1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2001 19 * 20 * Author: Dipankar Sarma <[email protected]> 21 * 22 * Based on the original work by Paul McKenney <[email protected]> 23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 24 * Papers: 25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 27 * 28 * For detailed explanation of Read-Copy Update mechanism see - 29 * http://lse.sourceforge.net/locking/rcupdate.html 30 * 31 */ 32 33 #ifndef __LINUX_RCUPDATE_H 34 #define __LINUX_RCUPDATE_H 35 36 #include <linux/types.h> 37 #include <linux/cache.h> 38 #include <linux/spinlock.h> 39 #include <linux/threads.h> 40 #include <linux/cpumask.h> 41 #include <linux/seqlock.h> 42 #include <linux/lockdep.h> 43 #include <linux/completion.h> 44 #include <linux/debugobjects.h> 45 #include <linux/bug.h> 46 #include <linux/compiler.h> 47 #include <linux/ktime.h> 48 49 #include <asm/barrier.h> 50 51 extern int rcu_expedited; /* for sysctl */ 52 53 #ifdef CONFIG_TINY_RCU 54 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */ 55 static inline bool rcu_gp_is_expedited(void) /* Internal RCU use. */ 56 { 57 return false; 58 } 59 60 static inline void rcu_expedite_gp(void) 61 { 62 } 63 64 static inline void rcu_unexpedite_gp(void) 65 { 66 } 67 #else /* #ifdef CONFIG_TINY_RCU */ 68 bool rcu_gp_is_expedited(void); /* Internal RCU use. */ 69 void rcu_expedite_gp(void); 70 void rcu_unexpedite_gp(void); 71 #endif /* #else #ifdef CONFIG_TINY_RCU */ 72 73 enum rcutorture_type { 74 RCU_FLAVOR, 75 RCU_BH_FLAVOR, 76 RCU_SCHED_FLAVOR, 77 RCU_TASKS_FLAVOR, 78 SRCU_FLAVOR, 79 INVALID_RCU_FLAVOR 80 }; 81 82 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) 83 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 84 unsigned long *gpnum, unsigned long *completed); 85 void rcutorture_record_test_transition(void); 86 void rcutorture_record_progress(unsigned long vernum); 87 void do_trace_rcu_torture_read(const char *rcutorturename, 88 struct rcu_head *rhp, 89 unsigned long secs, 90 unsigned long c_old, 91 unsigned long c); 92 #else 93 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type, 94 int *flags, 95 unsigned long *gpnum, 96 unsigned long *completed) 97 { 98 *flags = 0; 99 *gpnum = 0; 100 *completed = 0; 101 } 102 static inline void rcutorture_record_test_transition(void) 103 { 104 } 105 static inline void rcutorture_record_progress(unsigned long vernum) 106 { 107 } 108 #ifdef CONFIG_RCU_TRACE 109 void do_trace_rcu_torture_read(const char *rcutorturename, 110 struct rcu_head *rhp, 111 unsigned long secs, 112 unsigned long c_old, 113 unsigned long c); 114 #else 115 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ 116 do { } while (0) 117 #endif 118 #endif 119 120 #define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b)) 121 #define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b)) 122 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 123 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 124 #define ulong2long(a) (*(long *)(&(a))) 125 126 /* Exported common interfaces */ 127 128 #ifdef CONFIG_PREEMPT_RCU 129 130 /** 131 * call_rcu() - Queue an RCU callback for invocation after a grace period. 132 * @head: structure to be used for queueing the RCU updates. 133 * @func: actual callback function to be invoked after the grace period 134 * 135 * The callback function will be invoked some time after a full grace 136 * period elapses, in other words after all pre-existing RCU read-side 137 * critical sections have completed. However, the callback function 138 * might well execute concurrently with RCU read-side critical sections 139 * that started after call_rcu() was invoked. RCU read-side critical 140 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), 141 * and may be nested. 142 * 143 * Note that all CPUs must agree that the grace period extended beyond 144 * all pre-existing RCU read-side critical section. On systems with more 145 * than one CPU, this means that when "func()" is invoked, each CPU is 146 * guaranteed to have executed a full memory barrier since the end of its 147 * last RCU read-side critical section whose beginning preceded the call 148 * to call_rcu(). It also means that each CPU executing an RCU read-side 149 * critical section that continues beyond the start of "func()" must have 150 * executed a memory barrier after the call_rcu() but before the beginning 151 * of that RCU read-side critical section. Note that these guarantees 152 * include CPUs that are offline, idle, or executing in user mode, as 153 * well as CPUs that are executing in the kernel. 154 * 155 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 156 * resulting RCU callback function "func()", then both CPU A and CPU B are 157 * guaranteed to execute a full memory barrier during the time interval 158 * between the call to call_rcu() and the invocation of "func()" -- even 159 * if CPU A and CPU B are the same CPU (but again only if the system has 160 * more than one CPU). 161 */ 162 void call_rcu(struct rcu_head *head, 163 void (*func)(struct rcu_head *head)); 164 165 #else /* #ifdef CONFIG_PREEMPT_RCU */ 166 167 /* In classic RCU, call_rcu() is just call_rcu_sched(). */ 168 #define call_rcu call_rcu_sched 169 170 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 171 172 /** 173 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period. 174 * @head: structure to be used for queueing the RCU updates. 175 * @func: actual callback function to be invoked after the grace period 176 * 177 * The callback function will be invoked some time after a full grace 178 * period elapses, in other words after all currently executing RCU 179 * read-side critical sections have completed. call_rcu_bh() assumes 180 * that the read-side critical sections end on completion of a softirq 181 * handler. This means that read-side critical sections in process 182 * context must not be interrupted by softirqs. This interface is to be 183 * used when most of the read-side critical sections are in softirq context. 184 * RCU read-side critical sections are delimited by : 185 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context. 186 * OR 187 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context. 188 * These may be nested. 189 * 190 * See the description of call_rcu() for more detailed information on 191 * memory ordering guarantees. 192 */ 193 void call_rcu_bh(struct rcu_head *head, 194 void (*func)(struct rcu_head *head)); 195 196 /** 197 * call_rcu_sched() - Queue an RCU for invocation after sched grace period. 198 * @head: structure to be used for queueing the RCU updates. 199 * @func: actual callback function to be invoked after the grace period 200 * 201 * The callback function will be invoked some time after a full grace 202 * period elapses, in other words after all currently executing RCU 203 * read-side critical sections have completed. call_rcu_sched() assumes 204 * that the read-side critical sections end on enabling of preemption 205 * or on voluntary preemption. 206 * RCU read-side critical sections are delimited by : 207 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), 208 * OR 209 * anything that disables preemption. 210 * These may be nested. 211 * 212 * See the description of call_rcu() for more detailed information on 213 * memory ordering guarantees. 214 */ 215 void call_rcu_sched(struct rcu_head *head, 216 void (*func)(struct rcu_head *rcu)); 217 218 void synchronize_sched(void); 219 220 /* 221 * Structure allowing asynchronous waiting on RCU. 222 */ 223 struct rcu_synchronize { 224 struct rcu_head head; 225 struct completion completion; 226 }; 227 void wakeme_after_rcu(struct rcu_head *head); 228 229 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array, 230 struct rcu_synchronize *rs_array); 231 232 #define _wait_rcu_gp(checktiny, ...) \ 233 do { \ 234 call_rcu_func_t __crcu_array[] = { __VA_ARGS__ }; \ 235 const int __n = ARRAY_SIZE(__crcu_array); \ 236 struct rcu_synchronize __rs_array[__n]; \ 237 \ 238 __wait_rcu_gp(checktiny, __n, __crcu_array, __rs_array); \ 239 } while (0) 240 241 #define wait_rcu_gp(...) _wait_rcu_gp(false, __VA_ARGS__) 242 243 /** 244 * synchronize_rcu_mult - Wait concurrently for multiple grace periods 245 * @...: List of call_rcu() functions for the flavors to wait on. 246 * 247 * This macro waits concurrently for multiple flavors of RCU grace periods. 248 * For example, synchronize_rcu_mult(call_rcu, call_rcu_bh) would wait 249 * on concurrent RCU and RCU-bh grace periods. Waiting on a give SRCU 250 * domain requires you to write a wrapper function for that SRCU domain's 251 * call_srcu() function, supplying the corresponding srcu_struct. 252 * 253 * If Tiny RCU, tell _wait_rcu_gp() not to bother waiting for RCU 254 * or RCU-bh, given that anywhere synchronize_rcu_mult() can be called 255 * is automatically a grace period. 256 */ 257 #define synchronize_rcu_mult(...) \ 258 _wait_rcu_gp(IS_ENABLED(CONFIG_TINY_RCU), __VA_ARGS__) 259 260 /** 261 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period 262 * @head: structure to be used for queueing the RCU updates. 263 * @func: actual callback function to be invoked after the grace period 264 * 265 * The callback function will be invoked some time after a full grace 266 * period elapses, in other words after all currently executing RCU 267 * read-side critical sections have completed. call_rcu_tasks() assumes 268 * that the read-side critical sections end at a voluntary context 269 * switch (not a preemption!), entry into idle, or transition to usermode 270 * execution. As such, there are no read-side primitives analogous to 271 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended 272 * to determine that all tasks have passed through a safe state, not so 273 * much for data-strcuture synchronization. 274 * 275 * See the description of call_rcu() for more detailed information on 276 * memory ordering guarantees. 277 */ 278 void call_rcu_tasks(struct rcu_head *head, void (*func)(struct rcu_head *head)); 279 void synchronize_rcu_tasks(void); 280 void rcu_barrier_tasks(void); 281 282 #ifdef CONFIG_PREEMPT_RCU 283 284 void __rcu_read_lock(void); 285 void __rcu_read_unlock(void); 286 void rcu_read_unlock_special(struct task_struct *t); 287 void synchronize_rcu(void); 288 289 /* 290 * Defined as a macro as it is a very low level header included from 291 * areas that don't even know about current. This gives the rcu_read_lock() 292 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 293 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 294 */ 295 #define rcu_preempt_depth() (current->rcu_read_lock_nesting) 296 297 #else /* #ifdef CONFIG_PREEMPT_RCU */ 298 299 static inline void __rcu_read_lock(void) 300 { 301 preempt_disable(); 302 } 303 304 static inline void __rcu_read_unlock(void) 305 { 306 preempt_enable(); 307 } 308 309 static inline void synchronize_rcu(void) 310 { 311 synchronize_sched(); 312 } 313 314 static inline int rcu_preempt_depth(void) 315 { 316 return 0; 317 } 318 319 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 320 321 /* Internal to kernel */ 322 void rcu_init(void); 323 void rcu_end_inkernel_boot(void); 324 void rcu_sched_qs(void); 325 void rcu_bh_qs(void); 326 void rcu_check_callbacks(int user); 327 struct notifier_block; 328 int rcu_cpu_notify(struct notifier_block *self, 329 unsigned long action, void *hcpu); 330 331 #ifdef CONFIG_RCU_STALL_COMMON 332 void rcu_sysrq_start(void); 333 void rcu_sysrq_end(void); 334 #else /* #ifdef CONFIG_RCU_STALL_COMMON */ 335 static inline void rcu_sysrq_start(void) 336 { 337 } 338 static inline void rcu_sysrq_end(void) 339 { 340 } 341 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ 342 343 #ifdef CONFIG_NO_HZ_FULL 344 void rcu_user_enter(void); 345 void rcu_user_exit(void); 346 #else 347 static inline void rcu_user_enter(void) { } 348 static inline void rcu_user_exit(void) { } 349 static inline void rcu_user_hooks_switch(struct task_struct *prev, 350 struct task_struct *next) { } 351 #endif /* CONFIG_NO_HZ_FULL */ 352 353 #ifdef CONFIG_RCU_NOCB_CPU 354 void rcu_init_nohz(void); 355 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 356 static inline void rcu_init_nohz(void) 357 { 358 } 359 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 360 361 /** 362 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers 363 * @a: Code that RCU needs to pay attention to. 364 * 365 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden 366 * in the inner idle loop, that is, between the rcu_idle_enter() and 367 * the rcu_idle_exit() -- RCU will happily ignore any such read-side 368 * critical sections. However, things like powertop need tracepoints 369 * in the inner idle loop. 370 * 371 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) 372 * will tell RCU that it needs to pay attending, invoke its argument 373 * (in this example, a call to the do_something_with_RCU() function), 374 * and then tell RCU to go back to ignoring this CPU. It is permissible 375 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently 376 * quite limited. If deeper nesting is required, it will be necessary 377 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly. 378 */ 379 #define RCU_NONIDLE(a) \ 380 do { \ 381 rcu_irq_enter(); \ 382 do { a; } while (0); \ 383 rcu_irq_exit(); \ 384 } while (0) 385 386 /* 387 * Note a voluntary context switch for RCU-tasks benefit. This is a 388 * macro rather than an inline function to avoid #include hell. 389 */ 390 #ifdef CONFIG_TASKS_RCU 391 #define TASKS_RCU(x) x 392 extern struct srcu_struct tasks_rcu_exit_srcu; 393 #define rcu_note_voluntary_context_switch(t) \ 394 do { \ 395 rcu_all_qs(); \ 396 if (READ_ONCE((t)->rcu_tasks_holdout)) \ 397 WRITE_ONCE((t)->rcu_tasks_holdout, false); \ 398 } while (0) 399 #else /* #ifdef CONFIG_TASKS_RCU */ 400 #define TASKS_RCU(x) do { } while (0) 401 #define rcu_note_voluntary_context_switch(t) rcu_all_qs() 402 #endif /* #else #ifdef CONFIG_TASKS_RCU */ 403 404 /** 405 * cond_resched_rcu_qs - Report potential quiescent states to RCU 406 * 407 * This macro resembles cond_resched(), except that it is defined to 408 * report potential quiescent states to RCU-tasks even if the cond_resched() 409 * machinery were to be shut off, as some advocate for PREEMPT kernels. 410 */ 411 #define cond_resched_rcu_qs() \ 412 do { \ 413 if (!cond_resched()) \ 414 rcu_note_voluntary_context_switch(current); \ 415 } while (0) 416 417 #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) 418 bool __rcu_is_watching(void); 419 #endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */ 420 421 /* 422 * Infrastructure to implement the synchronize_() primitives in 423 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 424 */ 425 426 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) 427 #include <linux/rcutree.h> 428 #elif defined(CONFIG_TINY_RCU) 429 #include <linux/rcutiny.h> 430 #else 431 #error "Unknown RCU implementation specified to kernel configuration" 432 #endif 433 434 /* 435 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic 436 * initialization and destruction of rcu_head on the stack. rcu_head structures 437 * allocated dynamically in the heap or defined statically don't need any 438 * initialization. 439 */ 440 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 441 void init_rcu_head(struct rcu_head *head); 442 void destroy_rcu_head(struct rcu_head *head); 443 void init_rcu_head_on_stack(struct rcu_head *head); 444 void destroy_rcu_head_on_stack(struct rcu_head *head); 445 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 446 static inline void init_rcu_head(struct rcu_head *head) 447 { 448 } 449 450 static inline void destroy_rcu_head(struct rcu_head *head) 451 { 452 } 453 454 static inline void init_rcu_head_on_stack(struct rcu_head *head) 455 { 456 } 457 458 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) 459 { 460 } 461 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 462 463 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 464 bool rcu_lockdep_current_cpu_online(void); 465 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 466 static inline bool rcu_lockdep_current_cpu_online(void) 467 { 468 return true; 469 } 470 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 471 472 #ifdef CONFIG_DEBUG_LOCK_ALLOC 473 474 static inline void rcu_lock_acquire(struct lockdep_map *map) 475 { 476 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); 477 } 478 479 static inline void rcu_lock_release(struct lockdep_map *map) 480 { 481 lock_release(map, 1, _THIS_IP_); 482 } 483 484 extern struct lockdep_map rcu_lock_map; 485 extern struct lockdep_map rcu_bh_lock_map; 486 extern struct lockdep_map rcu_sched_lock_map; 487 extern struct lockdep_map rcu_callback_map; 488 int debug_lockdep_rcu_enabled(void); 489 490 int rcu_read_lock_held(void); 491 int rcu_read_lock_bh_held(void); 492 493 /** 494 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section? 495 * 496 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an 497 * RCU-sched read-side critical section. In absence of 498 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side 499 * critical section unless it can prove otherwise. 500 */ 501 #ifdef CONFIG_PREEMPT_COUNT 502 int rcu_read_lock_sched_held(void); 503 #else /* #ifdef CONFIG_PREEMPT_COUNT */ 504 static inline int rcu_read_lock_sched_held(void) 505 { 506 return 1; 507 } 508 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ 509 510 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 511 512 # define rcu_lock_acquire(a) do { } while (0) 513 # define rcu_lock_release(a) do { } while (0) 514 515 static inline int rcu_read_lock_held(void) 516 { 517 return 1; 518 } 519 520 static inline int rcu_read_lock_bh_held(void) 521 { 522 return 1; 523 } 524 525 #ifdef CONFIG_PREEMPT_COUNT 526 static inline int rcu_read_lock_sched_held(void) 527 { 528 return preempt_count() != 0 || irqs_disabled(); 529 } 530 #else /* #ifdef CONFIG_PREEMPT_COUNT */ 531 static inline int rcu_read_lock_sched_held(void) 532 { 533 return 1; 534 } 535 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ 536 537 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 538 539 /* Deprecate rcu_lockdep_assert(): Use RCU_LOCKDEP_WARN() instead. */ 540 static inline void __attribute((deprecated)) deprecate_rcu_lockdep_assert(void) 541 { 542 } 543 544 #ifdef CONFIG_PROVE_RCU 545 546 /** 547 * rcu_lockdep_assert - emit lockdep splat if specified condition not met 548 * @c: condition to check 549 * @s: informative message 550 */ 551 #define rcu_lockdep_assert(c, s) \ 552 do { \ 553 static bool __section(.data.unlikely) __warned; \ 554 deprecate_rcu_lockdep_assert(); \ 555 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \ 556 __warned = true; \ 557 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 558 } \ 559 } while (0) 560 561 /** 562 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met 563 * @c: condition to check 564 * @s: informative message 565 */ 566 #define RCU_LOCKDEP_WARN(c, s) \ 567 do { \ 568 static bool __section(.data.unlikely) __warned; \ 569 if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \ 570 __warned = true; \ 571 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 572 } \ 573 } while (0) 574 575 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 576 static inline void rcu_preempt_sleep_check(void) 577 { 578 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 579 "Illegal context switch in RCU read-side critical section"); 580 } 581 #else /* #ifdef CONFIG_PROVE_RCU */ 582 static inline void rcu_preempt_sleep_check(void) 583 { 584 } 585 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 586 587 #define rcu_sleep_check() \ 588 do { \ 589 rcu_preempt_sleep_check(); \ 590 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ 591 "Illegal context switch in RCU-bh read-side critical section"); \ 592 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ 593 "Illegal context switch in RCU-sched read-side critical section"); \ 594 } while (0) 595 596 #else /* #ifdef CONFIG_PROVE_RCU */ 597 598 #define rcu_lockdep_assert(c, s) deprecate_rcu_lockdep_assert() 599 #define RCU_LOCKDEP_WARN(c, s) do { } while (0) 600 #define rcu_sleep_check() do { } while (0) 601 602 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 603 604 /* 605 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 606 * and rcu_assign_pointer(). Some of these could be folded into their 607 * callers, but they are left separate in order to ease introduction of 608 * multiple flavors of pointers to match the multiple flavors of RCU 609 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in 610 * the future. 611 */ 612 613 #ifdef __CHECKER__ 614 #define rcu_dereference_sparse(p, space) \ 615 ((void)(((typeof(*p) space *)p) == p)) 616 #else /* #ifdef __CHECKER__ */ 617 #define rcu_dereference_sparse(p, space) 618 #endif /* #else #ifdef __CHECKER__ */ 619 620 #define __rcu_access_pointer(p, space) \ 621 ({ \ 622 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \ 623 rcu_dereference_sparse(p, space); \ 624 ((typeof(*p) __force __kernel *)(_________p1)); \ 625 }) 626 #define __rcu_dereference_check(p, c, space) \ 627 ({ \ 628 /* Dependency order vs. p above. */ \ 629 typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \ 630 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ 631 rcu_dereference_sparse(p, space); \ 632 ((typeof(*p) __force __kernel *)(________p1)); \ 633 }) 634 #define __rcu_dereference_protected(p, c, space) \ 635 ({ \ 636 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ 637 rcu_dereference_sparse(p, space); \ 638 ((typeof(*p) __force __kernel *)(p)); \ 639 }) 640 641 /** 642 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable 643 * @v: The value to statically initialize with. 644 */ 645 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) 646 647 /** 648 * rcu_assign_pointer() - assign to RCU-protected pointer 649 * @p: pointer to assign to 650 * @v: value to assign (publish) 651 * 652 * Assigns the specified value to the specified RCU-protected 653 * pointer, ensuring that any concurrent RCU readers will see 654 * any prior initialization. 655 * 656 * Inserts memory barriers on architectures that require them 657 * (which is most of them), and also prevents the compiler from 658 * reordering the code that initializes the structure after the pointer 659 * assignment. More importantly, this call documents which pointers 660 * will be dereferenced by RCU read-side code. 661 * 662 * In some special cases, you may use RCU_INIT_POINTER() instead 663 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 664 * to the fact that it does not constrain either the CPU or the compiler. 665 * That said, using RCU_INIT_POINTER() when you should have used 666 * rcu_assign_pointer() is a very bad thing that results in 667 * impossible-to-diagnose memory corruption. So please be careful. 668 * See the RCU_INIT_POINTER() comment header for details. 669 * 670 * Note that rcu_assign_pointer() evaluates each of its arguments only 671 * once, appearances notwithstanding. One of the "extra" evaluations 672 * is in typeof() and the other visible only to sparse (__CHECKER__), 673 * neither of which actually execute the argument. As with most cpp 674 * macros, this execute-arguments-only-once property is important, so 675 * please be careful when making changes to rcu_assign_pointer() and the 676 * other macros that it invokes. 677 */ 678 #define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v)) 679 680 /** 681 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 682 * @p: The pointer to read 683 * 684 * Return the value of the specified RCU-protected pointer, but omit the 685 * smp_read_barrier_depends() and keep the READ_ONCE(). This is useful 686 * when the value of this pointer is accessed, but the pointer is not 687 * dereferenced, for example, when testing an RCU-protected pointer against 688 * NULL. Although rcu_access_pointer() may also be used in cases where 689 * update-side locks prevent the value of the pointer from changing, you 690 * should instead use rcu_dereference_protected() for this use case. 691 * 692 * It is also permissible to use rcu_access_pointer() when read-side 693 * access to the pointer was removed at least one grace period ago, as 694 * is the case in the context of the RCU callback that is freeing up 695 * the data, or after a synchronize_rcu() returns. This can be useful 696 * when tearing down multi-linked structures after a grace period 697 * has elapsed. 698 */ 699 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) 700 701 /** 702 * rcu_dereference_check() - rcu_dereference with debug checking 703 * @p: The pointer to read, prior to dereferencing 704 * @c: The conditions under which the dereference will take place 705 * 706 * Do an rcu_dereference(), but check that the conditions under which the 707 * dereference will take place are correct. Typically the conditions 708 * indicate the various locking conditions that should be held at that 709 * point. The check should return true if the conditions are satisfied. 710 * An implicit check for being in an RCU read-side critical section 711 * (rcu_read_lock()) is included. 712 * 713 * For example: 714 * 715 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 716 * 717 * could be used to indicate to lockdep that foo->bar may only be dereferenced 718 * if either rcu_read_lock() is held, or that the lock required to replace 719 * the bar struct at foo->bar is held. 720 * 721 * Note that the list of conditions may also include indications of when a lock 722 * need not be held, for example during initialisation or destruction of the 723 * target struct: 724 * 725 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 726 * atomic_read(&foo->usage) == 0); 727 * 728 * Inserts memory barriers on architectures that require them 729 * (currently only the Alpha), prevents the compiler from refetching 730 * (and from merging fetches), and, more importantly, documents exactly 731 * which pointers are protected by RCU and checks that the pointer is 732 * annotated as __rcu. 733 */ 734 #define rcu_dereference_check(p, c) \ 735 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu) 736 737 /** 738 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 739 * @p: The pointer to read, prior to dereferencing 740 * @c: The conditions under which the dereference will take place 741 * 742 * This is the RCU-bh counterpart to rcu_dereference_check(). 743 */ 744 #define rcu_dereference_bh_check(p, c) \ 745 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu) 746 747 /** 748 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 749 * @p: The pointer to read, prior to dereferencing 750 * @c: The conditions under which the dereference will take place 751 * 752 * This is the RCU-sched counterpart to rcu_dereference_check(). 753 */ 754 #define rcu_dereference_sched_check(p, c) \ 755 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \ 756 __rcu) 757 758 #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/ 759 760 /* 761 * The tracing infrastructure traces RCU (we want that), but unfortunately 762 * some of the RCU checks causes tracing to lock up the system. 763 * 764 * The tracing version of rcu_dereference_raw() must not call 765 * rcu_read_lock_held(). 766 */ 767 #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu) 768 769 /** 770 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 771 * @p: The pointer to read, prior to dereferencing 772 * @c: The conditions under which the dereference will take place 773 * 774 * Return the value of the specified RCU-protected pointer, but omit 775 * both the smp_read_barrier_depends() and the READ_ONCE(). This 776 * is useful in cases where update-side locks prevent the value of the 777 * pointer from changing. Please note that this primitive does -not- 778 * prevent the compiler from repeating this reference or combining it 779 * with other references, so it should not be used without protection 780 * of appropriate locks. 781 * 782 * This function is only for update-side use. Using this function 783 * when protected only by rcu_read_lock() will result in infrequent 784 * but very ugly failures. 785 */ 786 #define rcu_dereference_protected(p, c) \ 787 __rcu_dereference_protected((p), (c), __rcu) 788 789 790 /** 791 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 792 * @p: The pointer to read, prior to dereferencing 793 * 794 * This is a simple wrapper around rcu_dereference_check(). 795 */ 796 #define rcu_dereference(p) rcu_dereference_check(p, 0) 797 798 /** 799 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 800 * @p: The pointer to read, prior to dereferencing 801 * 802 * Makes rcu_dereference_check() do the dirty work. 803 */ 804 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 805 806 /** 807 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 808 * @p: The pointer to read, prior to dereferencing 809 * 810 * Makes rcu_dereference_check() do the dirty work. 811 */ 812 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 813 814 /** 815 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 816 * 817 * When synchronize_rcu() is invoked on one CPU while other CPUs 818 * are within RCU read-side critical sections, then the 819 * synchronize_rcu() is guaranteed to block until after all the other 820 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 821 * on one CPU while other CPUs are within RCU read-side critical 822 * sections, invocation of the corresponding RCU callback is deferred 823 * until after the all the other CPUs exit their critical sections. 824 * 825 * Note, however, that RCU callbacks are permitted to run concurrently 826 * with new RCU read-side critical sections. One way that this can happen 827 * is via the following sequence of events: (1) CPU 0 enters an RCU 828 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 829 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 830 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 831 * callback is invoked. This is legal, because the RCU read-side critical 832 * section that was running concurrently with the call_rcu() (and which 833 * therefore might be referencing something that the corresponding RCU 834 * callback would free up) has completed before the corresponding 835 * RCU callback is invoked. 836 * 837 * RCU read-side critical sections may be nested. Any deferred actions 838 * will be deferred until the outermost RCU read-side critical section 839 * completes. 840 * 841 * You can avoid reading and understanding the next paragraph by 842 * following this rule: don't put anything in an rcu_read_lock() RCU 843 * read-side critical section that would block in a !PREEMPT kernel. 844 * But if you want the full story, read on! 845 * 846 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), 847 * it is illegal to block while in an RCU read-side critical section. 848 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT 849 * kernel builds, RCU read-side critical sections may be preempted, 850 * but explicit blocking is illegal. Finally, in preemptible RCU 851 * implementations in real-time (with -rt patchset) kernel builds, RCU 852 * read-side critical sections may be preempted and they may also block, but 853 * only when acquiring spinlocks that are subject to priority inheritance. 854 */ 855 static inline void rcu_read_lock(void) 856 { 857 __rcu_read_lock(); 858 __acquire(RCU); 859 rcu_lock_acquire(&rcu_lock_map); 860 RCU_LOCKDEP_WARN(!rcu_is_watching(), 861 "rcu_read_lock() used illegally while idle"); 862 } 863 864 /* 865 * So where is rcu_write_lock()? It does not exist, as there is no 866 * way for writers to lock out RCU readers. This is a feature, not 867 * a bug -- this property is what provides RCU's performance benefits. 868 * Of course, writers must coordinate with each other. The normal 869 * spinlock primitives work well for this, but any other technique may be 870 * used as well. RCU does not care how the writers keep out of each 871 * others' way, as long as they do so. 872 */ 873 874 /** 875 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 876 * 877 * In most situations, rcu_read_unlock() is immune from deadlock. 878 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock() 879 * is responsible for deboosting, which it does via rt_mutex_unlock(). 880 * Unfortunately, this function acquires the scheduler's runqueue and 881 * priority-inheritance spinlocks. This means that deadlock could result 882 * if the caller of rcu_read_unlock() already holds one of these locks or 883 * any lock that is ever acquired while holding them; or any lock which 884 * can be taken from interrupt context because rcu_boost()->rt_mutex_lock() 885 * does not disable irqs while taking ->wait_lock. 886 * 887 * That said, RCU readers are never priority boosted unless they were 888 * preempted. Therefore, one way to avoid deadlock is to make sure 889 * that preemption never happens within any RCU read-side critical 890 * section whose outermost rcu_read_unlock() is called with one of 891 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in 892 * a number of ways, for example, by invoking preempt_disable() before 893 * critical section's outermost rcu_read_lock(). 894 * 895 * Given that the set of locks acquired by rt_mutex_unlock() might change 896 * at any time, a somewhat more future-proofed approach is to make sure 897 * that that preemption never happens within any RCU read-side critical 898 * section whose outermost rcu_read_unlock() is called with irqs disabled. 899 * This approach relies on the fact that rt_mutex_unlock() currently only 900 * acquires irq-disabled locks. 901 * 902 * The second of these two approaches is best in most situations, 903 * however, the first approach can also be useful, at least to those 904 * developers willing to keep abreast of the set of locks acquired by 905 * rt_mutex_unlock(). 906 * 907 * See rcu_read_lock() for more information. 908 */ 909 static inline void rcu_read_unlock(void) 910 { 911 RCU_LOCKDEP_WARN(!rcu_is_watching(), 912 "rcu_read_unlock() used illegally while idle"); 913 __release(RCU); 914 __rcu_read_unlock(); 915 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ 916 } 917 918 /** 919 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 920 * 921 * This is equivalent of rcu_read_lock(), but to be used when updates 922 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since 923 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a 924 * softirq handler to be a quiescent state, a process in RCU read-side 925 * critical section must be protected by disabling softirqs. Read-side 926 * critical sections in interrupt context can use just rcu_read_lock(), 927 * though this should at least be commented to avoid confusing people 928 * reading the code. 929 * 930 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 931 * must occur in the same context, for example, it is illegal to invoke 932 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 933 * was invoked from some other task. 934 */ 935 static inline void rcu_read_lock_bh(void) 936 { 937 local_bh_disable(); 938 __acquire(RCU_BH); 939 rcu_lock_acquire(&rcu_bh_lock_map); 940 RCU_LOCKDEP_WARN(!rcu_is_watching(), 941 "rcu_read_lock_bh() used illegally while idle"); 942 } 943 944 /* 945 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section 946 * 947 * See rcu_read_lock_bh() for more information. 948 */ 949 static inline void rcu_read_unlock_bh(void) 950 { 951 RCU_LOCKDEP_WARN(!rcu_is_watching(), 952 "rcu_read_unlock_bh() used illegally while idle"); 953 rcu_lock_release(&rcu_bh_lock_map); 954 __release(RCU_BH); 955 local_bh_enable(); 956 } 957 958 /** 959 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 960 * 961 * This is equivalent of rcu_read_lock(), but to be used when updates 962 * are being done using call_rcu_sched() or synchronize_rcu_sched(). 963 * Read-side critical sections can also be introduced by anything that 964 * disables preemption, including local_irq_disable() and friends. 965 * 966 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 967 * must occur in the same context, for example, it is illegal to invoke 968 * rcu_read_unlock_sched() from process context if the matching 969 * rcu_read_lock_sched() was invoked from an NMI handler. 970 */ 971 static inline void rcu_read_lock_sched(void) 972 { 973 preempt_disable(); 974 __acquire(RCU_SCHED); 975 rcu_lock_acquire(&rcu_sched_lock_map); 976 RCU_LOCKDEP_WARN(!rcu_is_watching(), 977 "rcu_read_lock_sched() used illegally while idle"); 978 } 979 980 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 981 static inline notrace void rcu_read_lock_sched_notrace(void) 982 { 983 preempt_disable_notrace(); 984 __acquire(RCU_SCHED); 985 } 986 987 /* 988 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section 989 * 990 * See rcu_read_lock_sched for more information. 991 */ 992 static inline void rcu_read_unlock_sched(void) 993 { 994 RCU_LOCKDEP_WARN(!rcu_is_watching(), 995 "rcu_read_unlock_sched() used illegally while idle"); 996 rcu_lock_release(&rcu_sched_lock_map); 997 __release(RCU_SCHED); 998 preempt_enable(); 999 } 1000 1001 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 1002 static inline notrace void rcu_read_unlock_sched_notrace(void) 1003 { 1004 __release(RCU_SCHED); 1005 preempt_enable_notrace(); 1006 } 1007 1008 /** 1009 * RCU_INIT_POINTER() - initialize an RCU protected pointer 1010 * 1011 * Initialize an RCU-protected pointer in special cases where readers 1012 * do not need ordering constraints on the CPU or the compiler. These 1013 * special cases are: 1014 * 1015 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or- 1016 * 2. The caller has taken whatever steps are required to prevent 1017 * RCU readers from concurrently accessing this pointer -or- 1018 * 3. The referenced data structure has already been exposed to 1019 * readers either at compile time or via rcu_assign_pointer() -and- 1020 * a. You have not made -any- reader-visible changes to 1021 * this structure since then -or- 1022 * b. It is OK for readers accessing this structure from its 1023 * new location to see the old state of the structure. (For 1024 * example, the changes were to statistical counters or to 1025 * other state where exact synchronization is not required.) 1026 * 1027 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 1028 * result in impossible-to-diagnose memory corruption. As in the structures 1029 * will look OK in crash dumps, but any concurrent RCU readers might 1030 * see pre-initialized values of the referenced data structure. So 1031 * please be very careful how you use RCU_INIT_POINTER()!!! 1032 * 1033 * If you are creating an RCU-protected linked structure that is accessed 1034 * by a single external-to-structure RCU-protected pointer, then you may 1035 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 1036 * pointers, but you must use rcu_assign_pointer() to initialize the 1037 * external-to-structure pointer -after- you have completely initialized 1038 * the reader-accessible portions of the linked structure. 1039 * 1040 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no 1041 * ordering guarantees for either the CPU or the compiler. 1042 */ 1043 #define RCU_INIT_POINTER(p, v) \ 1044 do { \ 1045 rcu_dereference_sparse(p, __rcu); \ 1046 WRITE_ONCE(p, RCU_INITIALIZER(v)); \ 1047 } while (0) 1048 1049 /** 1050 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 1051 * 1052 * GCC-style initialization for an RCU-protected pointer in a structure field. 1053 */ 1054 #define RCU_POINTER_INITIALIZER(p, v) \ 1055 .p = RCU_INITIALIZER(v) 1056 1057 /* 1058 * Does the specified offset indicate that the corresponding rcu_head 1059 * structure can be handled by kfree_rcu()? 1060 */ 1061 #define __is_kfree_rcu_offset(offset) ((offset) < 4096) 1062 1063 /* 1064 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain. 1065 */ 1066 #define __kfree_rcu(head, offset) \ 1067 do { \ 1068 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \ 1069 kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \ 1070 } while (0) 1071 1072 /** 1073 * kfree_rcu() - kfree an object after a grace period. 1074 * @ptr: pointer to kfree 1075 * @rcu_head: the name of the struct rcu_head within the type of @ptr. 1076 * 1077 * Many rcu callbacks functions just call kfree() on the base structure. 1078 * These functions are trivial, but their size adds up, and furthermore 1079 * when they are used in a kernel module, that module must invoke the 1080 * high-latency rcu_barrier() function at module-unload time. 1081 * 1082 * The kfree_rcu() function handles this issue. Rather than encoding a 1083 * function address in the embedded rcu_head structure, kfree_rcu() instead 1084 * encodes the offset of the rcu_head structure within the base structure. 1085 * Because the functions are not allowed in the low-order 4096 bytes of 1086 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 1087 * If the offset is larger than 4095 bytes, a compile-time error will 1088 * be generated in __kfree_rcu(). If this error is triggered, you can 1089 * either fall back to use of call_rcu() or rearrange the structure to 1090 * position the rcu_head structure into the first 4096 bytes. 1091 * 1092 * Note that the allowable offset might decrease in the future, for example, 1093 * to allow something like kmem_cache_free_rcu(). 1094 * 1095 * The BUILD_BUG_ON check must not involve any function calls, hence the 1096 * checks are done in macros here. 1097 */ 1098 #define kfree_rcu(ptr, rcu_head) \ 1099 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head)) 1100 1101 #ifdef CONFIG_TINY_RCU 1102 static inline int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1103 { 1104 *nextevt = KTIME_MAX; 1105 return 0; 1106 } 1107 #endif /* #ifdef CONFIG_TINY_RCU */ 1108 1109 #if defined(CONFIG_RCU_NOCB_CPU_ALL) 1110 static inline bool rcu_is_nocb_cpu(int cpu) { return true; } 1111 #elif defined(CONFIG_RCU_NOCB_CPU) 1112 bool rcu_is_nocb_cpu(int cpu); 1113 #else 1114 static inline bool rcu_is_nocb_cpu(int cpu) { return false; } 1115 #endif 1116 1117 1118 /* Only for use by adaptive-ticks code. */ 1119 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 1120 bool rcu_sys_is_idle(void); 1121 void rcu_sysidle_force_exit(void); 1122 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 1123 1124 static inline bool rcu_sys_is_idle(void) 1125 { 1126 return false; 1127 } 1128 1129 static inline void rcu_sysidle_force_exit(void) 1130 { 1131 } 1132 1133 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 1134 1135 1136 #endif /* __LINUX_RCUPDATE_H */ 1137