1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2001 19 * 20 * Author: Dipankar Sarma <[email protected]> 21 * 22 * Based on the original work by Paul McKenney <[email protected]> 23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 24 * Papers: 25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 27 * 28 * For detailed explanation of Read-Copy Update mechanism see - 29 * http://lse.sourceforge.net/locking/rcupdate.html 30 * 31 */ 32 33 #ifndef __LINUX_RCUPDATE_H 34 #define __LINUX_RCUPDATE_H 35 36 #include <linux/types.h> 37 #include <linux/compiler.h> 38 #include <linux/atomic.h> 39 #include <linux/irqflags.h> 40 #include <linux/preempt.h> 41 #include <linux/bottom_half.h> 42 #include <linux/lockdep.h> 43 #include <asm/processor.h> 44 #include <linux/cpumask.h> 45 46 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 47 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 48 #define ulong2long(a) (*(long *)(&(a))) 49 50 /* Exported common interfaces */ 51 52 #ifdef CONFIG_PREEMPT_RCU 53 void call_rcu(struct rcu_head *head, rcu_callback_t func); 54 #else /* #ifdef CONFIG_PREEMPT_RCU */ 55 #define call_rcu call_rcu_sched 56 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 57 58 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func); 59 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func); 60 void synchronize_sched(void); 61 void rcu_barrier_tasks(void); 62 63 #ifdef CONFIG_PREEMPT_RCU 64 65 void __rcu_read_lock(void); 66 void __rcu_read_unlock(void); 67 void rcu_read_unlock_special(struct task_struct *t); 68 void synchronize_rcu(void); 69 70 /* 71 * Defined as a macro as it is a very low level header included from 72 * areas that don't even know about current. This gives the rcu_read_lock() 73 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 74 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 75 */ 76 #define rcu_preempt_depth() (current->rcu_read_lock_nesting) 77 78 #else /* #ifdef CONFIG_PREEMPT_RCU */ 79 80 static inline void __rcu_read_lock(void) 81 { 82 if (IS_ENABLED(CONFIG_PREEMPT_COUNT)) 83 preempt_disable(); 84 } 85 86 static inline void __rcu_read_unlock(void) 87 { 88 if (IS_ENABLED(CONFIG_PREEMPT_COUNT)) 89 preempt_enable(); 90 } 91 92 static inline void synchronize_rcu(void) 93 { 94 synchronize_sched(); 95 } 96 97 static inline int rcu_preempt_depth(void) 98 { 99 return 0; 100 } 101 102 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 103 104 /* Internal to kernel */ 105 void rcu_init(void); 106 extern int rcu_scheduler_active __read_mostly; 107 void rcu_sched_qs(void); 108 void rcu_bh_qs(void); 109 void rcu_check_callbacks(int user); 110 void rcu_report_dead(unsigned int cpu); 111 void rcu_cpu_starting(unsigned int cpu); 112 void rcutree_migrate_callbacks(int cpu); 113 114 #ifdef CONFIG_RCU_STALL_COMMON 115 void rcu_sysrq_start(void); 116 void rcu_sysrq_end(void); 117 #else /* #ifdef CONFIG_RCU_STALL_COMMON */ 118 static inline void rcu_sysrq_start(void) { } 119 static inline void rcu_sysrq_end(void) { } 120 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ 121 122 #ifdef CONFIG_NO_HZ_FULL 123 void rcu_user_enter(void); 124 void rcu_user_exit(void); 125 #else 126 static inline void rcu_user_enter(void) { } 127 static inline void rcu_user_exit(void) { } 128 #endif /* CONFIG_NO_HZ_FULL */ 129 130 #ifdef CONFIG_RCU_NOCB_CPU 131 void rcu_init_nohz(void); 132 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 133 static inline void rcu_init_nohz(void) { } 134 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 135 136 /** 137 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers 138 * @a: Code that RCU needs to pay attention to. 139 * 140 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden 141 * in the inner idle loop, that is, between the rcu_idle_enter() and 142 * the rcu_idle_exit() -- RCU will happily ignore any such read-side 143 * critical sections. However, things like powertop need tracepoints 144 * in the inner idle loop. 145 * 146 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) 147 * will tell RCU that it needs to pay attention, invoke its argument 148 * (in this example, calling the do_something_with_RCU() function), 149 * and then tell RCU to go back to ignoring this CPU. It is permissible 150 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is 151 * on the order of a million or so, even on 32-bit systems). It is 152 * not legal to block within RCU_NONIDLE(), nor is it permissible to 153 * transfer control either into or out of RCU_NONIDLE()'s statement. 154 */ 155 #define RCU_NONIDLE(a) \ 156 do { \ 157 rcu_irq_enter_irqson(); \ 158 do { a; } while (0); \ 159 rcu_irq_exit_irqson(); \ 160 } while (0) 161 162 /* 163 * Note a voluntary context switch for RCU-tasks benefit. This is a 164 * macro rather than an inline function to avoid #include hell. 165 */ 166 #ifdef CONFIG_TASKS_RCU 167 #define rcu_note_voluntary_context_switch_lite(t) \ 168 do { \ 169 if (READ_ONCE((t)->rcu_tasks_holdout)) \ 170 WRITE_ONCE((t)->rcu_tasks_holdout, false); \ 171 } while (0) 172 #define rcu_note_voluntary_context_switch(t) \ 173 do { \ 174 rcu_all_qs(); \ 175 rcu_note_voluntary_context_switch_lite(t); \ 176 } while (0) 177 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func); 178 void synchronize_rcu_tasks(void); 179 void exit_tasks_rcu_start(void); 180 void exit_tasks_rcu_finish(void); 181 #else /* #ifdef CONFIG_TASKS_RCU */ 182 #define rcu_note_voluntary_context_switch_lite(t) do { } while (0) 183 #define rcu_note_voluntary_context_switch(t) rcu_all_qs() 184 #define call_rcu_tasks call_rcu_sched 185 #define synchronize_rcu_tasks synchronize_sched 186 static inline void exit_tasks_rcu_start(void) { } 187 static inline void exit_tasks_rcu_finish(void) { } 188 #endif /* #else #ifdef CONFIG_TASKS_RCU */ 189 190 /** 191 * cond_resched_rcu_qs - Report potential quiescent states to RCU 192 * 193 * This macro resembles cond_resched(), except that it is defined to 194 * report potential quiescent states to RCU-tasks even if the cond_resched() 195 * machinery were to be shut off, as some advocate for PREEMPT kernels. 196 */ 197 #define cond_resched_rcu_qs() \ 198 do { \ 199 if (!cond_resched()) \ 200 rcu_note_voluntary_context_switch(current); \ 201 } while (0) 202 203 /* 204 * Infrastructure to implement the synchronize_() primitives in 205 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 206 */ 207 208 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) 209 #include <linux/rcutree.h> 210 #elif defined(CONFIG_TINY_RCU) 211 #include <linux/rcutiny.h> 212 #else 213 #error "Unknown RCU implementation specified to kernel configuration" 214 #endif 215 216 /* 217 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic 218 * initialization and destruction of rcu_head on the stack. rcu_head structures 219 * allocated dynamically in the heap or defined statically don't need any 220 * initialization. 221 */ 222 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 223 void init_rcu_head(struct rcu_head *head); 224 void destroy_rcu_head(struct rcu_head *head); 225 void init_rcu_head_on_stack(struct rcu_head *head); 226 void destroy_rcu_head_on_stack(struct rcu_head *head); 227 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 228 static inline void init_rcu_head(struct rcu_head *head) { } 229 static inline void destroy_rcu_head(struct rcu_head *head) { } 230 static inline void init_rcu_head_on_stack(struct rcu_head *head) { } 231 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { } 232 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 233 234 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 235 bool rcu_lockdep_current_cpu_online(void); 236 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 237 static inline bool rcu_lockdep_current_cpu_online(void) { return true; } 238 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 239 240 #ifdef CONFIG_DEBUG_LOCK_ALLOC 241 242 static inline void rcu_lock_acquire(struct lockdep_map *map) 243 { 244 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); 245 } 246 247 static inline void rcu_lock_release(struct lockdep_map *map) 248 { 249 lock_release(map, 1, _THIS_IP_); 250 } 251 252 extern struct lockdep_map rcu_lock_map; 253 extern struct lockdep_map rcu_bh_lock_map; 254 extern struct lockdep_map rcu_sched_lock_map; 255 extern struct lockdep_map rcu_callback_map; 256 int debug_lockdep_rcu_enabled(void); 257 int rcu_read_lock_held(void); 258 int rcu_read_lock_bh_held(void); 259 int rcu_read_lock_sched_held(void); 260 261 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 262 263 # define rcu_lock_acquire(a) do { } while (0) 264 # define rcu_lock_release(a) do { } while (0) 265 266 static inline int rcu_read_lock_held(void) 267 { 268 return 1; 269 } 270 271 static inline int rcu_read_lock_bh_held(void) 272 { 273 return 1; 274 } 275 276 static inline int rcu_read_lock_sched_held(void) 277 { 278 return !preemptible(); 279 } 280 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 281 282 #ifdef CONFIG_PROVE_RCU 283 284 /** 285 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met 286 * @c: condition to check 287 * @s: informative message 288 */ 289 #define RCU_LOCKDEP_WARN(c, s) \ 290 do { \ 291 static bool __section(.data.unlikely) __warned; \ 292 if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \ 293 __warned = true; \ 294 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 295 } \ 296 } while (0) 297 298 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 299 static inline void rcu_preempt_sleep_check(void) 300 { 301 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 302 "Illegal context switch in RCU read-side critical section"); 303 } 304 #else /* #ifdef CONFIG_PROVE_RCU */ 305 static inline void rcu_preempt_sleep_check(void) { } 306 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 307 308 #define rcu_sleep_check() \ 309 do { \ 310 rcu_preempt_sleep_check(); \ 311 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ 312 "Illegal context switch in RCU-bh read-side critical section"); \ 313 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ 314 "Illegal context switch in RCU-sched read-side critical section"); \ 315 } while (0) 316 317 #else /* #ifdef CONFIG_PROVE_RCU */ 318 319 #define RCU_LOCKDEP_WARN(c, s) do { } while (0) 320 #define rcu_sleep_check() do { } while (0) 321 322 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 323 324 /* 325 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 326 * and rcu_assign_pointer(). Some of these could be folded into their 327 * callers, but they are left separate in order to ease introduction of 328 * multiple flavors of pointers to match the multiple flavors of RCU 329 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in 330 * the future. 331 */ 332 333 #ifdef __CHECKER__ 334 #define rcu_dereference_sparse(p, space) \ 335 ((void)(((typeof(*p) space *)p) == p)) 336 #else /* #ifdef __CHECKER__ */ 337 #define rcu_dereference_sparse(p, space) 338 #endif /* #else #ifdef __CHECKER__ */ 339 340 #define __rcu_access_pointer(p, space) \ 341 ({ \ 342 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \ 343 rcu_dereference_sparse(p, space); \ 344 ((typeof(*p) __force __kernel *)(_________p1)); \ 345 }) 346 #define __rcu_dereference_check(p, c, space) \ 347 ({ \ 348 /* Dependency order vs. p above. */ \ 349 typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \ 350 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ 351 rcu_dereference_sparse(p, space); \ 352 ((typeof(*p) __force __kernel *)(________p1)); \ 353 }) 354 #define __rcu_dereference_protected(p, c, space) \ 355 ({ \ 356 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ 357 rcu_dereference_sparse(p, space); \ 358 ((typeof(*p) __force __kernel *)(p)); \ 359 }) 360 #define rcu_dereference_raw(p) \ 361 ({ \ 362 /* Dependency order vs. p above. */ \ 363 typeof(p) ________p1 = READ_ONCE(p); \ 364 ((typeof(*p) __force __kernel *)(________p1)); \ 365 }) 366 367 /** 368 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable 369 * @v: The value to statically initialize with. 370 */ 371 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) 372 373 /** 374 * rcu_assign_pointer() - assign to RCU-protected pointer 375 * @p: pointer to assign to 376 * @v: value to assign (publish) 377 * 378 * Assigns the specified value to the specified RCU-protected 379 * pointer, ensuring that any concurrent RCU readers will see 380 * any prior initialization. 381 * 382 * Inserts memory barriers on architectures that require them 383 * (which is most of them), and also prevents the compiler from 384 * reordering the code that initializes the structure after the pointer 385 * assignment. More importantly, this call documents which pointers 386 * will be dereferenced by RCU read-side code. 387 * 388 * In some special cases, you may use RCU_INIT_POINTER() instead 389 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 390 * to the fact that it does not constrain either the CPU or the compiler. 391 * That said, using RCU_INIT_POINTER() when you should have used 392 * rcu_assign_pointer() is a very bad thing that results in 393 * impossible-to-diagnose memory corruption. So please be careful. 394 * See the RCU_INIT_POINTER() comment header for details. 395 * 396 * Note that rcu_assign_pointer() evaluates each of its arguments only 397 * once, appearances notwithstanding. One of the "extra" evaluations 398 * is in typeof() and the other visible only to sparse (__CHECKER__), 399 * neither of which actually execute the argument. As with most cpp 400 * macros, this execute-arguments-only-once property is important, so 401 * please be careful when making changes to rcu_assign_pointer() and the 402 * other macros that it invokes. 403 */ 404 #define rcu_assign_pointer(p, v) \ 405 ({ \ 406 uintptr_t _r_a_p__v = (uintptr_t)(v); \ 407 \ 408 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \ 409 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \ 410 else \ 411 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \ 412 _r_a_p__v; \ 413 }) 414 415 /** 416 * rcu_swap_protected() - swap an RCU and a regular pointer 417 * @rcu_ptr: RCU pointer 418 * @ptr: regular pointer 419 * @c: the conditions under which the dereference will take place 420 * 421 * Perform swap(@rcu_ptr, @ptr) where @rcu_ptr is an RCU-annotated pointer and 422 * @c is the argument that is passed to the rcu_dereference_protected() call 423 * used to read that pointer. 424 */ 425 #define rcu_swap_protected(rcu_ptr, ptr, c) do { \ 426 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \ 427 rcu_assign_pointer((rcu_ptr), (ptr)); \ 428 (ptr) = __tmp; \ 429 } while (0) 430 431 /** 432 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 433 * @p: The pointer to read 434 * 435 * Return the value of the specified RCU-protected pointer, but omit the 436 * smp_read_barrier_depends() and keep the READ_ONCE(). This is useful 437 * when the value of this pointer is accessed, but the pointer is not 438 * dereferenced, for example, when testing an RCU-protected pointer against 439 * NULL. Although rcu_access_pointer() may also be used in cases where 440 * update-side locks prevent the value of the pointer from changing, you 441 * should instead use rcu_dereference_protected() for this use case. 442 * 443 * It is also permissible to use rcu_access_pointer() when read-side 444 * access to the pointer was removed at least one grace period ago, as 445 * is the case in the context of the RCU callback that is freeing up 446 * the data, or after a synchronize_rcu() returns. This can be useful 447 * when tearing down multi-linked structures after a grace period 448 * has elapsed. 449 */ 450 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) 451 452 /** 453 * rcu_dereference_check() - rcu_dereference with debug checking 454 * @p: The pointer to read, prior to dereferencing 455 * @c: The conditions under which the dereference will take place 456 * 457 * Do an rcu_dereference(), but check that the conditions under which the 458 * dereference will take place are correct. Typically the conditions 459 * indicate the various locking conditions that should be held at that 460 * point. The check should return true if the conditions are satisfied. 461 * An implicit check for being in an RCU read-side critical section 462 * (rcu_read_lock()) is included. 463 * 464 * For example: 465 * 466 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 467 * 468 * could be used to indicate to lockdep that foo->bar may only be dereferenced 469 * if either rcu_read_lock() is held, or that the lock required to replace 470 * the bar struct at foo->bar is held. 471 * 472 * Note that the list of conditions may also include indications of when a lock 473 * need not be held, for example during initialisation or destruction of the 474 * target struct: 475 * 476 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 477 * atomic_read(&foo->usage) == 0); 478 * 479 * Inserts memory barriers on architectures that require them 480 * (currently only the Alpha), prevents the compiler from refetching 481 * (and from merging fetches), and, more importantly, documents exactly 482 * which pointers are protected by RCU and checks that the pointer is 483 * annotated as __rcu. 484 */ 485 #define rcu_dereference_check(p, c) \ 486 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu) 487 488 /** 489 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 490 * @p: The pointer to read, prior to dereferencing 491 * @c: The conditions under which the dereference will take place 492 * 493 * This is the RCU-bh counterpart to rcu_dereference_check(). 494 */ 495 #define rcu_dereference_bh_check(p, c) \ 496 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu) 497 498 /** 499 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 500 * @p: The pointer to read, prior to dereferencing 501 * @c: The conditions under which the dereference will take place 502 * 503 * This is the RCU-sched counterpart to rcu_dereference_check(). 504 */ 505 #define rcu_dereference_sched_check(p, c) \ 506 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \ 507 __rcu) 508 509 /* 510 * The tracing infrastructure traces RCU (we want that), but unfortunately 511 * some of the RCU checks causes tracing to lock up the system. 512 * 513 * The no-tracing version of rcu_dereference_raw() must not call 514 * rcu_read_lock_held(). 515 */ 516 #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu) 517 518 /** 519 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 520 * @p: The pointer to read, prior to dereferencing 521 * @c: The conditions under which the dereference will take place 522 * 523 * Return the value of the specified RCU-protected pointer, but omit 524 * both the smp_read_barrier_depends() and the READ_ONCE(). This 525 * is useful in cases where update-side locks prevent the value of the 526 * pointer from changing. Please note that this primitive does *not* 527 * prevent the compiler from repeating this reference or combining it 528 * with other references, so it should not be used without protection 529 * of appropriate locks. 530 * 531 * This function is only for update-side use. Using this function 532 * when protected only by rcu_read_lock() will result in infrequent 533 * but very ugly failures. 534 */ 535 #define rcu_dereference_protected(p, c) \ 536 __rcu_dereference_protected((p), (c), __rcu) 537 538 539 /** 540 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 541 * @p: The pointer to read, prior to dereferencing 542 * 543 * This is a simple wrapper around rcu_dereference_check(). 544 */ 545 #define rcu_dereference(p) rcu_dereference_check(p, 0) 546 547 /** 548 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 549 * @p: The pointer to read, prior to dereferencing 550 * 551 * Makes rcu_dereference_check() do the dirty work. 552 */ 553 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 554 555 /** 556 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 557 * @p: The pointer to read, prior to dereferencing 558 * 559 * Makes rcu_dereference_check() do the dirty work. 560 */ 561 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 562 563 /** 564 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism 565 * @p: The pointer to hand off 566 * 567 * This is simply an identity function, but it documents where a pointer 568 * is handed off from RCU to some other synchronization mechanism, for 569 * example, reference counting or locking. In C11, it would map to 570 * kill_dependency(). It could be used as follows: 571 * `` 572 * rcu_read_lock(); 573 * p = rcu_dereference(gp); 574 * long_lived = is_long_lived(p); 575 * if (long_lived) { 576 * if (!atomic_inc_not_zero(p->refcnt)) 577 * long_lived = false; 578 * else 579 * p = rcu_pointer_handoff(p); 580 * } 581 * rcu_read_unlock(); 582 *`` 583 */ 584 #define rcu_pointer_handoff(p) (p) 585 586 /** 587 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 588 * 589 * When synchronize_rcu() is invoked on one CPU while other CPUs 590 * are within RCU read-side critical sections, then the 591 * synchronize_rcu() is guaranteed to block until after all the other 592 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 593 * on one CPU while other CPUs are within RCU read-side critical 594 * sections, invocation of the corresponding RCU callback is deferred 595 * until after the all the other CPUs exit their critical sections. 596 * 597 * Note, however, that RCU callbacks are permitted to run concurrently 598 * with new RCU read-side critical sections. One way that this can happen 599 * is via the following sequence of events: (1) CPU 0 enters an RCU 600 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 601 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 602 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 603 * callback is invoked. This is legal, because the RCU read-side critical 604 * section that was running concurrently with the call_rcu() (and which 605 * therefore might be referencing something that the corresponding RCU 606 * callback would free up) has completed before the corresponding 607 * RCU callback is invoked. 608 * 609 * RCU read-side critical sections may be nested. Any deferred actions 610 * will be deferred until the outermost RCU read-side critical section 611 * completes. 612 * 613 * You can avoid reading and understanding the next paragraph by 614 * following this rule: don't put anything in an rcu_read_lock() RCU 615 * read-side critical section that would block in a !PREEMPT kernel. 616 * But if you want the full story, read on! 617 * 618 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), 619 * it is illegal to block while in an RCU read-side critical section. 620 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT 621 * kernel builds, RCU read-side critical sections may be preempted, 622 * but explicit blocking is illegal. Finally, in preemptible RCU 623 * implementations in real-time (with -rt patchset) kernel builds, RCU 624 * read-side critical sections may be preempted and they may also block, but 625 * only when acquiring spinlocks that are subject to priority inheritance. 626 */ 627 static inline void rcu_read_lock(void) 628 { 629 __rcu_read_lock(); 630 __acquire(RCU); 631 rcu_lock_acquire(&rcu_lock_map); 632 RCU_LOCKDEP_WARN(!rcu_is_watching(), 633 "rcu_read_lock() used illegally while idle"); 634 } 635 636 /* 637 * So where is rcu_write_lock()? It does not exist, as there is no 638 * way for writers to lock out RCU readers. This is a feature, not 639 * a bug -- this property is what provides RCU's performance benefits. 640 * Of course, writers must coordinate with each other. The normal 641 * spinlock primitives work well for this, but any other technique may be 642 * used as well. RCU does not care how the writers keep out of each 643 * others' way, as long as they do so. 644 */ 645 646 /** 647 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 648 * 649 * In most situations, rcu_read_unlock() is immune from deadlock. 650 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock() 651 * is responsible for deboosting, which it does via rt_mutex_unlock(). 652 * Unfortunately, this function acquires the scheduler's runqueue and 653 * priority-inheritance spinlocks. This means that deadlock could result 654 * if the caller of rcu_read_unlock() already holds one of these locks or 655 * any lock that is ever acquired while holding them; or any lock which 656 * can be taken from interrupt context because rcu_boost()->rt_mutex_lock() 657 * does not disable irqs while taking ->wait_lock. 658 * 659 * That said, RCU readers are never priority boosted unless they were 660 * preempted. Therefore, one way to avoid deadlock is to make sure 661 * that preemption never happens within any RCU read-side critical 662 * section whose outermost rcu_read_unlock() is called with one of 663 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in 664 * a number of ways, for example, by invoking preempt_disable() before 665 * critical section's outermost rcu_read_lock(). 666 * 667 * Given that the set of locks acquired by rt_mutex_unlock() might change 668 * at any time, a somewhat more future-proofed approach is to make sure 669 * that that preemption never happens within any RCU read-side critical 670 * section whose outermost rcu_read_unlock() is called with irqs disabled. 671 * This approach relies on the fact that rt_mutex_unlock() currently only 672 * acquires irq-disabled locks. 673 * 674 * The second of these two approaches is best in most situations, 675 * however, the first approach can also be useful, at least to those 676 * developers willing to keep abreast of the set of locks acquired by 677 * rt_mutex_unlock(). 678 * 679 * See rcu_read_lock() for more information. 680 */ 681 static inline void rcu_read_unlock(void) 682 { 683 RCU_LOCKDEP_WARN(!rcu_is_watching(), 684 "rcu_read_unlock() used illegally while idle"); 685 __release(RCU); 686 __rcu_read_unlock(); 687 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ 688 } 689 690 /** 691 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 692 * 693 * This is equivalent of rcu_read_lock(), but to be used when updates 694 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since 695 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a 696 * softirq handler to be a quiescent state, a process in RCU read-side 697 * critical section must be protected by disabling softirqs. Read-side 698 * critical sections in interrupt context can use just rcu_read_lock(), 699 * though this should at least be commented to avoid confusing people 700 * reading the code. 701 * 702 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 703 * must occur in the same context, for example, it is illegal to invoke 704 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 705 * was invoked from some other task. 706 */ 707 static inline void rcu_read_lock_bh(void) 708 { 709 local_bh_disable(); 710 __acquire(RCU_BH); 711 rcu_lock_acquire(&rcu_bh_lock_map); 712 RCU_LOCKDEP_WARN(!rcu_is_watching(), 713 "rcu_read_lock_bh() used illegally while idle"); 714 } 715 716 /* 717 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section 718 * 719 * See rcu_read_lock_bh() for more information. 720 */ 721 static inline void rcu_read_unlock_bh(void) 722 { 723 RCU_LOCKDEP_WARN(!rcu_is_watching(), 724 "rcu_read_unlock_bh() used illegally while idle"); 725 rcu_lock_release(&rcu_bh_lock_map); 726 __release(RCU_BH); 727 local_bh_enable(); 728 } 729 730 /** 731 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 732 * 733 * This is equivalent of rcu_read_lock(), but to be used when updates 734 * are being done using call_rcu_sched() or synchronize_rcu_sched(). 735 * Read-side critical sections can also be introduced by anything that 736 * disables preemption, including local_irq_disable() and friends. 737 * 738 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 739 * must occur in the same context, for example, it is illegal to invoke 740 * rcu_read_unlock_sched() from process context if the matching 741 * rcu_read_lock_sched() was invoked from an NMI handler. 742 */ 743 static inline void rcu_read_lock_sched(void) 744 { 745 preempt_disable(); 746 __acquire(RCU_SCHED); 747 rcu_lock_acquire(&rcu_sched_lock_map); 748 RCU_LOCKDEP_WARN(!rcu_is_watching(), 749 "rcu_read_lock_sched() used illegally while idle"); 750 } 751 752 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 753 static inline notrace void rcu_read_lock_sched_notrace(void) 754 { 755 preempt_disable_notrace(); 756 __acquire(RCU_SCHED); 757 } 758 759 /* 760 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section 761 * 762 * See rcu_read_lock_sched for more information. 763 */ 764 static inline void rcu_read_unlock_sched(void) 765 { 766 RCU_LOCKDEP_WARN(!rcu_is_watching(), 767 "rcu_read_unlock_sched() used illegally while idle"); 768 rcu_lock_release(&rcu_sched_lock_map); 769 __release(RCU_SCHED); 770 preempt_enable(); 771 } 772 773 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 774 static inline notrace void rcu_read_unlock_sched_notrace(void) 775 { 776 __release(RCU_SCHED); 777 preempt_enable_notrace(); 778 } 779 780 /** 781 * RCU_INIT_POINTER() - initialize an RCU protected pointer 782 * @p: The pointer to be initialized. 783 * @v: The value to initialized the pointer to. 784 * 785 * Initialize an RCU-protected pointer in special cases where readers 786 * do not need ordering constraints on the CPU or the compiler. These 787 * special cases are: 788 * 789 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or* 790 * 2. The caller has taken whatever steps are required to prevent 791 * RCU readers from concurrently accessing this pointer *or* 792 * 3. The referenced data structure has already been exposed to 793 * readers either at compile time or via rcu_assign_pointer() *and* 794 * 795 * a. You have not made *any* reader-visible changes to 796 * this structure since then *or* 797 * b. It is OK for readers accessing this structure from its 798 * new location to see the old state of the structure. (For 799 * example, the changes were to statistical counters or to 800 * other state where exact synchronization is not required.) 801 * 802 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 803 * result in impossible-to-diagnose memory corruption. As in the structures 804 * will look OK in crash dumps, but any concurrent RCU readers might 805 * see pre-initialized values of the referenced data structure. So 806 * please be very careful how you use RCU_INIT_POINTER()!!! 807 * 808 * If you are creating an RCU-protected linked structure that is accessed 809 * by a single external-to-structure RCU-protected pointer, then you may 810 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 811 * pointers, but you must use rcu_assign_pointer() to initialize the 812 * external-to-structure pointer *after* you have completely initialized 813 * the reader-accessible portions of the linked structure. 814 * 815 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no 816 * ordering guarantees for either the CPU or the compiler. 817 */ 818 #define RCU_INIT_POINTER(p, v) \ 819 do { \ 820 rcu_dereference_sparse(p, __rcu); \ 821 WRITE_ONCE(p, RCU_INITIALIZER(v)); \ 822 } while (0) 823 824 /** 825 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 826 * @p: The pointer to be initialized. 827 * @v: The value to initialized the pointer to. 828 * 829 * GCC-style initialization for an RCU-protected pointer in a structure field. 830 */ 831 #define RCU_POINTER_INITIALIZER(p, v) \ 832 .p = RCU_INITIALIZER(v) 833 834 /* 835 * Does the specified offset indicate that the corresponding rcu_head 836 * structure can be handled by kfree_rcu()? 837 */ 838 #define __is_kfree_rcu_offset(offset) ((offset) < 4096) 839 840 /* 841 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain. 842 */ 843 #define __kfree_rcu(head, offset) \ 844 do { \ 845 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \ 846 kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \ 847 } while (0) 848 849 /** 850 * kfree_rcu() - kfree an object after a grace period. 851 * @ptr: pointer to kfree 852 * @rcu_head: the name of the struct rcu_head within the type of @ptr. 853 * 854 * Many rcu callbacks functions just call kfree() on the base structure. 855 * These functions are trivial, but their size adds up, and furthermore 856 * when they are used in a kernel module, that module must invoke the 857 * high-latency rcu_barrier() function at module-unload time. 858 * 859 * The kfree_rcu() function handles this issue. Rather than encoding a 860 * function address in the embedded rcu_head structure, kfree_rcu() instead 861 * encodes the offset of the rcu_head structure within the base structure. 862 * Because the functions are not allowed in the low-order 4096 bytes of 863 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 864 * If the offset is larger than 4095 bytes, a compile-time error will 865 * be generated in __kfree_rcu(). If this error is triggered, you can 866 * either fall back to use of call_rcu() or rearrange the structure to 867 * position the rcu_head structure into the first 4096 bytes. 868 * 869 * Note that the allowable offset might decrease in the future, for example, 870 * to allow something like kmem_cache_free_rcu(). 871 * 872 * The BUILD_BUG_ON check must not involve any function calls, hence the 873 * checks are done in macros here. 874 */ 875 #define kfree_rcu(ptr, rcu_head) \ 876 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head)) 877 878 879 /* 880 * Place this after a lock-acquisition primitive to guarantee that 881 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies 882 * if the UNLOCK and LOCK are executed by the same CPU or if the 883 * UNLOCK and LOCK operate on the same lock variable. 884 */ 885 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE 886 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */ 887 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 888 #define smp_mb__after_unlock_lock() do { } while (0) 889 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 890 891 892 #endif /* __LINUX_RCUPDATE_H */ 893