 * kernels that are not also built with PREEMPT_COUNT. But if you have 469 * lockdep enabled, you might as well also enable PREEMPT_COUNT. 470 */ 471 #define lockdep_assert_in_rcu_reader() \ 472 WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_lock_map) && \ 473 !lock_is_held(&rcu_bh_lock_map) && \ 474 !lock_is_held(&rcu_sched_lock_map) && \ 475 preemptible())) 476 477 #else /* #ifdef CONFIG_PROVE_RCU */ 478 479 #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c)) 480 #define rcu_sleep_check() do { } while (0) 481 482 #define lockdep_assert_in_rcu_read_lock() do { } while (0) 483 #define lockdep_assert_in_rcu_read_lock_bh() do { } while (0) 484 #define lockdep_assert_in_rcu_read_lock_sched() do { } while (0) 485 #define lockdep_assert_in_rcu_reader() do { } while (0) 486 487 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 488 489 /* 490 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 491 * and rcu_assign_pointer(). Some of these could be folded into their 492 * callers, but they are left separate in order to ease introduction of 493 * multiple pointers markings to match different RCU implementations 494 * (e.g., __srcu), should this make sense in the future. 495 */ 496 497 #ifdef __CHECKER__ 498 #define rcu_check_sparse(p, space) \ 499 ((void)(((typeof(*p) space *)p) == p)) 500 #else /* #ifdef __CHECKER__ */ 501 #define rcu_check_sparse(p, space) 502 #endif /* #else #ifdef __CHECKER__ */ 503 504 #define __unrcu_pointer(p, local) \ 505 ({ \ 506 typeof(*p) *local = (typeof(*p) *__force)(p); \ 507 rcu_check_sparse(p, __rcu); \ 508 ((typeof(*p) __force __kernel *)(local)); \ 509 }) 510 /** 511 * unrcu_pointer - mark a pointer as not being RCU protected 512 * @p: pointer needing to lose its __rcu property 513 * 514 * Converts @p from an __rcu pointer to a __kernel pointer. 515 * This allows an __rcu pointer to be used with xchg() and friends. 516 */ 517 #define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu)) 518 519 #define __rcu_access_pointer(p, local, space) \ 520 ({ \ 521 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \ 522 rcu_check_sparse(p, space); \ 523 ((typeof(*p) __force __kernel *)(local)); \ 524 }) 525 #define __rcu_dereference_check(p, local, c, space) \ 526 ({ \ 527 /* Dependency order vs. p above. */ \ 528 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \ 529 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ 530 rcu_check_sparse(p, space); \ 531 ((typeof(*p) __force __kernel *)(local)); \ 532 }) 533 #define __rcu_dereference_protected(p, local, c, space) \ 534 ({ \ 535 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ 536 rcu_check_sparse(p, space); \ 537 ((typeof(*p) __force __kernel *)(p)); \ 538 }) 539 #define __rcu_dereference_raw(p, local) \ 540 ({ \ 541 /* Dependency order vs. p above. */ \ 542 typeof(p) local = READ_ONCE(p); \ 543 ((typeof(*p) __force __kernel *)(local)); \ 544 }) 545 #define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu)) 546 547 /** 548 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable 549 * @v: The value to statically initialize with. 550 */ 551 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) 552 553 /** 554 * rcu_assign_pointer() - assign to RCU-protected pointer 555 * @p: pointer to assign to 556 * @v: value to assign (publish) 557 * 558 * Assigns the specified value to the specified RCU-protected 559 * pointer, ensuring that any concurrent RCU readers will see 560 * any prior initialization. 561 * 562 * Inserts memory barriers on architectures that require them 563 * (which is most of them), and also prevents the compiler from 564 * reordering the code that initializes the structure after the pointer 565 * assignment. More importantly, this call documents which pointers 566 * will be dereferenced by RCU read-side code. 567 * 568 * In some special cases, you may use RCU_INIT_POINTER() instead 569 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 570 * to the fact that it does not constrain either the CPU or the compiler. 571 * That said, using RCU_INIT_POINTER() when you should have used 572 * rcu_assign_pointer() is a very bad thing that results in 573 * impossible-to-diagnose memory corruption. So please be careful. 574 * See the RCU_INIT_POINTER() comment header for details. 575 * 576 * Note that rcu_assign_pointer() evaluates each of its arguments only 577 * once, appearances notwithstanding. One of the "extra" evaluations 578 * is in typeof() and the other visible only to sparse (__CHECKER__), 579 * neither of which actually execute the argument. As with most cpp 580 * macros, this execute-arguments-only-once property is important, so 581 * please be careful when making changes to rcu_assign_pointer() and the 582 * other macros that it invokes. 583 */ 584 #define rcu_assign_pointer(p, v) \ 585 do { \ 586 uintptr_t _r_a_p__v = (uintptr_t)(v); \ 587 rcu_check_sparse(p, __rcu); \ 588 \ 589 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \ 590 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \ 591 else \ 592 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \ 593 } while (0) 594 595 /** 596 * rcu_replace_pointer() - replace an RCU pointer, returning its old value 597 * @rcu_ptr: RCU pointer, whose old value is returned 598 * @ptr: regular pointer 599 * @c: the lockdep conditions under which the dereference will take place 600 * 601 * Perform a replacement, where @rcu_ptr is an RCU-annotated 602 * pointer and @c is the lockdep argument that is passed to the 603 * rcu_dereference_protected() call used to read that pointer. The old 604 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr. 605 */ 606 #define rcu_replace_pointer(rcu_ptr, ptr, c) \ 607 ({ \ 608 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \ 609 rcu_assign_pointer((rcu_ptr), (ptr)); \ 610 __tmp; \ 611 }) 612 613 /** 614 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 615 * @p: The pointer to read 616 * 617 * Return the value of the specified RCU-protected pointer, but omit the 618 * lockdep checks for being in an RCU read-side critical section. This is 619 * useful when the value of this pointer is accessed, but the pointer is 620 * not dereferenced, for example, when testing an RCU-protected pointer 621 * against NULL. Although rcu_access_pointer() may also be used in cases 622 * where update-side locks prevent the value of the pointer from changing, 623 * you should instead use rcu_dereference_protected() for this use case. 624 * Within an RCU read-side critical section, there is little reason to 625 * use rcu_access_pointer(). 626 * 627 * It is usually best to test the rcu_access_pointer() return value 628 * directly in order to avoid accidental dereferences being introduced 629 * by later inattentive changes. In other words, assigning the 630 * rcu_access_pointer() return value to a local variable results in an 631 * accident waiting to happen. 632 * 633 * It is also permissible to use rcu_access_pointer() when read-side 634 * access to the pointer was removed at least one grace period ago, as is 635 * the case in the context of the RCU callback that is freeing up the data, 636 * or after a synchronize_rcu() returns. This can be useful when tearing 637 * down multi-linked structures after a grace period has elapsed. However, 638 * rcu_dereference_protected() is normally preferred for this use case. 639 */ 640 #define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu) 641 642 /** 643 * rcu_dereference_check() - rcu_dereference with debug checking 644 * @p: The pointer to read, prior to dereferencing 645 * @c: The conditions under which the dereference will take place 646 * 647 * Do an rcu_dereference(), but check that the conditions under which the 648 * dereference will take place are correct. Typically the conditions 649 * indicate the various locking conditions that should be held at that 650 * point. The check should return true if the conditions are satisfied. 651 * An implicit check for being in an RCU read-side critical section 652 * (rcu_read_lock()) is included. 653 * 654 * For example: 655 * 656 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 657 * 658 * could be used to indicate to lockdep that foo->bar may only be dereferenced 659 * if either rcu_read_lock() is held, or that the lock required to replace 660 * the bar struct at foo->bar is held. 661 * 662 * Note that the list of conditions may also include indications of when a lock 663 * need not be held, for example during initialisation or destruction of the 664 * target struct: 665 * 666 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 667 * atomic_read(&foo->usage) == 0); 668 * 669 * Inserts memory barriers on architectures that require them 670 * (currently only the Alpha), prevents the compiler from refetching 671 * (and from merging fetches), and, more importantly, documents exactly 672 * which pointers are protected by RCU and checks that the pointer is 673 * annotated as __rcu. 674 */ 675 #define rcu_dereference_check(p, c) \ 676 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 677 (c) || rcu_read_lock_held(), __rcu) 678 679 /** 680 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 681 * @p: The pointer to read, prior to dereferencing 682 * @c: The conditions under which the dereference will take place 683 * 684 * This is the RCU-bh counterpart to rcu_dereference_check(). However, 685 * please note that starting in v5.0 kernels, vanilla RCU grace periods 686 * wait for local_bh_disable() regions of code in addition to regions of 687 * code demarked by rcu_read_lock() and rcu_read_unlock(). This means 688 * that synchronize_rcu(), call_rcu, and friends all take not only 689 * rcu_read_lock() but also rcu_read_lock_bh() into account. 690 */ 691 #define rcu_dereference_bh_check(p, c) \ 692 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 693 (c) || rcu_read_lock_bh_held(), __rcu) 694 695 /** 696 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 697 * @p: The pointer to read, prior to dereferencing 698 * @c: The conditions under which the dereference will take place 699 * 700 * This is the RCU-sched counterpart to rcu_dereference_check(). 701 * However, please note that starting in v5.0 kernels, vanilla RCU grace 702 * periods wait for preempt_disable() regions of code in addition to 703 * regions of code demarked by rcu_read_lock() and rcu_read_unlock(). 704 * This means that synchronize_rcu(), call_rcu, and friends all take not 705 * only rcu_read_lock() but also rcu_read_lock_sched() into account. 706 */ 707 #define rcu_dereference_sched_check(p, c) \ 708 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 709 (c) || rcu_read_lock_sched_held(), \ 710 __rcu) 711 712 /* 713 * The tracing infrastructure traces RCU (we want that), but unfortunately 714 * some of the RCU checks causes tracing to lock up the system. 715 * 716 * The no-tracing version of rcu_dereference_raw() must not call 717 * rcu_read_lock_held(). 718 */ 719 #define rcu_dereference_raw_check(p) \ 720 __rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu) 721 722 /** 723 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 724 * @p: The pointer to read, prior to dereferencing 725 * @c: The conditions under which the dereference will take place 726 * 727 * Return the value of the specified RCU-protected pointer, but omit 728 * the READ_ONCE(). This is useful in cases where update-side locks 729 * prevent the value of the pointer from changing. Please note that this 730 * primitive does *not* prevent the compiler from repeating this reference 731 * or combining it with other references, so it should not be used without 732 * protection of appropriate locks. 733 * 734 * This function is only for update-side use. Using this function 735 * when protected only by rcu_read_lock() will result in infrequent 736 * but very ugly failures. 737 */ 738 #define rcu_dereference_protected(p, c) \ 739 __rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu) 740 741 742 /** 743 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 744 * @p: The pointer to read, prior to dereferencing 745 * 746 * This is a simple wrapper around rcu_dereference_check(). 747 */ 748 #define rcu_dereference(p) rcu_dereference_check(p, 0) 749 750 /** 751 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 752 * @p: The pointer to read, prior to dereferencing 753 * 754 * Makes rcu_dereference_check() do the dirty work. 755 */ 756 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 757 758 /** 759 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 760 * @p: The pointer to read, prior to dereferencing 761 * 762 * Makes rcu_dereference_check() do the dirty work. 763 */ 764 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 765 766 /** 767 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism 768 * @p: The pointer to hand off 769 * 770 * This is simply an identity function, but it documents where a pointer 771 * is handed off from RCU to some other synchronization mechanism, for 772 * example, reference counting or locking. In C11, it would map to 773 * kill_dependency(). It could be used as follows:: 774 * 775 * rcu_read_lock(); 776 * p = rcu_dereference(gp); 777 * long_lived = is_long_lived(p); 778 * if (long_lived) { 779 * if (!atomic_inc_not_zero(p->refcnt)) 780 * long_lived = false; 781 * else 782 * p = rcu_pointer_handoff(p); 783 * } 784 * rcu_read_unlock(); 785 */ 786 #define rcu_pointer_handoff(p) (p) 787 788 /** 789 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 790 * 791 * When synchronize_rcu() is invoked on one CPU while other CPUs 792 * are within RCU read-side critical sections, then the 793 * synchronize_rcu() is guaranteed to block until after all the other 794 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 795 * on one CPU while other CPUs are within RCU read-side critical 796 * sections, invocation of the corresponding RCU callback is deferred 797 * until after the all the other CPUs exit their critical sections. 798 * 799 * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also 800 * wait for regions of code with preemption disabled, including regions of 801 * code with interrupts or softirqs disabled. In pre-v5.0 kernels, which 802 * define synchronize_sched(), only code enclosed within rcu_read_lock() 803 * and rcu_read_unlock() are guaranteed to be waited for. 804 * 805 * Note, however, that RCU callbacks are permitted to run concurrently 806 * with new RCU read-side critical sections. One way that this can happen 807 * is via the following sequence of events: (1) CPU 0 enters an RCU 808 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 809 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 810 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 811 * callback is invoked. This is legal, because the RCU read-side critical 812 * section that was running concurrently with the call_rcu() (and which 813 * therefore might be referencing something that the corresponding RCU 814 * callback would free up) has completed before the corresponding 815 * RCU callback is invoked. 816 * 817 * RCU read-side critical sections may be nested. Any deferred actions 818 * will be deferred until the outermost RCU read-side critical section 819 * completes. 820 * 821 * You can avoid reading and understanding the next paragraph by 822 * following this rule: don't put anything in an rcu_read_lock() RCU 823 * read-side critical section that would block in a !PREEMPTION kernel. 824 * But if you want the full story, read on! 825 * 826 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU), 827 * it is illegal to block while in an RCU read-side critical section. 828 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION 829 * kernel builds, RCU read-side critical sections may be preempted, 830 * but explicit blocking is illegal. Finally, in preemptible RCU 831 * implementations in real-time (with -rt patchset) kernel builds, RCU 832 * read-side critical sections may be preempted and they may also block, but 833 * only when acquiring spinlocks that are subject to priority inheritance. 834 */ 835 static __always_inline void rcu_read_lock(void) 836 { 837 __rcu_read_lock(); 838 __acquire(RCU); 839 rcu_lock_acquire(&rcu_lock_map); 840 RCU_LOCKDEP_WARN(!rcu_is_watching(), 841 "rcu_read_lock() used illegally while idle"); 842 } 843 844 /* 845 * So where is rcu_write_lock()? It does not exist, as there is no 846 * way for writers to lock out RCU readers. This is a feature, not 847 * a bug -- this property is what provides RCU's performance benefits. 848 * Of course, writers must coordinate with each other. The normal 849 * spinlock primitives work well for this, but any other technique may be 850 * used as well. RCU does not care how the writers keep out of each 851 * others' way, as long as they do so. 852 */ 853 854 /** 855 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 856 * 857 * In almost all situations, rcu_read_unlock() is immune from deadlock. 858 * In recent kernels that have consolidated synchronize_sched() and 859 * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity 860 * also extends to the scheduler's runqueue and priority-inheritance 861 * spinlocks, courtesy of the quiescent-state deferral that is carried 862 * out when rcu_read_unlock() is invoked with interrupts disabled. 863 * 864 * See rcu_read_lock() for more information. 865 */ 866 static inline void rcu_read_unlock(void) 867 { 868 RCU_LOCKDEP_WARN(!rcu_is_watching(), 869 "rcu_read_unlock() used illegally while idle"); 870 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ 871 __release(RCU); 872 __rcu_read_unlock(); 873 } 874 875 /** 876 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 877 * 878 * This is equivalent to rcu_read_lock(), but also disables softirqs. 879 * Note that anything else that disables softirqs can also serve as an RCU 880 * read-side critical section. However, please note that this equivalence 881 * applies only to v5.0 and later. Before v5.0, rcu_read_lock() and 882 * rcu_read_lock_bh() were unrelated. 883 * 884 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 885 * must occur in the same context, for example, it is illegal to invoke 886 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 887 * was invoked from some other task. 888 */ 889 static inline void rcu_read_lock_bh(void) 890 { 891 local_bh_disable(); 892 __acquire(RCU_BH); 893 rcu_lock_acquire(&rcu_bh_lock_map); 894 RCU_LOCKDEP_WARN(!rcu_is_watching(), 895 "rcu_read_lock_bh() used illegally while idle"); 896 } 897 898 /** 899 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section 900 * 901 * See rcu_read_lock_bh() for more information. 902 */ 903 static inline void rcu_read_unlock_bh(void) 904 { 905 RCU_LOCKDEP_WARN(!rcu_is_watching(), 906 "rcu_read_unlock_bh() used illegally while idle"); 907 rcu_lock_release(&rcu_bh_lock_map); 908 __release(RCU_BH); 909 local_bh_enable(); 910 } 911 912 /** 913 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 914 * 915 * This is equivalent to rcu_read_lock(), but also disables preemption. 916 * Read-side critical sections can also be introduced by anything else that 917 * disables preemption, including local_irq_disable() and friends. However, 918 * please note that the equivalence to rcu_read_lock() applies only to 919 * v5.0 and later. Before v5.0, rcu_read_lock() and rcu_read_lock_sched() 920 * were unrelated. 921 * 922 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 923 * must occur in the same context, for example, it is illegal to invoke 924 * rcu_read_unlock_sched() from process context if the matching 925 * rcu_read_lock_sched() was invoked from an NMI handler. 926 */ 927 static inline void rcu_read_lock_sched(void) 928 { 929 preempt_disable(); 930 __acquire(RCU_SCHED); 931 rcu_lock_acquire(&rcu_sched_lock_map); 932 RCU_LOCKDEP_WARN(!rcu_is_watching(), 933 "rcu_read_lock_sched() used illegally while idle"); 934 } 935 936 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 937 static inline notrace void rcu_read_lock_sched_notrace(void) 938 { 939 preempt_disable_notrace(); 940 __acquire(RCU_SCHED); 941 } 942 943 /** 944 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section 945 * 946 * See rcu_read_lock_sched() for more information. 947 */ 948 static inline void rcu_read_unlock_sched(void) 949 { 950 RCU_LOCKDEP_WARN(!rcu_is_watching(), 951 "rcu_read_unlock_sched() used illegally while idle"); 952 rcu_lock_release(&rcu_sched_lock_map); 953 __release(RCU_SCHED); 954 preempt_enable(); 955 } 956 957 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 958 static inline notrace void rcu_read_unlock_sched_notrace(void) 959 { 960 __release(RCU_SCHED); 961 preempt_enable_notrace(); 962 } 963 964 /** 965 * RCU_INIT_POINTER() - initialize an RCU protected pointer 966 * @p: The pointer to be initialized. 967 * @v: The value to initialized the pointer to. 968 * 969 * Initialize an RCU-protected pointer in special cases where readers 970 * do not need ordering constraints on the CPU or the compiler. These 971 * special cases are: 972 * 973 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or* 974 * 2. The caller has taken whatever steps are required to prevent 975 * RCU readers from concurrently accessing this pointer *or* 976 * 3. The referenced data structure has already been exposed to 977 * readers either at compile time or via rcu_assign_pointer() *and* 978 * 979 * a. You have not made *any* reader-visible changes to 980 * this structure since then *or* 981 * b. It is OK for readers accessing this structure from its 982 * new location to see the old state of the structure. (For 983 * example, the changes were to statistical counters or to 984 * other state where exact synchronization is not required.) 985 * 986 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 987 * result in impossible-to-diagnose memory corruption. As in the structures 988 * will look OK in crash dumps, but any concurrent RCU readers might 989 * see pre-initialized values of the referenced data structure. So 990 * please be very careful how you use RCU_INIT_POINTER()!!! 991 * 992 * If you are creating an RCU-protected linked structure that is accessed 993 * by a single external-to-structure RCU-protected pointer, then you may 994 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 995 * pointers, but you must use rcu_assign_pointer() to initialize the 996 * external-to-structure pointer *after* you have completely initialized 997 * the reader-accessible portions of the linked structure. 998 * 999 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no 1000 * ordering guarantees for either the CPU or the compiler. 1001 */ 1002 #define RCU_INIT_POINTER(p, v) \ 1003 do { \ 1004 rcu_check_sparse(p, __rcu); \ 1005 WRITE_ONCE(p, RCU_INITIALIZER(v)); \ 1006 } while (0) 1007 1008 /** 1009 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 1010 * @p: The pointer to be initialized. 1011 * @v: The value to initialized the pointer to. 1012 * 1013 * GCC-style initialization for an RCU-protected pointer in a structure field. 1014 */ 1015 #define RCU_POINTER_INITIALIZER(p, v) \ 1016 .p = RCU_INITIALIZER(v) 1017 1018 /* 1019 * Does the specified offset indicate that the corresponding rcu_head 1020 * structure can be handled by kvfree_rcu()? 1021 */ 1022 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096) 1023 1024 /** 1025 * kfree_rcu() - kfree an object after a grace period. 1026 * @ptr: pointer to kfree for double-argument invocations. 1027 * @rhf: the name of the struct rcu_head within the type of @ptr. 1028 * 1029 * Many rcu callbacks functions just call kfree() on the base structure. 1030 * These functions are trivial, but their size adds up, and furthermore 1031 * when they are used in a kernel module, that module must invoke the 1032 * high-latency rcu_barrier() function at module-unload time. 1033 * 1034 * The kfree_rcu() function handles this issue. Rather than encoding a 1035 * function address in the embedded rcu_head structure, kfree_rcu() instead 1036 * encodes the offset of the rcu_head structure within the base structure. 1037 * Because the functions are not allowed in the low-order 4096 bytes of 1038 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 1039 * If the offset is larger than 4095 bytes, a compile-time error will 1040 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can 1041 * either fall back to use of call_rcu() or rearrange the structure to 1042 * position the rcu_head structure into the first 4096 bytes. 1043 * 1044 * The object to be freed can be allocated either by kmalloc() or 1045 * kmem_cache_alloc(). 1046 * 1047 * Note that the allowable offset might decrease in the future. 1048 * 1049 * The BUILD_BUG_ON check must not involve any function calls, hence the 1050 * checks are done in macros here. 1051 */ 1052 #define kfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf) 1053 #define kvfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf) 1054 1055 /** 1056 * kfree_rcu_mightsleep() - kfree an object after a grace period. 1057 * @ptr: pointer to kfree for single-argument invocations. 1058 * 1059 * When it comes to head-less variant, only one argument 1060 * is passed and that is just a pointer which has to be 1061 * freed after a grace period. Therefore the semantic is 1062 * 1063 * kfree_rcu_mightsleep(ptr); 1064 * 1065 * where @ptr is the pointer to be freed by kvfree(). 1066 * 1067 * Please note, head-less way of freeing is permitted to 1068 * use from a context that has to follow might_sleep() 1069 * annotation. Otherwise, please switch and embed the 1070 * rcu_head structure within the type of @ptr. 1071 */ 1072 #define kfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr) 1073 #define kvfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr) 1074 1075 #define kvfree_rcu_arg_2(ptr, rhf) \ 1076 do { \ 1077 typeof (ptr) ___p = (ptr); \ 1078 \ 1079 if (___p) { \ 1080 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf))); \ 1081 kvfree_call_rcu(&((___p)->rhf), (void *) (___p)); \ 1082 } \ 1083 } while (0) 1084 1085 #define kvfree_rcu_arg_1(ptr) \ 1086 do { \ 1087 typeof(ptr) ___p = (ptr); \ 1088 \ 1089 if (___p) \ 1090 kvfree_call_rcu(NULL, (void *) (___p)); \ 1091 } while (0) 1092 1093 /* 1094 * Place this after a lock-acquisition primitive to guarantee that 1095 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies 1096 * if the UNLOCK and LOCK are executed by the same CPU or if the 1097 * UNLOCK and LOCK operate on the same lock variable. 1098 */ 1099 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE 1100 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */ 1101 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 1102 #define smp_mb__after_unlock_lock() do { } while (0) 1103 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 1104 1105 1106 /* Has the specified rcu_head structure been handed to call_rcu()? */ 1107 1108 /** 1109 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu() 1110 * @rhp: The rcu_head structure to initialize. 1111 * 1112 * If you intend to invoke rcu_head_after_call_rcu() to test whether a 1113 * given rcu_head structure has already been passed to call_rcu(), then 1114 * you must also invoke this rcu_head_init() function on it just after 1115 * allocating that structure. Calls to this function must not race with 1116 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation. 1117 */ 1118 static inline void rcu_head_init(struct rcu_head *rhp) 1119 { 1120 rhp->func = (rcu_callback_t)~0L; 1121 } 1122 1123 /** 1124 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()? 1125 * @rhp: The rcu_head structure to test. 1126 * @f: The function passed to call_rcu() along with @rhp. 1127 * 1128 * Returns @true if the @rhp has been passed to call_rcu() with @func, 1129 * and @false otherwise. Emits a warning in any other case, including 1130 * the case where @rhp has already been invoked after a grace period. 1131 * Calls to this function must not race with callback invocation. One way 1132 * to avoid such races is to enclose the call to rcu_head_after_call_rcu() 1133 * in an RCU read-side critical section that includes a read-side fetch 1134 * of the pointer to the structure containing @rhp. 1135 */ 1136 static inline bool 1137 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f) 1138 { 1139 rcu_callback_t func = READ_ONCE(rhp->func); 1140 1141 if (func == f) 1142 return true; 1143 WARN_ON_ONCE(func != (rcu_callback_t)~0L); 1144 return false; 1145 } 1146 1147 /* kernel/ksysfs.c definitions */ 1148 extern int rcu_expedited; 1149 extern int rcu_normal; 1150 1151 DEFINE_LOCK_GUARD_0(rcu, 1152 do { 1153 rcu_read_lock(); 1154 /* 1155 * sparse doesn't call the cleanup function, 1156 * so just release immediately and don't track 1157 * the context. We don't need to anyway, since 1158 * the whole point of the guard is to not need 1159 * the explicit unlock. 1160 */ 1161 __release(RCU); 1162 } while (0), 1163 rcu_read_unlock()) 1164 1165 #endif /* __LINUX_RCUPDATE_H */ 1166