1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright IBM Corporation, 2001 19 * 20 * Author: Dipankar Sarma <[email protected]> 21 * 22 * Based on the original work by Paul McKenney <[email protected]> 23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 24 * Papers: 25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 27 * 28 * For detailed explanation of Read-Copy Update mechanism see - 29 * http://lse.sourceforge.net/locking/rcupdate.html 30 * 31 */ 32 33 #ifndef __LINUX_RCUPDATE_H 34 #define __LINUX_RCUPDATE_H 35 36 #include <linux/types.h> 37 #include <linux/cache.h> 38 #include <linux/spinlock.h> 39 #include <linux/threads.h> 40 #include <linux/cpumask.h> 41 #include <linux/seqlock.h> 42 #include <linux/lockdep.h> 43 #include <linux/completion.h> 44 #include <linux/debugobjects.h> 45 #include <linux/bug.h> 46 #include <linux/compiler.h> 47 48 #ifdef CONFIG_RCU_TORTURE_TEST 49 extern int rcutorture_runnable; /* for sysctl */ 50 #endif /* #ifdef CONFIG_RCU_TORTURE_TEST */ 51 52 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) 53 extern void rcutorture_record_test_transition(void); 54 extern void rcutorture_record_progress(unsigned long vernum); 55 extern void do_trace_rcu_torture_read(char *rcutorturename, 56 struct rcu_head *rhp, 57 unsigned long secs, 58 unsigned long c_old, 59 unsigned long c); 60 #else 61 static inline void rcutorture_record_test_transition(void) 62 { 63 } 64 static inline void rcutorture_record_progress(unsigned long vernum) 65 { 66 } 67 #ifdef CONFIG_RCU_TRACE 68 extern void do_trace_rcu_torture_read(char *rcutorturename, 69 struct rcu_head *rhp, 70 unsigned long secs, 71 unsigned long c_old, 72 unsigned long c); 73 #else 74 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ 75 do { } while (0) 76 #endif 77 #endif 78 79 #define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b)) 80 #define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b)) 81 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 82 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 83 #define ulong2long(a) (*(long *)(&(a))) 84 85 /* Exported common interfaces */ 86 87 #ifdef CONFIG_PREEMPT_RCU 88 89 /** 90 * call_rcu() - Queue an RCU callback for invocation after a grace period. 91 * @head: structure to be used for queueing the RCU updates. 92 * @func: actual callback function to be invoked after the grace period 93 * 94 * The callback function will be invoked some time after a full grace 95 * period elapses, in other words after all pre-existing RCU read-side 96 * critical sections have completed. However, the callback function 97 * might well execute concurrently with RCU read-side critical sections 98 * that started after call_rcu() was invoked. RCU read-side critical 99 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), 100 * and may be nested. 101 * 102 * Note that all CPUs must agree that the grace period extended beyond 103 * all pre-existing RCU read-side critical section. On systems with more 104 * than one CPU, this means that when "func()" is invoked, each CPU is 105 * guaranteed to have executed a full memory barrier since the end of its 106 * last RCU read-side critical section whose beginning preceded the call 107 * to call_rcu(). It also means that each CPU executing an RCU read-side 108 * critical section that continues beyond the start of "func()" must have 109 * executed a memory barrier after the call_rcu() but before the beginning 110 * of that RCU read-side critical section. Note that these guarantees 111 * include CPUs that are offline, idle, or executing in user mode, as 112 * well as CPUs that are executing in the kernel. 113 * 114 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 115 * resulting RCU callback function "func()", then both CPU A and CPU B are 116 * guaranteed to execute a full memory barrier during the time interval 117 * between the call to call_rcu() and the invocation of "func()" -- even 118 * if CPU A and CPU B are the same CPU (but again only if the system has 119 * more than one CPU). 120 */ 121 extern void call_rcu(struct rcu_head *head, 122 void (*func)(struct rcu_head *head)); 123 124 #else /* #ifdef CONFIG_PREEMPT_RCU */ 125 126 /* In classic RCU, call_rcu() is just call_rcu_sched(). */ 127 #define call_rcu call_rcu_sched 128 129 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 130 131 /** 132 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period. 133 * @head: structure to be used for queueing the RCU updates. 134 * @func: actual callback function to be invoked after the grace period 135 * 136 * The callback function will be invoked some time after a full grace 137 * period elapses, in other words after all currently executing RCU 138 * read-side critical sections have completed. call_rcu_bh() assumes 139 * that the read-side critical sections end on completion of a softirq 140 * handler. This means that read-side critical sections in process 141 * context must not be interrupted by softirqs. This interface is to be 142 * used when most of the read-side critical sections are in softirq context. 143 * RCU read-side critical sections are delimited by : 144 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context. 145 * OR 146 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context. 147 * These may be nested. 148 * 149 * See the description of call_rcu() for more detailed information on 150 * memory ordering guarantees. 151 */ 152 extern void call_rcu_bh(struct rcu_head *head, 153 void (*func)(struct rcu_head *head)); 154 155 /** 156 * call_rcu_sched() - Queue an RCU for invocation after sched grace period. 157 * @head: structure to be used for queueing the RCU updates. 158 * @func: actual callback function to be invoked after the grace period 159 * 160 * The callback function will be invoked some time after a full grace 161 * period elapses, in other words after all currently executing RCU 162 * read-side critical sections have completed. call_rcu_sched() assumes 163 * that the read-side critical sections end on enabling of preemption 164 * or on voluntary preemption. 165 * RCU read-side critical sections are delimited by : 166 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), 167 * OR 168 * anything that disables preemption. 169 * These may be nested. 170 * 171 * See the description of call_rcu() for more detailed information on 172 * memory ordering guarantees. 173 */ 174 extern void call_rcu_sched(struct rcu_head *head, 175 void (*func)(struct rcu_head *rcu)); 176 177 extern void synchronize_sched(void); 178 179 #ifdef CONFIG_PREEMPT_RCU 180 181 extern void __rcu_read_lock(void); 182 extern void __rcu_read_unlock(void); 183 extern void rcu_read_unlock_special(struct task_struct *t); 184 void synchronize_rcu(void); 185 186 /* 187 * Defined as a macro as it is a very low level header included from 188 * areas that don't even know about current. This gives the rcu_read_lock() 189 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 190 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 191 */ 192 #define rcu_preempt_depth() (current->rcu_read_lock_nesting) 193 194 #else /* #ifdef CONFIG_PREEMPT_RCU */ 195 196 static inline void __rcu_read_lock(void) 197 { 198 preempt_disable(); 199 } 200 201 static inline void __rcu_read_unlock(void) 202 { 203 preempt_enable(); 204 } 205 206 static inline void synchronize_rcu(void) 207 { 208 synchronize_sched(); 209 } 210 211 static inline int rcu_preempt_depth(void) 212 { 213 return 0; 214 } 215 216 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 217 218 /* Internal to kernel */ 219 extern void rcu_sched_qs(int cpu); 220 extern void rcu_bh_qs(int cpu); 221 extern void rcu_check_callbacks(int cpu, int user); 222 struct notifier_block; 223 extern void rcu_idle_enter(void); 224 extern void rcu_idle_exit(void); 225 extern void rcu_irq_enter(void); 226 extern void rcu_irq_exit(void); 227 228 #ifdef CONFIG_RCU_USER_QS 229 extern void rcu_user_enter(void); 230 extern void rcu_user_exit(void); 231 extern void rcu_user_enter_after_irq(void); 232 extern void rcu_user_exit_after_irq(void); 233 #else 234 static inline void rcu_user_enter(void) { } 235 static inline void rcu_user_exit(void) { } 236 static inline void rcu_user_enter_after_irq(void) { } 237 static inline void rcu_user_exit_after_irq(void) { } 238 static inline void rcu_user_hooks_switch(struct task_struct *prev, 239 struct task_struct *next) { } 240 #endif /* CONFIG_RCU_USER_QS */ 241 242 extern void exit_rcu(void); 243 244 /** 245 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers 246 * @a: Code that RCU needs to pay attention to. 247 * 248 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden 249 * in the inner idle loop, that is, between the rcu_idle_enter() and 250 * the rcu_idle_exit() -- RCU will happily ignore any such read-side 251 * critical sections. However, things like powertop need tracepoints 252 * in the inner idle loop. 253 * 254 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) 255 * will tell RCU that it needs to pay attending, invoke its argument 256 * (in this example, a call to the do_something_with_RCU() function), 257 * and then tell RCU to go back to ignoring this CPU. It is permissible 258 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently 259 * quite limited. If deeper nesting is required, it will be necessary 260 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly. 261 */ 262 #define RCU_NONIDLE(a) \ 263 do { \ 264 rcu_irq_enter(); \ 265 do { a; } while (0); \ 266 rcu_irq_exit(); \ 267 } while (0) 268 269 /* 270 * Infrastructure to implement the synchronize_() primitives in 271 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 272 */ 273 274 typedef void call_rcu_func_t(struct rcu_head *head, 275 void (*func)(struct rcu_head *head)); 276 void wait_rcu_gp(call_rcu_func_t crf); 277 278 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) 279 #include <linux/rcutree.h> 280 #elif defined(CONFIG_TINY_RCU) || defined(CONFIG_TINY_PREEMPT_RCU) 281 #include <linux/rcutiny.h> 282 #else 283 #error "Unknown RCU implementation specified to kernel configuration" 284 #endif 285 286 /* 287 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic 288 * initialization and destruction of rcu_head on the stack. rcu_head structures 289 * allocated dynamically in the heap or defined statically don't need any 290 * initialization. 291 */ 292 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 293 extern void init_rcu_head_on_stack(struct rcu_head *head); 294 extern void destroy_rcu_head_on_stack(struct rcu_head *head); 295 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 296 static inline void init_rcu_head_on_stack(struct rcu_head *head) 297 { 298 } 299 300 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) 301 { 302 } 303 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 304 305 #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_SMP) 306 extern int rcu_is_cpu_idle(void); 307 #endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_SMP) */ 308 309 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 310 bool rcu_lockdep_current_cpu_online(void); 311 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 312 static inline bool rcu_lockdep_current_cpu_online(void) 313 { 314 return 1; 315 } 316 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 317 318 #ifdef CONFIG_DEBUG_LOCK_ALLOC 319 320 static inline void rcu_lock_acquire(struct lockdep_map *map) 321 { 322 lock_acquire(map, 0, 0, 2, 1, NULL, _THIS_IP_); 323 } 324 325 static inline void rcu_lock_release(struct lockdep_map *map) 326 { 327 lock_release(map, 1, _THIS_IP_); 328 } 329 330 extern struct lockdep_map rcu_lock_map; 331 extern struct lockdep_map rcu_bh_lock_map; 332 extern struct lockdep_map rcu_sched_lock_map; 333 extern int debug_lockdep_rcu_enabled(void); 334 335 /** 336 * rcu_read_lock_held() - might we be in RCU read-side critical section? 337 * 338 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU 339 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC, 340 * this assumes we are in an RCU read-side critical section unless it can 341 * prove otherwise. This is useful for debug checks in functions that 342 * require that they be called within an RCU read-side critical section. 343 * 344 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot 345 * and while lockdep is disabled. 346 * 347 * Note that rcu_read_lock() and the matching rcu_read_unlock() must 348 * occur in the same context, for example, it is illegal to invoke 349 * rcu_read_unlock() in process context if the matching rcu_read_lock() 350 * was invoked from within an irq handler. 351 * 352 * Note that rcu_read_lock() is disallowed if the CPU is either idle or 353 * offline from an RCU perspective, so check for those as well. 354 */ 355 static inline int rcu_read_lock_held(void) 356 { 357 if (!debug_lockdep_rcu_enabled()) 358 return 1; 359 if (rcu_is_cpu_idle()) 360 return 0; 361 if (!rcu_lockdep_current_cpu_online()) 362 return 0; 363 return lock_is_held(&rcu_lock_map); 364 } 365 366 /* 367 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file 368 * hell. 369 */ 370 extern int rcu_read_lock_bh_held(void); 371 372 /** 373 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section? 374 * 375 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an 376 * RCU-sched read-side critical section. In absence of 377 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side 378 * critical section unless it can prove otherwise. Note that disabling 379 * of preemption (including disabling irqs) counts as an RCU-sched 380 * read-side critical section. This is useful for debug checks in functions 381 * that required that they be called within an RCU-sched read-side 382 * critical section. 383 * 384 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot 385 * and while lockdep is disabled. 386 * 387 * Note that if the CPU is in the idle loop from an RCU point of 388 * view (ie: that we are in the section between rcu_idle_enter() and 389 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU 390 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs 391 * that are in such a section, considering these as in extended quiescent 392 * state, so such a CPU is effectively never in an RCU read-side critical 393 * section regardless of what RCU primitives it invokes. This state of 394 * affairs is required --- we need to keep an RCU-free window in idle 395 * where the CPU may possibly enter into low power mode. This way we can 396 * notice an extended quiescent state to other CPUs that started a grace 397 * period. Otherwise we would delay any grace period as long as we run in 398 * the idle task. 399 * 400 * Similarly, we avoid claiming an SRCU read lock held if the current 401 * CPU is offline. 402 */ 403 #ifdef CONFIG_PREEMPT_COUNT 404 static inline int rcu_read_lock_sched_held(void) 405 { 406 int lockdep_opinion = 0; 407 408 if (!debug_lockdep_rcu_enabled()) 409 return 1; 410 if (rcu_is_cpu_idle()) 411 return 0; 412 if (!rcu_lockdep_current_cpu_online()) 413 return 0; 414 if (debug_locks) 415 lockdep_opinion = lock_is_held(&rcu_sched_lock_map); 416 return lockdep_opinion || preempt_count() != 0 || irqs_disabled(); 417 } 418 #else /* #ifdef CONFIG_PREEMPT_COUNT */ 419 static inline int rcu_read_lock_sched_held(void) 420 { 421 return 1; 422 } 423 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ 424 425 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 426 427 # define rcu_lock_acquire(a) do { } while (0) 428 # define rcu_lock_release(a) do { } while (0) 429 430 static inline int rcu_read_lock_held(void) 431 { 432 return 1; 433 } 434 435 static inline int rcu_read_lock_bh_held(void) 436 { 437 return 1; 438 } 439 440 #ifdef CONFIG_PREEMPT_COUNT 441 static inline int rcu_read_lock_sched_held(void) 442 { 443 return preempt_count() != 0 || irqs_disabled(); 444 } 445 #else /* #ifdef CONFIG_PREEMPT_COUNT */ 446 static inline int rcu_read_lock_sched_held(void) 447 { 448 return 1; 449 } 450 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ 451 452 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 453 454 #ifdef CONFIG_PROVE_RCU 455 456 extern int rcu_my_thread_group_empty(void); 457 458 /** 459 * rcu_lockdep_assert - emit lockdep splat if specified condition not met 460 * @c: condition to check 461 * @s: informative message 462 */ 463 #define rcu_lockdep_assert(c, s) \ 464 do { \ 465 static bool __section(.data.unlikely) __warned; \ 466 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \ 467 __warned = true; \ 468 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 469 } \ 470 } while (0) 471 472 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 473 static inline void rcu_preempt_sleep_check(void) 474 { 475 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map), 476 "Illegal context switch in RCU read-side critical section"); 477 } 478 #else /* #ifdef CONFIG_PROVE_RCU */ 479 static inline void rcu_preempt_sleep_check(void) 480 { 481 } 482 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 483 484 #define rcu_sleep_check() \ 485 do { \ 486 rcu_preempt_sleep_check(); \ 487 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \ 488 "Illegal context switch in RCU-bh" \ 489 " read-side critical section"); \ 490 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \ 491 "Illegal context switch in RCU-sched"\ 492 " read-side critical section"); \ 493 } while (0) 494 495 #else /* #ifdef CONFIG_PROVE_RCU */ 496 497 #define rcu_lockdep_assert(c, s) do { } while (0) 498 #define rcu_sleep_check() do { } while (0) 499 500 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 501 502 /* 503 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 504 * and rcu_assign_pointer(). Some of these could be folded into their 505 * callers, but they are left separate in order to ease introduction of 506 * multiple flavors of pointers to match the multiple flavors of RCU 507 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in 508 * the future. 509 */ 510 511 #ifdef __CHECKER__ 512 #define rcu_dereference_sparse(p, space) \ 513 ((void)(((typeof(*p) space *)p) == p)) 514 #else /* #ifdef __CHECKER__ */ 515 #define rcu_dereference_sparse(p, space) 516 #endif /* #else #ifdef __CHECKER__ */ 517 518 #define __rcu_access_pointer(p, space) \ 519 ({ \ 520 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \ 521 rcu_dereference_sparse(p, space); \ 522 ((typeof(*p) __force __kernel *)(_________p1)); \ 523 }) 524 #define __rcu_dereference_check(p, c, space) \ 525 ({ \ 526 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \ 527 rcu_lockdep_assert(c, "suspicious rcu_dereference_check()" \ 528 " usage"); \ 529 rcu_dereference_sparse(p, space); \ 530 smp_read_barrier_depends(); \ 531 ((typeof(*p) __force __kernel *)(_________p1)); \ 532 }) 533 #define __rcu_dereference_protected(p, c, space) \ 534 ({ \ 535 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected()" \ 536 " usage"); \ 537 rcu_dereference_sparse(p, space); \ 538 ((typeof(*p) __force __kernel *)(p)); \ 539 }) 540 541 #define __rcu_access_index(p, space) \ 542 ({ \ 543 typeof(p) _________p1 = ACCESS_ONCE(p); \ 544 rcu_dereference_sparse(p, space); \ 545 (_________p1); \ 546 }) 547 #define __rcu_dereference_index_check(p, c) \ 548 ({ \ 549 typeof(p) _________p1 = ACCESS_ONCE(p); \ 550 rcu_lockdep_assert(c, \ 551 "suspicious rcu_dereference_index_check()" \ 552 " usage"); \ 553 smp_read_barrier_depends(); \ 554 (_________p1); \ 555 }) 556 #define __rcu_assign_pointer(p, v, space) \ 557 do { \ 558 smp_wmb(); \ 559 (p) = (typeof(*v) __force space *)(v); \ 560 } while (0) 561 562 563 /** 564 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 565 * @p: The pointer to read 566 * 567 * Return the value of the specified RCU-protected pointer, but omit the 568 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful 569 * when the value of this pointer is accessed, but the pointer is not 570 * dereferenced, for example, when testing an RCU-protected pointer against 571 * NULL. Although rcu_access_pointer() may also be used in cases where 572 * update-side locks prevent the value of the pointer from changing, you 573 * should instead use rcu_dereference_protected() for this use case. 574 * 575 * It is also permissible to use rcu_access_pointer() when read-side 576 * access to the pointer was removed at least one grace period ago, as 577 * is the case in the context of the RCU callback that is freeing up 578 * the data, or after a synchronize_rcu() returns. This can be useful 579 * when tearing down multi-linked structures after a grace period 580 * has elapsed. 581 */ 582 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) 583 584 /** 585 * rcu_dereference_check() - rcu_dereference with debug checking 586 * @p: The pointer to read, prior to dereferencing 587 * @c: The conditions under which the dereference will take place 588 * 589 * Do an rcu_dereference(), but check that the conditions under which the 590 * dereference will take place are correct. Typically the conditions 591 * indicate the various locking conditions that should be held at that 592 * point. The check should return true if the conditions are satisfied. 593 * An implicit check for being in an RCU read-side critical section 594 * (rcu_read_lock()) is included. 595 * 596 * For example: 597 * 598 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 599 * 600 * could be used to indicate to lockdep that foo->bar may only be dereferenced 601 * if either rcu_read_lock() is held, or that the lock required to replace 602 * the bar struct at foo->bar is held. 603 * 604 * Note that the list of conditions may also include indications of when a lock 605 * need not be held, for example during initialisation or destruction of the 606 * target struct: 607 * 608 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 609 * atomic_read(&foo->usage) == 0); 610 * 611 * Inserts memory barriers on architectures that require them 612 * (currently only the Alpha), prevents the compiler from refetching 613 * (and from merging fetches), and, more importantly, documents exactly 614 * which pointers are protected by RCU and checks that the pointer is 615 * annotated as __rcu. 616 */ 617 #define rcu_dereference_check(p, c) \ 618 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu) 619 620 /** 621 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 622 * @p: The pointer to read, prior to dereferencing 623 * @c: The conditions under which the dereference will take place 624 * 625 * This is the RCU-bh counterpart to rcu_dereference_check(). 626 */ 627 #define rcu_dereference_bh_check(p, c) \ 628 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu) 629 630 /** 631 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 632 * @p: The pointer to read, prior to dereferencing 633 * @c: The conditions under which the dereference will take place 634 * 635 * This is the RCU-sched counterpart to rcu_dereference_check(). 636 */ 637 #define rcu_dereference_sched_check(p, c) \ 638 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \ 639 __rcu) 640 641 #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/ 642 643 /* 644 * The tracing infrastructure traces RCU (we want that), but unfortunately 645 * some of the RCU checks causes tracing to lock up the system. 646 * 647 * The tracing version of rcu_dereference_raw() must not call 648 * rcu_read_lock_held(). 649 */ 650 #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu) 651 652 /** 653 * rcu_access_index() - fetch RCU index with no dereferencing 654 * @p: The index to read 655 * 656 * Return the value of the specified RCU-protected index, but omit the 657 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful 658 * when the value of this index is accessed, but the index is not 659 * dereferenced, for example, when testing an RCU-protected index against 660 * -1. Although rcu_access_index() may also be used in cases where 661 * update-side locks prevent the value of the index from changing, you 662 * should instead use rcu_dereference_index_protected() for this use case. 663 */ 664 #define rcu_access_index(p) __rcu_access_index((p), __rcu) 665 666 /** 667 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking 668 * @p: The pointer to read, prior to dereferencing 669 * @c: The conditions under which the dereference will take place 670 * 671 * Similar to rcu_dereference_check(), but omits the sparse checking. 672 * This allows rcu_dereference_index_check() to be used on integers, 673 * which can then be used as array indices. Attempting to use 674 * rcu_dereference_check() on an integer will give compiler warnings 675 * because the sparse address-space mechanism relies on dereferencing 676 * the RCU-protected pointer. Dereferencing integers is not something 677 * that even gcc will put up with. 678 * 679 * Note that this function does not implicitly check for RCU read-side 680 * critical sections. If this function gains lots of uses, it might 681 * make sense to provide versions for each flavor of RCU, but it does 682 * not make sense as of early 2010. 683 */ 684 #define rcu_dereference_index_check(p, c) \ 685 __rcu_dereference_index_check((p), (c)) 686 687 /** 688 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 689 * @p: The pointer to read, prior to dereferencing 690 * @c: The conditions under which the dereference will take place 691 * 692 * Return the value of the specified RCU-protected pointer, but omit 693 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This 694 * is useful in cases where update-side locks prevent the value of the 695 * pointer from changing. Please note that this primitive does -not- 696 * prevent the compiler from repeating this reference or combining it 697 * with other references, so it should not be used without protection 698 * of appropriate locks. 699 * 700 * This function is only for update-side use. Using this function 701 * when protected only by rcu_read_lock() will result in infrequent 702 * but very ugly failures. 703 */ 704 #define rcu_dereference_protected(p, c) \ 705 __rcu_dereference_protected((p), (c), __rcu) 706 707 708 /** 709 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 710 * @p: The pointer to read, prior to dereferencing 711 * 712 * This is a simple wrapper around rcu_dereference_check(). 713 */ 714 #define rcu_dereference(p) rcu_dereference_check(p, 0) 715 716 /** 717 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 718 * @p: The pointer to read, prior to dereferencing 719 * 720 * Makes rcu_dereference_check() do the dirty work. 721 */ 722 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 723 724 /** 725 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 726 * @p: The pointer to read, prior to dereferencing 727 * 728 * Makes rcu_dereference_check() do the dirty work. 729 */ 730 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 731 732 /** 733 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 734 * 735 * When synchronize_rcu() is invoked on one CPU while other CPUs 736 * are within RCU read-side critical sections, then the 737 * synchronize_rcu() is guaranteed to block until after all the other 738 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 739 * on one CPU while other CPUs are within RCU read-side critical 740 * sections, invocation of the corresponding RCU callback is deferred 741 * until after the all the other CPUs exit their critical sections. 742 * 743 * Note, however, that RCU callbacks are permitted to run concurrently 744 * with new RCU read-side critical sections. One way that this can happen 745 * is via the following sequence of events: (1) CPU 0 enters an RCU 746 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 747 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 748 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 749 * callback is invoked. This is legal, because the RCU read-side critical 750 * section that was running concurrently with the call_rcu() (and which 751 * therefore might be referencing something that the corresponding RCU 752 * callback would free up) has completed before the corresponding 753 * RCU callback is invoked. 754 * 755 * RCU read-side critical sections may be nested. Any deferred actions 756 * will be deferred until the outermost RCU read-side critical section 757 * completes. 758 * 759 * You can avoid reading and understanding the next paragraph by 760 * following this rule: don't put anything in an rcu_read_lock() RCU 761 * read-side critical section that would block in a !PREEMPT kernel. 762 * But if you want the full story, read on! 763 * 764 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it 765 * is illegal to block while in an RCU read-side critical section. In 766 * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU) 767 * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may 768 * be preempted, but explicit blocking is illegal. Finally, in preemptible 769 * RCU implementations in real-time (with -rt patchset) kernel builds, 770 * RCU read-side critical sections may be preempted and they may also 771 * block, but only when acquiring spinlocks that are subject to priority 772 * inheritance. 773 */ 774 static inline void rcu_read_lock(void) 775 { 776 __rcu_read_lock(); 777 __acquire(RCU); 778 rcu_lock_acquire(&rcu_lock_map); 779 rcu_lockdep_assert(!rcu_is_cpu_idle(), 780 "rcu_read_lock() used illegally while idle"); 781 } 782 783 /* 784 * So where is rcu_write_lock()? It does not exist, as there is no 785 * way for writers to lock out RCU readers. This is a feature, not 786 * a bug -- this property is what provides RCU's performance benefits. 787 * Of course, writers must coordinate with each other. The normal 788 * spinlock primitives work well for this, but any other technique may be 789 * used as well. RCU does not care how the writers keep out of each 790 * others' way, as long as they do so. 791 */ 792 793 /** 794 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 795 * 796 * See rcu_read_lock() for more information. 797 */ 798 static inline void rcu_read_unlock(void) 799 { 800 rcu_lockdep_assert(!rcu_is_cpu_idle(), 801 "rcu_read_unlock() used illegally while idle"); 802 rcu_lock_release(&rcu_lock_map); 803 __release(RCU); 804 __rcu_read_unlock(); 805 } 806 807 /** 808 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 809 * 810 * This is equivalent of rcu_read_lock(), but to be used when updates 811 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since 812 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a 813 * softirq handler to be a quiescent state, a process in RCU read-side 814 * critical section must be protected by disabling softirqs. Read-side 815 * critical sections in interrupt context can use just rcu_read_lock(), 816 * though this should at least be commented to avoid confusing people 817 * reading the code. 818 * 819 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 820 * must occur in the same context, for example, it is illegal to invoke 821 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 822 * was invoked from some other task. 823 */ 824 static inline void rcu_read_lock_bh(void) 825 { 826 local_bh_disable(); 827 __acquire(RCU_BH); 828 rcu_lock_acquire(&rcu_bh_lock_map); 829 rcu_lockdep_assert(!rcu_is_cpu_idle(), 830 "rcu_read_lock_bh() used illegally while idle"); 831 } 832 833 /* 834 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section 835 * 836 * See rcu_read_lock_bh() for more information. 837 */ 838 static inline void rcu_read_unlock_bh(void) 839 { 840 rcu_lockdep_assert(!rcu_is_cpu_idle(), 841 "rcu_read_unlock_bh() used illegally while idle"); 842 rcu_lock_release(&rcu_bh_lock_map); 843 __release(RCU_BH); 844 local_bh_enable(); 845 } 846 847 /** 848 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 849 * 850 * This is equivalent of rcu_read_lock(), but to be used when updates 851 * are being done using call_rcu_sched() or synchronize_rcu_sched(). 852 * Read-side critical sections can also be introduced by anything that 853 * disables preemption, including local_irq_disable() and friends. 854 * 855 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 856 * must occur in the same context, for example, it is illegal to invoke 857 * rcu_read_unlock_sched() from process context if the matching 858 * rcu_read_lock_sched() was invoked from an NMI handler. 859 */ 860 static inline void rcu_read_lock_sched(void) 861 { 862 preempt_disable(); 863 __acquire(RCU_SCHED); 864 rcu_lock_acquire(&rcu_sched_lock_map); 865 rcu_lockdep_assert(!rcu_is_cpu_idle(), 866 "rcu_read_lock_sched() used illegally while idle"); 867 } 868 869 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 870 static inline notrace void rcu_read_lock_sched_notrace(void) 871 { 872 preempt_disable_notrace(); 873 __acquire(RCU_SCHED); 874 } 875 876 /* 877 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section 878 * 879 * See rcu_read_lock_sched for more information. 880 */ 881 static inline void rcu_read_unlock_sched(void) 882 { 883 rcu_lockdep_assert(!rcu_is_cpu_idle(), 884 "rcu_read_unlock_sched() used illegally while idle"); 885 rcu_lock_release(&rcu_sched_lock_map); 886 __release(RCU_SCHED); 887 preempt_enable(); 888 } 889 890 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 891 static inline notrace void rcu_read_unlock_sched_notrace(void) 892 { 893 __release(RCU_SCHED); 894 preempt_enable_notrace(); 895 } 896 897 /** 898 * rcu_assign_pointer() - assign to RCU-protected pointer 899 * @p: pointer to assign to 900 * @v: value to assign (publish) 901 * 902 * Assigns the specified value to the specified RCU-protected 903 * pointer, ensuring that any concurrent RCU readers will see 904 * any prior initialization. 905 * 906 * Inserts memory barriers on architectures that require them 907 * (which is most of them), and also prevents the compiler from 908 * reordering the code that initializes the structure after the pointer 909 * assignment. More importantly, this call documents which pointers 910 * will be dereferenced by RCU read-side code. 911 * 912 * In some special cases, you may use RCU_INIT_POINTER() instead 913 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 914 * to the fact that it does not constrain either the CPU or the compiler. 915 * That said, using RCU_INIT_POINTER() when you should have used 916 * rcu_assign_pointer() is a very bad thing that results in 917 * impossible-to-diagnose memory corruption. So please be careful. 918 * See the RCU_INIT_POINTER() comment header for details. 919 */ 920 #define rcu_assign_pointer(p, v) \ 921 __rcu_assign_pointer((p), (v), __rcu) 922 923 /** 924 * RCU_INIT_POINTER() - initialize an RCU protected pointer 925 * 926 * Initialize an RCU-protected pointer in special cases where readers 927 * do not need ordering constraints on the CPU or the compiler. These 928 * special cases are: 929 * 930 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or- 931 * 2. The caller has taken whatever steps are required to prevent 932 * RCU readers from concurrently accessing this pointer -or- 933 * 3. The referenced data structure has already been exposed to 934 * readers either at compile time or via rcu_assign_pointer() -and- 935 * a. You have not made -any- reader-visible changes to 936 * this structure since then -or- 937 * b. It is OK for readers accessing this structure from its 938 * new location to see the old state of the structure. (For 939 * example, the changes were to statistical counters or to 940 * other state where exact synchronization is not required.) 941 * 942 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 943 * result in impossible-to-diagnose memory corruption. As in the structures 944 * will look OK in crash dumps, but any concurrent RCU readers might 945 * see pre-initialized values of the referenced data structure. So 946 * please be very careful how you use RCU_INIT_POINTER()!!! 947 * 948 * If you are creating an RCU-protected linked structure that is accessed 949 * by a single external-to-structure RCU-protected pointer, then you may 950 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 951 * pointers, but you must use rcu_assign_pointer() to initialize the 952 * external-to-structure pointer -after- you have completely initialized 953 * the reader-accessible portions of the linked structure. 954 */ 955 #define RCU_INIT_POINTER(p, v) \ 956 do { \ 957 p = (typeof(*v) __force __rcu *)(v); \ 958 } while (0) 959 960 /** 961 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 962 * 963 * GCC-style initialization for an RCU-protected pointer in a structure field. 964 */ 965 #define RCU_POINTER_INITIALIZER(p, v) \ 966 .p = (typeof(*v) __force __rcu *)(v) 967 968 /* 969 * Does the specified offset indicate that the corresponding rcu_head 970 * structure can be handled by kfree_rcu()? 971 */ 972 #define __is_kfree_rcu_offset(offset) ((offset) < 4096) 973 974 /* 975 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain. 976 */ 977 #define __kfree_rcu(head, offset) \ 978 do { \ 979 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \ 980 kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \ 981 } while (0) 982 983 /** 984 * kfree_rcu() - kfree an object after a grace period. 985 * @ptr: pointer to kfree 986 * @rcu_head: the name of the struct rcu_head within the type of @ptr. 987 * 988 * Many rcu callbacks functions just call kfree() on the base structure. 989 * These functions are trivial, but their size adds up, and furthermore 990 * when they are used in a kernel module, that module must invoke the 991 * high-latency rcu_barrier() function at module-unload time. 992 * 993 * The kfree_rcu() function handles this issue. Rather than encoding a 994 * function address in the embedded rcu_head structure, kfree_rcu() instead 995 * encodes the offset of the rcu_head structure within the base structure. 996 * Because the functions are not allowed in the low-order 4096 bytes of 997 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 998 * If the offset is larger than 4095 bytes, a compile-time error will 999 * be generated in __kfree_rcu(). If this error is triggered, you can 1000 * either fall back to use of call_rcu() or rearrange the structure to 1001 * position the rcu_head structure into the first 4096 bytes. 1002 * 1003 * Note that the allowable offset might decrease in the future, for example, 1004 * to allow something like kmem_cache_free_rcu(). 1005 * 1006 * The BUILD_BUG_ON check must not involve any function calls, hence the 1007 * checks are done in macros here. 1008 */ 1009 #define kfree_rcu(ptr, rcu_head) \ 1010 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head)) 1011 1012 #ifdef CONFIG_RCU_NOCB_CPU 1013 extern bool rcu_is_nocb_cpu(int cpu); 1014 #else 1015 static inline bool rcu_is_nocb_cpu(int cpu) { return false; } 1016 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 1017 1018 1019 #endif /* __LINUX_RCUPDATE_H */ 1020