1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2001 19 * 20 * Author: Dipankar Sarma <[email protected]> 21 * 22 * Based on the original work by Paul McKenney <[email protected]> 23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 24 * Papers: 25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 27 * 28 * For detailed explanation of Read-Copy Update mechanism see - 29 * http://lse.sourceforge.net/locking/rcupdate.html 30 * 31 */ 32 33 #ifndef __LINUX_RCUPDATE_H 34 #define __LINUX_RCUPDATE_H 35 36 #include <linux/types.h> 37 #include <linux/cache.h> 38 #include <linux/spinlock.h> 39 #include <linux/threads.h> 40 #include <linux/cpumask.h> 41 #include <linux/seqlock.h> 42 #include <linux/lockdep.h> 43 #include <linux/completion.h> 44 #include <linux/debugobjects.h> 45 #include <linux/bug.h> 46 #include <linux/compiler.h> 47 #include <linux/ktime.h> 48 49 #include <asm/barrier.h> 50 51 extern int rcu_expedited; /* for sysctl */ 52 53 #ifdef CONFIG_TINY_RCU 54 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */ 55 static inline bool rcu_gp_is_expedited(void) /* Internal RCU use. */ 56 { 57 return false; 58 } 59 60 static inline void rcu_expedite_gp(void) 61 { 62 } 63 64 static inline void rcu_unexpedite_gp(void) 65 { 66 } 67 #else /* #ifdef CONFIG_TINY_RCU */ 68 bool rcu_gp_is_expedited(void); /* Internal RCU use. */ 69 void rcu_expedite_gp(void); 70 void rcu_unexpedite_gp(void); 71 #endif /* #else #ifdef CONFIG_TINY_RCU */ 72 73 enum rcutorture_type { 74 RCU_FLAVOR, 75 RCU_BH_FLAVOR, 76 RCU_SCHED_FLAVOR, 77 RCU_TASKS_FLAVOR, 78 SRCU_FLAVOR, 79 INVALID_RCU_FLAVOR 80 }; 81 82 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) 83 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 84 unsigned long *gpnum, unsigned long *completed); 85 void rcutorture_record_test_transition(void); 86 void rcutorture_record_progress(unsigned long vernum); 87 void do_trace_rcu_torture_read(const char *rcutorturename, 88 struct rcu_head *rhp, 89 unsigned long secs, 90 unsigned long c_old, 91 unsigned long c); 92 #else 93 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type, 94 int *flags, 95 unsigned long *gpnum, 96 unsigned long *completed) 97 { 98 *flags = 0; 99 *gpnum = 0; 100 *completed = 0; 101 } 102 static inline void rcutorture_record_test_transition(void) 103 { 104 } 105 static inline void rcutorture_record_progress(unsigned long vernum) 106 { 107 } 108 #ifdef CONFIG_RCU_TRACE 109 void do_trace_rcu_torture_read(const char *rcutorturename, 110 struct rcu_head *rhp, 111 unsigned long secs, 112 unsigned long c_old, 113 unsigned long c); 114 #else 115 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ 116 do { } while (0) 117 #endif 118 #endif 119 120 #define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b)) 121 #define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b)) 122 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 123 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 124 #define ulong2long(a) (*(long *)(&(a))) 125 126 /* Exported common interfaces */ 127 128 #ifdef CONFIG_PREEMPT_RCU 129 130 /** 131 * call_rcu() - Queue an RCU callback for invocation after a grace period. 132 * @head: structure to be used for queueing the RCU updates. 133 * @func: actual callback function to be invoked after the grace period 134 * 135 * The callback function will be invoked some time after a full grace 136 * period elapses, in other words after all pre-existing RCU read-side 137 * critical sections have completed. However, the callback function 138 * might well execute concurrently with RCU read-side critical sections 139 * that started after call_rcu() was invoked. RCU read-side critical 140 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), 141 * and may be nested. 142 * 143 * Note that all CPUs must agree that the grace period extended beyond 144 * all pre-existing RCU read-side critical section. On systems with more 145 * than one CPU, this means that when "func()" is invoked, each CPU is 146 * guaranteed to have executed a full memory barrier since the end of its 147 * last RCU read-side critical section whose beginning preceded the call 148 * to call_rcu(). It also means that each CPU executing an RCU read-side 149 * critical section that continues beyond the start of "func()" must have 150 * executed a memory barrier after the call_rcu() but before the beginning 151 * of that RCU read-side critical section. Note that these guarantees 152 * include CPUs that are offline, idle, or executing in user mode, as 153 * well as CPUs that are executing in the kernel. 154 * 155 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 156 * resulting RCU callback function "func()", then both CPU A and CPU B are 157 * guaranteed to execute a full memory barrier during the time interval 158 * between the call to call_rcu() and the invocation of "func()" -- even 159 * if CPU A and CPU B are the same CPU (but again only if the system has 160 * more than one CPU). 161 */ 162 void call_rcu(struct rcu_head *head, 163 rcu_callback_t func); 164 165 #else /* #ifdef CONFIG_PREEMPT_RCU */ 166 167 /* In classic RCU, call_rcu() is just call_rcu_sched(). */ 168 #define call_rcu call_rcu_sched 169 170 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 171 172 /** 173 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period. 174 * @head: structure to be used for queueing the RCU updates. 175 * @func: actual callback function to be invoked after the grace period 176 * 177 * The callback function will be invoked some time after a full grace 178 * period elapses, in other words after all currently executing RCU 179 * read-side critical sections have completed. call_rcu_bh() assumes 180 * that the read-side critical sections end on completion of a softirq 181 * handler. This means that read-side critical sections in process 182 * context must not be interrupted by softirqs. This interface is to be 183 * used when most of the read-side critical sections are in softirq context. 184 * RCU read-side critical sections are delimited by : 185 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context. 186 * OR 187 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context. 188 * These may be nested. 189 * 190 * See the description of call_rcu() for more detailed information on 191 * memory ordering guarantees. 192 */ 193 void call_rcu_bh(struct rcu_head *head, 194 rcu_callback_t func); 195 196 /** 197 * call_rcu_sched() - Queue an RCU for invocation after sched grace period. 198 * @head: structure to be used for queueing the RCU updates. 199 * @func: actual callback function to be invoked after the grace period 200 * 201 * The callback function will be invoked some time after a full grace 202 * period elapses, in other words after all currently executing RCU 203 * read-side critical sections have completed. call_rcu_sched() assumes 204 * that the read-side critical sections end on enabling of preemption 205 * or on voluntary preemption. 206 * RCU read-side critical sections are delimited by : 207 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), 208 * OR 209 * anything that disables preemption. 210 * These may be nested. 211 * 212 * See the description of call_rcu() for more detailed information on 213 * memory ordering guarantees. 214 */ 215 void call_rcu_sched(struct rcu_head *head, 216 rcu_callback_t func); 217 218 void synchronize_sched(void); 219 220 /* 221 * Structure allowing asynchronous waiting on RCU. 222 */ 223 struct rcu_synchronize { 224 struct rcu_head head; 225 struct completion completion; 226 }; 227 void wakeme_after_rcu(struct rcu_head *head); 228 229 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array, 230 struct rcu_synchronize *rs_array); 231 232 #define _wait_rcu_gp(checktiny, ...) \ 233 do { \ 234 call_rcu_func_t __crcu_array[] = { __VA_ARGS__ }; \ 235 struct rcu_synchronize __rs_array[ARRAY_SIZE(__crcu_array)]; \ 236 __wait_rcu_gp(checktiny, ARRAY_SIZE(__crcu_array), \ 237 __crcu_array, __rs_array); \ 238 } while (0) 239 240 #define wait_rcu_gp(...) _wait_rcu_gp(false, __VA_ARGS__) 241 242 /** 243 * synchronize_rcu_mult - Wait concurrently for multiple grace periods 244 * @...: List of call_rcu() functions for the flavors to wait on. 245 * 246 * This macro waits concurrently for multiple flavors of RCU grace periods. 247 * For example, synchronize_rcu_mult(call_rcu, call_rcu_bh) would wait 248 * on concurrent RCU and RCU-bh grace periods. Waiting on a give SRCU 249 * domain requires you to write a wrapper function for that SRCU domain's 250 * call_srcu() function, supplying the corresponding srcu_struct. 251 * 252 * If Tiny RCU, tell _wait_rcu_gp() not to bother waiting for RCU 253 * or RCU-bh, given that anywhere synchronize_rcu_mult() can be called 254 * is automatically a grace period. 255 */ 256 #define synchronize_rcu_mult(...) \ 257 _wait_rcu_gp(IS_ENABLED(CONFIG_TINY_RCU), __VA_ARGS__) 258 259 /** 260 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period 261 * @head: structure to be used for queueing the RCU updates. 262 * @func: actual callback function to be invoked after the grace period 263 * 264 * The callback function will be invoked some time after a full grace 265 * period elapses, in other words after all currently executing RCU 266 * read-side critical sections have completed. call_rcu_tasks() assumes 267 * that the read-side critical sections end at a voluntary context 268 * switch (not a preemption!), entry into idle, or transition to usermode 269 * execution. As such, there are no read-side primitives analogous to 270 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended 271 * to determine that all tasks have passed through a safe state, not so 272 * much for data-strcuture synchronization. 273 * 274 * See the description of call_rcu() for more detailed information on 275 * memory ordering guarantees. 276 */ 277 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func); 278 void synchronize_rcu_tasks(void); 279 void rcu_barrier_tasks(void); 280 281 #ifdef CONFIG_PREEMPT_RCU 282 283 void __rcu_read_lock(void); 284 void __rcu_read_unlock(void); 285 void rcu_read_unlock_special(struct task_struct *t); 286 void synchronize_rcu(void); 287 288 /* 289 * Defined as a macro as it is a very low level header included from 290 * areas that don't even know about current. This gives the rcu_read_lock() 291 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 292 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 293 */ 294 #define rcu_preempt_depth() (current->rcu_read_lock_nesting) 295 296 #else /* #ifdef CONFIG_PREEMPT_RCU */ 297 298 static inline void __rcu_read_lock(void) 299 { 300 if (IS_ENABLED(CONFIG_PREEMPT_COUNT)) 301 preempt_disable(); 302 } 303 304 static inline void __rcu_read_unlock(void) 305 { 306 if (IS_ENABLED(CONFIG_PREEMPT_COUNT)) 307 preempt_enable(); 308 } 309 310 static inline void synchronize_rcu(void) 311 { 312 synchronize_sched(); 313 } 314 315 static inline int rcu_preempt_depth(void) 316 { 317 return 0; 318 } 319 320 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 321 322 /* Internal to kernel */ 323 void rcu_init(void); 324 void rcu_end_inkernel_boot(void); 325 void rcu_sched_qs(void); 326 void rcu_bh_qs(void); 327 void rcu_check_callbacks(int user); 328 struct notifier_block; 329 int rcu_cpu_notify(struct notifier_block *self, 330 unsigned long action, void *hcpu); 331 332 #ifdef CONFIG_RCU_STALL_COMMON 333 void rcu_sysrq_start(void); 334 void rcu_sysrq_end(void); 335 #else /* #ifdef CONFIG_RCU_STALL_COMMON */ 336 static inline void rcu_sysrq_start(void) 337 { 338 } 339 static inline void rcu_sysrq_end(void) 340 { 341 } 342 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ 343 344 #ifdef CONFIG_NO_HZ_FULL 345 void rcu_user_enter(void); 346 void rcu_user_exit(void); 347 #else 348 static inline void rcu_user_enter(void) { } 349 static inline void rcu_user_exit(void) { } 350 static inline void rcu_user_hooks_switch(struct task_struct *prev, 351 struct task_struct *next) { } 352 #endif /* CONFIG_NO_HZ_FULL */ 353 354 #ifdef CONFIG_RCU_NOCB_CPU 355 void rcu_init_nohz(void); 356 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 357 static inline void rcu_init_nohz(void) 358 { 359 } 360 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 361 362 /** 363 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers 364 * @a: Code that RCU needs to pay attention to. 365 * 366 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden 367 * in the inner idle loop, that is, between the rcu_idle_enter() and 368 * the rcu_idle_exit() -- RCU will happily ignore any such read-side 369 * critical sections. However, things like powertop need tracepoints 370 * in the inner idle loop. 371 * 372 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) 373 * will tell RCU that it needs to pay attending, invoke its argument 374 * (in this example, a call to the do_something_with_RCU() function), 375 * and then tell RCU to go back to ignoring this CPU. It is permissible 376 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently 377 * quite limited. If deeper nesting is required, it will be necessary 378 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly. 379 */ 380 #define RCU_NONIDLE(a) \ 381 do { \ 382 rcu_irq_enter(); \ 383 do { a; } while (0); \ 384 rcu_irq_exit(); \ 385 } while (0) 386 387 /* 388 * Note a voluntary context switch for RCU-tasks benefit. This is a 389 * macro rather than an inline function to avoid #include hell. 390 */ 391 #ifdef CONFIG_TASKS_RCU 392 #define TASKS_RCU(x) x 393 extern struct srcu_struct tasks_rcu_exit_srcu; 394 #define rcu_note_voluntary_context_switch(t) \ 395 do { \ 396 rcu_all_qs(); \ 397 if (READ_ONCE((t)->rcu_tasks_holdout)) \ 398 WRITE_ONCE((t)->rcu_tasks_holdout, false); \ 399 } while (0) 400 #else /* #ifdef CONFIG_TASKS_RCU */ 401 #define TASKS_RCU(x) do { } while (0) 402 #define rcu_note_voluntary_context_switch(t) rcu_all_qs() 403 #endif /* #else #ifdef CONFIG_TASKS_RCU */ 404 405 /** 406 * cond_resched_rcu_qs - Report potential quiescent states to RCU 407 * 408 * This macro resembles cond_resched(), except that it is defined to 409 * report potential quiescent states to RCU-tasks even if the cond_resched() 410 * machinery were to be shut off, as some advocate for PREEMPT kernels. 411 */ 412 #define cond_resched_rcu_qs() \ 413 do { \ 414 if (!cond_resched()) \ 415 rcu_note_voluntary_context_switch(current); \ 416 } while (0) 417 418 #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) 419 bool __rcu_is_watching(void); 420 #endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */ 421 422 /* 423 * Infrastructure to implement the synchronize_() primitives in 424 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 425 */ 426 427 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) 428 #include <linux/rcutree.h> 429 #elif defined(CONFIG_TINY_RCU) 430 #include <linux/rcutiny.h> 431 #else 432 #error "Unknown RCU implementation specified to kernel configuration" 433 #endif 434 435 /* 436 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic 437 * initialization and destruction of rcu_head on the stack. rcu_head structures 438 * allocated dynamically in the heap or defined statically don't need any 439 * initialization. 440 */ 441 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 442 void init_rcu_head(struct rcu_head *head); 443 void destroy_rcu_head(struct rcu_head *head); 444 void init_rcu_head_on_stack(struct rcu_head *head); 445 void destroy_rcu_head_on_stack(struct rcu_head *head); 446 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 447 static inline void init_rcu_head(struct rcu_head *head) 448 { 449 } 450 451 static inline void destroy_rcu_head(struct rcu_head *head) 452 { 453 } 454 455 static inline void init_rcu_head_on_stack(struct rcu_head *head) 456 { 457 } 458 459 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) 460 { 461 } 462 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 463 464 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 465 bool rcu_lockdep_current_cpu_online(void); 466 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 467 static inline bool rcu_lockdep_current_cpu_online(void) 468 { 469 return true; 470 } 471 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 472 473 #ifdef CONFIG_DEBUG_LOCK_ALLOC 474 475 static inline void rcu_lock_acquire(struct lockdep_map *map) 476 { 477 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); 478 } 479 480 static inline void rcu_lock_release(struct lockdep_map *map) 481 { 482 lock_release(map, 1, _THIS_IP_); 483 } 484 485 extern struct lockdep_map rcu_lock_map; 486 extern struct lockdep_map rcu_bh_lock_map; 487 extern struct lockdep_map rcu_sched_lock_map; 488 extern struct lockdep_map rcu_callback_map; 489 int debug_lockdep_rcu_enabled(void); 490 491 int rcu_read_lock_held(void); 492 int rcu_read_lock_bh_held(void); 493 494 /** 495 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section? 496 * 497 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an 498 * RCU-sched read-side critical section. In absence of 499 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side 500 * critical section unless it can prove otherwise. 501 */ 502 #ifdef CONFIG_PREEMPT_COUNT 503 int rcu_read_lock_sched_held(void); 504 #else /* #ifdef CONFIG_PREEMPT_COUNT */ 505 static inline int rcu_read_lock_sched_held(void) 506 { 507 return 1; 508 } 509 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ 510 511 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 512 513 # define rcu_lock_acquire(a) do { } while (0) 514 # define rcu_lock_release(a) do { } while (0) 515 516 static inline int rcu_read_lock_held(void) 517 { 518 return 1; 519 } 520 521 static inline int rcu_read_lock_bh_held(void) 522 { 523 return 1; 524 } 525 526 #ifdef CONFIG_PREEMPT_COUNT 527 static inline int rcu_read_lock_sched_held(void) 528 { 529 return preempt_count() != 0 || irqs_disabled(); 530 } 531 #else /* #ifdef CONFIG_PREEMPT_COUNT */ 532 static inline int rcu_read_lock_sched_held(void) 533 { 534 return 1; 535 } 536 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ 537 538 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 539 540 #ifdef CONFIG_PROVE_RCU 541 542 /** 543 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met 544 * @c: condition to check 545 * @s: informative message 546 */ 547 #define RCU_LOCKDEP_WARN(c, s) \ 548 do { \ 549 static bool __section(.data.unlikely) __warned; \ 550 if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \ 551 __warned = true; \ 552 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 553 } \ 554 } while (0) 555 556 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 557 static inline void rcu_preempt_sleep_check(void) 558 { 559 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 560 "Illegal context switch in RCU read-side critical section"); 561 } 562 #else /* #ifdef CONFIG_PROVE_RCU */ 563 static inline void rcu_preempt_sleep_check(void) 564 { 565 } 566 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 567 568 #define rcu_sleep_check() \ 569 do { \ 570 rcu_preempt_sleep_check(); \ 571 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ 572 "Illegal context switch in RCU-bh read-side critical section"); \ 573 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ 574 "Illegal context switch in RCU-sched read-side critical section"); \ 575 } while (0) 576 577 #else /* #ifdef CONFIG_PROVE_RCU */ 578 579 #define RCU_LOCKDEP_WARN(c, s) do { } while (0) 580 #define rcu_sleep_check() do { } while (0) 581 582 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 583 584 /* 585 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 586 * and rcu_assign_pointer(). Some of these could be folded into their 587 * callers, but they are left separate in order to ease introduction of 588 * multiple flavors of pointers to match the multiple flavors of RCU 589 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in 590 * the future. 591 */ 592 593 #ifdef __CHECKER__ 594 #define rcu_dereference_sparse(p, space) \ 595 ((void)(((typeof(*p) space *)p) == p)) 596 #else /* #ifdef __CHECKER__ */ 597 #define rcu_dereference_sparse(p, space) 598 #endif /* #else #ifdef __CHECKER__ */ 599 600 #define __rcu_access_pointer(p, space) \ 601 ({ \ 602 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \ 603 rcu_dereference_sparse(p, space); \ 604 ((typeof(*p) __force __kernel *)(_________p1)); \ 605 }) 606 #define __rcu_dereference_check(p, c, space) \ 607 ({ \ 608 /* Dependency order vs. p above. */ \ 609 typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \ 610 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ 611 rcu_dereference_sparse(p, space); \ 612 ((typeof(*p) __force __kernel *)(________p1)); \ 613 }) 614 #define __rcu_dereference_protected(p, c, space) \ 615 ({ \ 616 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ 617 rcu_dereference_sparse(p, space); \ 618 ((typeof(*p) __force __kernel *)(p)); \ 619 }) 620 621 /** 622 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable 623 * @v: The value to statically initialize with. 624 */ 625 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) 626 627 /** 628 * rcu_assign_pointer() - assign to RCU-protected pointer 629 * @p: pointer to assign to 630 * @v: value to assign (publish) 631 * 632 * Assigns the specified value to the specified RCU-protected 633 * pointer, ensuring that any concurrent RCU readers will see 634 * any prior initialization. 635 * 636 * Inserts memory barriers on architectures that require them 637 * (which is most of them), and also prevents the compiler from 638 * reordering the code that initializes the structure after the pointer 639 * assignment. More importantly, this call documents which pointers 640 * will be dereferenced by RCU read-side code. 641 * 642 * In some special cases, you may use RCU_INIT_POINTER() instead 643 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 644 * to the fact that it does not constrain either the CPU or the compiler. 645 * That said, using RCU_INIT_POINTER() when you should have used 646 * rcu_assign_pointer() is a very bad thing that results in 647 * impossible-to-diagnose memory corruption. So please be careful. 648 * See the RCU_INIT_POINTER() comment header for details. 649 * 650 * Note that rcu_assign_pointer() evaluates each of its arguments only 651 * once, appearances notwithstanding. One of the "extra" evaluations 652 * is in typeof() and the other visible only to sparse (__CHECKER__), 653 * neither of which actually execute the argument. As with most cpp 654 * macros, this execute-arguments-only-once property is important, so 655 * please be careful when making changes to rcu_assign_pointer() and the 656 * other macros that it invokes. 657 */ 658 #define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v)) 659 660 /** 661 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 662 * @p: The pointer to read 663 * 664 * Return the value of the specified RCU-protected pointer, but omit the 665 * smp_read_barrier_depends() and keep the READ_ONCE(). This is useful 666 * when the value of this pointer is accessed, but the pointer is not 667 * dereferenced, for example, when testing an RCU-protected pointer against 668 * NULL. Although rcu_access_pointer() may also be used in cases where 669 * update-side locks prevent the value of the pointer from changing, you 670 * should instead use rcu_dereference_protected() for this use case. 671 * 672 * It is also permissible to use rcu_access_pointer() when read-side 673 * access to the pointer was removed at least one grace period ago, as 674 * is the case in the context of the RCU callback that is freeing up 675 * the data, or after a synchronize_rcu() returns. This can be useful 676 * when tearing down multi-linked structures after a grace period 677 * has elapsed. 678 */ 679 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) 680 681 /** 682 * rcu_dereference_check() - rcu_dereference with debug checking 683 * @p: The pointer to read, prior to dereferencing 684 * @c: The conditions under which the dereference will take place 685 * 686 * Do an rcu_dereference(), but check that the conditions under which the 687 * dereference will take place are correct. Typically the conditions 688 * indicate the various locking conditions that should be held at that 689 * point. The check should return true if the conditions are satisfied. 690 * An implicit check for being in an RCU read-side critical section 691 * (rcu_read_lock()) is included. 692 * 693 * For example: 694 * 695 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 696 * 697 * could be used to indicate to lockdep that foo->bar may only be dereferenced 698 * if either rcu_read_lock() is held, or that the lock required to replace 699 * the bar struct at foo->bar is held. 700 * 701 * Note that the list of conditions may also include indications of when a lock 702 * need not be held, for example during initialisation or destruction of the 703 * target struct: 704 * 705 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 706 * atomic_read(&foo->usage) == 0); 707 * 708 * Inserts memory barriers on architectures that require them 709 * (currently only the Alpha), prevents the compiler from refetching 710 * (and from merging fetches), and, more importantly, documents exactly 711 * which pointers are protected by RCU and checks that the pointer is 712 * annotated as __rcu. 713 */ 714 #define rcu_dereference_check(p, c) \ 715 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu) 716 717 /** 718 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 719 * @p: The pointer to read, prior to dereferencing 720 * @c: The conditions under which the dereference will take place 721 * 722 * This is the RCU-bh counterpart to rcu_dereference_check(). 723 */ 724 #define rcu_dereference_bh_check(p, c) \ 725 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu) 726 727 /** 728 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 729 * @p: The pointer to read, prior to dereferencing 730 * @c: The conditions under which the dereference will take place 731 * 732 * This is the RCU-sched counterpart to rcu_dereference_check(). 733 */ 734 #define rcu_dereference_sched_check(p, c) \ 735 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \ 736 __rcu) 737 738 #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/ 739 740 /* 741 * The tracing infrastructure traces RCU (we want that), but unfortunately 742 * some of the RCU checks causes tracing to lock up the system. 743 * 744 * The tracing version of rcu_dereference_raw() must not call 745 * rcu_read_lock_held(). 746 */ 747 #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu) 748 749 /** 750 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 751 * @p: The pointer to read, prior to dereferencing 752 * @c: The conditions under which the dereference will take place 753 * 754 * Return the value of the specified RCU-protected pointer, but omit 755 * both the smp_read_barrier_depends() and the READ_ONCE(). This 756 * is useful in cases where update-side locks prevent the value of the 757 * pointer from changing. Please note that this primitive does -not- 758 * prevent the compiler from repeating this reference or combining it 759 * with other references, so it should not be used without protection 760 * of appropriate locks. 761 * 762 * This function is only for update-side use. Using this function 763 * when protected only by rcu_read_lock() will result in infrequent 764 * but very ugly failures. 765 */ 766 #define rcu_dereference_protected(p, c) \ 767 __rcu_dereference_protected((p), (c), __rcu) 768 769 770 /** 771 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 772 * @p: The pointer to read, prior to dereferencing 773 * 774 * This is a simple wrapper around rcu_dereference_check(). 775 */ 776 #define rcu_dereference(p) rcu_dereference_check(p, 0) 777 778 /** 779 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 780 * @p: The pointer to read, prior to dereferencing 781 * 782 * Makes rcu_dereference_check() do the dirty work. 783 */ 784 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 785 786 /** 787 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 788 * @p: The pointer to read, prior to dereferencing 789 * 790 * Makes rcu_dereference_check() do the dirty work. 791 */ 792 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 793 794 /** 795 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism 796 * @p: The pointer to hand off 797 * 798 * This is simply an identity function, but it documents where a pointer 799 * is handed off from RCU to some other synchronization mechanism, for 800 * example, reference counting or locking. In C11, it would map to 801 * kill_dependency(). It could be used as follows: 802 * 803 * rcu_read_lock(); 804 * p = rcu_dereference(gp); 805 * long_lived = is_long_lived(p); 806 * if (long_lived) { 807 * if (!atomic_inc_not_zero(p->refcnt)) 808 * long_lived = false; 809 * else 810 * p = rcu_pointer_handoff(p); 811 * } 812 * rcu_read_unlock(); 813 */ 814 #define rcu_pointer_handoff(p) (p) 815 816 /** 817 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 818 * 819 * When synchronize_rcu() is invoked on one CPU while other CPUs 820 * are within RCU read-side critical sections, then the 821 * synchronize_rcu() is guaranteed to block until after all the other 822 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 823 * on one CPU while other CPUs are within RCU read-side critical 824 * sections, invocation of the corresponding RCU callback is deferred 825 * until after the all the other CPUs exit their critical sections. 826 * 827 * Note, however, that RCU callbacks are permitted to run concurrently 828 * with new RCU read-side critical sections. One way that this can happen 829 * is via the following sequence of events: (1) CPU 0 enters an RCU 830 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 831 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 832 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 833 * callback is invoked. This is legal, because the RCU read-side critical 834 * section that was running concurrently with the call_rcu() (and which 835 * therefore might be referencing something that the corresponding RCU 836 * callback would free up) has completed before the corresponding 837 * RCU callback is invoked. 838 * 839 * RCU read-side critical sections may be nested. Any deferred actions 840 * will be deferred until the outermost RCU read-side critical section 841 * completes. 842 * 843 * You can avoid reading and understanding the next paragraph by 844 * following this rule: don't put anything in an rcu_read_lock() RCU 845 * read-side critical section that would block in a !PREEMPT kernel. 846 * But if you want the full story, read on! 847 * 848 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), 849 * it is illegal to block while in an RCU read-side critical section. 850 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT 851 * kernel builds, RCU read-side critical sections may be preempted, 852 * but explicit blocking is illegal. Finally, in preemptible RCU 853 * implementations in real-time (with -rt patchset) kernel builds, RCU 854 * read-side critical sections may be preempted and they may also block, but 855 * only when acquiring spinlocks that are subject to priority inheritance. 856 */ 857 static inline void rcu_read_lock(void) 858 { 859 __rcu_read_lock(); 860 __acquire(RCU); 861 rcu_lock_acquire(&rcu_lock_map); 862 RCU_LOCKDEP_WARN(!rcu_is_watching(), 863 "rcu_read_lock() used illegally while idle"); 864 } 865 866 /* 867 * So where is rcu_write_lock()? It does not exist, as there is no 868 * way for writers to lock out RCU readers. This is a feature, not 869 * a bug -- this property is what provides RCU's performance benefits. 870 * Of course, writers must coordinate with each other. The normal 871 * spinlock primitives work well for this, but any other technique may be 872 * used as well. RCU does not care how the writers keep out of each 873 * others' way, as long as they do so. 874 */ 875 876 /** 877 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 878 * 879 * In most situations, rcu_read_unlock() is immune from deadlock. 880 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock() 881 * is responsible for deboosting, which it does via rt_mutex_unlock(). 882 * Unfortunately, this function acquires the scheduler's runqueue and 883 * priority-inheritance spinlocks. This means that deadlock could result 884 * if the caller of rcu_read_unlock() already holds one of these locks or 885 * any lock that is ever acquired while holding them; or any lock which 886 * can be taken from interrupt context because rcu_boost()->rt_mutex_lock() 887 * does not disable irqs while taking ->wait_lock. 888 * 889 * That said, RCU readers are never priority boosted unless they were 890 * preempted. Therefore, one way to avoid deadlock is to make sure 891 * that preemption never happens within any RCU read-side critical 892 * section whose outermost rcu_read_unlock() is called with one of 893 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in 894 * a number of ways, for example, by invoking preempt_disable() before 895 * critical section's outermost rcu_read_lock(). 896 * 897 * Given that the set of locks acquired by rt_mutex_unlock() might change 898 * at any time, a somewhat more future-proofed approach is to make sure 899 * that that preemption never happens within any RCU read-side critical 900 * section whose outermost rcu_read_unlock() is called with irqs disabled. 901 * This approach relies on the fact that rt_mutex_unlock() currently only 902 * acquires irq-disabled locks. 903 * 904 * The second of these two approaches is best in most situations, 905 * however, the first approach can also be useful, at least to those 906 * developers willing to keep abreast of the set of locks acquired by 907 * rt_mutex_unlock(). 908 * 909 * See rcu_read_lock() for more information. 910 */ 911 static inline void rcu_read_unlock(void) 912 { 913 RCU_LOCKDEP_WARN(!rcu_is_watching(), 914 "rcu_read_unlock() used illegally while idle"); 915 __release(RCU); 916 __rcu_read_unlock(); 917 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ 918 } 919 920 /** 921 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 922 * 923 * This is equivalent of rcu_read_lock(), but to be used when updates 924 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since 925 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a 926 * softirq handler to be a quiescent state, a process in RCU read-side 927 * critical section must be protected by disabling softirqs. Read-side 928 * critical sections in interrupt context can use just rcu_read_lock(), 929 * though this should at least be commented to avoid confusing people 930 * reading the code. 931 * 932 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 933 * must occur in the same context, for example, it is illegal to invoke 934 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 935 * was invoked from some other task. 936 */ 937 static inline void rcu_read_lock_bh(void) 938 { 939 local_bh_disable(); 940 __acquire(RCU_BH); 941 rcu_lock_acquire(&rcu_bh_lock_map); 942 RCU_LOCKDEP_WARN(!rcu_is_watching(), 943 "rcu_read_lock_bh() used illegally while idle"); 944 } 945 946 /* 947 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section 948 * 949 * See rcu_read_lock_bh() for more information. 950 */ 951 static inline void rcu_read_unlock_bh(void) 952 { 953 RCU_LOCKDEP_WARN(!rcu_is_watching(), 954 "rcu_read_unlock_bh() used illegally while idle"); 955 rcu_lock_release(&rcu_bh_lock_map); 956 __release(RCU_BH); 957 local_bh_enable(); 958 } 959 960 /** 961 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 962 * 963 * This is equivalent of rcu_read_lock(), but to be used when updates 964 * are being done using call_rcu_sched() or synchronize_rcu_sched(). 965 * Read-side critical sections can also be introduced by anything that 966 * disables preemption, including local_irq_disable() and friends. 967 * 968 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 969 * must occur in the same context, for example, it is illegal to invoke 970 * rcu_read_unlock_sched() from process context if the matching 971 * rcu_read_lock_sched() was invoked from an NMI handler. 972 */ 973 static inline void rcu_read_lock_sched(void) 974 { 975 preempt_disable(); 976 __acquire(RCU_SCHED); 977 rcu_lock_acquire(&rcu_sched_lock_map); 978 RCU_LOCKDEP_WARN(!rcu_is_watching(), 979 "rcu_read_lock_sched() used illegally while idle"); 980 } 981 982 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 983 static inline notrace void rcu_read_lock_sched_notrace(void) 984 { 985 preempt_disable_notrace(); 986 __acquire(RCU_SCHED); 987 } 988 989 /* 990 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section 991 * 992 * See rcu_read_lock_sched for more information. 993 */ 994 static inline void rcu_read_unlock_sched(void) 995 { 996 RCU_LOCKDEP_WARN(!rcu_is_watching(), 997 "rcu_read_unlock_sched() used illegally while idle"); 998 rcu_lock_release(&rcu_sched_lock_map); 999 __release(RCU_SCHED); 1000 preempt_enable(); 1001 } 1002 1003 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 1004 static inline notrace void rcu_read_unlock_sched_notrace(void) 1005 { 1006 __release(RCU_SCHED); 1007 preempt_enable_notrace(); 1008 } 1009 1010 /** 1011 * RCU_INIT_POINTER() - initialize an RCU protected pointer 1012 * 1013 * Initialize an RCU-protected pointer in special cases where readers 1014 * do not need ordering constraints on the CPU or the compiler. These 1015 * special cases are: 1016 * 1017 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or- 1018 * 2. The caller has taken whatever steps are required to prevent 1019 * RCU readers from concurrently accessing this pointer -or- 1020 * 3. The referenced data structure has already been exposed to 1021 * readers either at compile time or via rcu_assign_pointer() -and- 1022 * a. You have not made -any- reader-visible changes to 1023 * this structure since then -or- 1024 * b. It is OK for readers accessing this structure from its 1025 * new location to see the old state of the structure. (For 1026 * example, the changes were to statistical counters or to 1027 * other state where exact synchronization is not required.) 1028 * 1029 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 1030 * result in impossible-to-diagnose memory corruption. As in the structures 1031 * will look OK in crash dumps, but any concurrent RCU readers might 1032 * see pre-initialized values of the referenced data structure. So 1033 * please be very careful how you use RCU_INIT_POINTER()!!! 1034 * 1035 * If you are creating an RCU-protected linked structure that is accessed 1036 * by a single external-to-structure RCU-protected pointer, then you may 1037 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 1038 * pointers, but you must use rcu_assign_pointer() to initialize the 1039 * external-to-structure pointer -after- you have completely initialized 1040 * the reader-accessible portions of the linked structure. 1041 * 1042 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no 1043 * ordering guarantees for either the CPU or the compiler. 1044 */ 1045 #define RCU_INIT_POINTER(p, v) \ 1046 do { \ 1047 rcu_dereference_sparse(p, __rcu); \ 1048 WRITE_ONCE(p, RCU_INITIALIZER(v)); \ 1049 } while (0) 1050 1051 /** 1052 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 1053 * 1054 * GCC-style initialization for an RCU-protected pointer in a structure field. 1055 */ 1056 #define RCU_POINTER_INITIALIZER(p, v) \ 1057 .p = RCU_INITIALIZER(v) 1058 1059 /* 1060 * Does the specified offset indicate that the corresponding rcu_head 1061 * structure can be handled by kfree_rcu()? 1062 */ 1063 #define __is_kfree_rcu_offset(offset) ((offset) < 4096) 1064 1065 /* 1066 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain. 1067 */ 1068 #define __kfree_rcu(head, offset) \ 1069 do { \ 1070 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \ 1071 kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \ 1072 } while (0) 1073 1074 /** 1075 * kfree_rcu() - kfree an object after a grace period. 1076 * @ptr: pointer to kfree 1077 * @rcu_head: the name of the struct rcu_head within the type of @ptr. 1078 * 1079 * Many rcu callbacks functions just call kfree() on the base structure. 1080 * These functions are trivial, but their size adds up, and furthermore 1081 * when they are used in a kernel module, that module must invoke the 1082 * high-latency rcu_barrier() function at module-unload time. 1083 * 1084 * The kfree_rcu() function handles this issue. Rather than encoding a 1085 * function address in the embedded rcu_head structure, kfree_rcu() instead 1086 * encodes the offset of the rcu_head structure within the base structure. 1087 * Because the functions are not allowed in the low-order 4096 bytes of 1088 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 1089 * If the offset is larger than 4095 bytes, a compile-time error will 1090 * be generated in __kfree_rcu(). If this error is triggered, you can 1091 * either fall back to use of call_rcu() or rearrange the structure to 1092 * position the rcu_head structure into the first 4096 bytes. 1093 * 1094 * Note that the allowable offset might decrease in the future, for example, 1095 * to allow something like kmem_cache_free_rcu(). 1096 * 1097 * The BUILD_BUG_ON check must not involve any function calls, hence the 1098 * checks are done in macros here. 1099 */ 1100 #define kfree_rcu(ptr, rcu_head) \ 1101 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head)) 1102 1103 #ifdef CONFIG_TINY_RCU 1104 static inline int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1105 { 1106 *nextevt = KTIME_MAX; 1107 return 0; 1108 } 1109 #endif /* #ifdef CONFIG_TINY_RCU */ 1110 1111 #if defined(CONFIG_RCU_NOCB_CPU_ALL) 1112 static inline bool rcu_is_nocb_cpu(int cpu) { return true; } 1113 #elif defined(CONFIG_RCU_NOCB_CPU) 1114 bool rcu_is_nocb_cpu(int cpu); 1115 #else 1116 static inline bool rcu_is_nocb_cpu(int cpu) { return false; } 1117 #endif 1118 1119 1120 /* Only for use by adaptive-ticks code. */ 1121 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 1122 bool rcu_sys_is_idle(void); 1123 void rcu_sysidle_force_exit(void); 1124 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 1125 1126 static inline bool rcu_sys_is_idle(void) 1127 { 1128 return false; 1129 } 1130 1131 static inline void rcu_sysidle_force_exit(void) 1132 { 1133 } 1134 1135 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 1136 1137 1138 #endif /* __LINUX_RCUPDATE_H */ 1139