1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion 4 * 5 * Copyright IBM Corporation, 2001 6 * 7 * Author: Dipankar Sarma <[email protected]> 8 * 9 * Based on the original work by Paul McKenney <[email protected]> 10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 11 * Papers: 12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 14 * 15 * For detailed explanation of Read-Copy Update mechanism see - 16 * http://lse.sourceforge.net/locking/rcupdate.html 17 * 18 */ 19 20 #ifndef __LINUX_RCUPDATE_H 21 #define __LINUX_RCUPDATE_H 22 23 #include <linux/types.h> 24 #include <linux/compiler.h> 25 #include <linux/atomic.h> 26 #include <linux/irqflags.h> 27 #include <linux/preempt.h> 28 #include <linux/bottom_half.h> 29 #include <linux/lockdep.h> 30 #include <asm/processor.h> 31 #include <linux/cpumask.h> 32 #include <linux/context_tracking_irq.h> 33 34 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 35 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 36 #define ulong2long(a) (*(long *)(&(a))) 37 #define USHORT_CMP_GE(a, b) (USHRT_MAX / 2 >= (unsigned short)((a) - (b))) 38 #define USHORT_CMP_LT(a, b) (USHRT_MAX / 2 < (unsigned short)((a) - (b))) 39 40 /* Exported common interfaces */ 41 void call_rcu(struct rcu_head *head, rcu_callback_t func); 42 void rcu_barrier_tasks(void); 43 void rcu_barrier_tasks_rude(void); 44 void synchronize_rcu(void); 45 46 struct rcu_gp_oldstate; 47 unsigned long get_completed_synchronize_rcu(void); 48 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp); 49 50 // Maximum number of unsigned long values corresponding to 51 // not-yet-completed RCU grace periods. 52 #define NUM_ACTIVE_RCU_POLL_OLDSTATE 2 53 54 /** 55 * same_state_synchronize_rcu - Are two old-state values identical? 56 * @oldstate1: First old-state value. 57 * @oldstate2: Second old-state value. 58 * 59 * The two old-state values must have been obtained from either 60 * get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or 61 * get_completed_synchronize_rcu(). Returns @true if the two values are 62 * identical and @false otherwise. This allows structures whose lifetimes 63 * are tracked by old-state values to push these values to a list header, 64 * allowing those structures to be slightly smaller. 65 */ 66 static inline bool same_state_synchronize_rcu(unsigned long oldstate1, unsigned long oldstate2) 67 { 68 return oldstate1 == oldstate2; 69 } 70 71 #ifdef CONFIG_PREEMPT_RCU 72 73 void __rcu_read_lock(void); 74 void __rcu_read_unlock(void); 75 76 /* 77 * Defined as a macro as it is a very low level header included from 78 * areas that don't even know about current. This gives the rcu_read_lock() 79 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 80 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 81 */ 82 #define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting) 83 84 #else /* #ifdef CONFIG_PREEMPT_RCU */ 85 86 #ifdef CONFIG_TINY_RCU 87 #define rcu_read_unlock_strict() do { } while (0) 88 #else 89 void rcu_read_unlock_strict(void); 90 #endif 91 92 static inline void __rcu_read_lock(void) 93 { 94 preempt_disable(); 95 } 96 97 static inline void __rcu_read_unlock(void) 98 { 99 preempt_enable(); 100 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 101 rcu_read_unlock_strict(); 102 } 103 104 static inline int rcu_preempt_depth(void) 105 { 106 return 0; 107 } 108 109 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 110 111 #ifdef CONFIG_RCU_LAZY 112 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func); 113 #else 114 static inline void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func) 115 { 116 call_rcu(head, func); 117 } 118 #endif 119 120 /* Internal to kernel */ 121 void rcu_init(void); 122 extern int rcu_scheduler_active; 123 void rcu_sched_clock_irq(int user); 124 void rcu_report_dead(unsigned int cpu); 125 void rcutree_migrate_callbacks(int cpu); 126 127 #ifdef CONFIG_TASKS_RCU_GENERIC 128 void rcu_init_tasks_generic(void); 129 #else 130 static inline void rcu_init_tasks_generic(void) { } 131 #endif 132 133 #ifdef CONFIG_RCU_STALL_COMMON 134 void rcu_sysrq_start(void); 135 void rcu_sysrq_end(void); 136 #else /* #ifdef CONFIG_RCU_STALL_COMMON */ 137 static inline void rcu_sysrq_start(void) { } 138 static inline void rcu_sysrq_end(void) { } 139 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ 140 141 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) 142 void rcu_irq_work_resched(void); 143 #else 144 static inline void rcu_irq_work_resched(void) { } 145 #endif 146 147 #ifdef CONFIG_RCU_NOCB_CPU 148 void rcu_init_nohz(void); 149 int rcu_nocb_cpu_offload(int cpu); 150 int rcu_nocb_cpu_deoffload(int cpu); 151 void rcu_nocb_flush_deferred_wakeup(void); 152 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 153 static inline void rcu_init_nohz(void) { } 154 static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; } 155 static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; } 156 static inline void rcu_nocb_flush_deferred_wakeup(void) { } 157 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 158 159 /* 160 * Note a quasi-voluntary context switch for RCU-tasks's benefit. 161 * This is a macro rather than an inline function to avoid #include hell. 162 */ 163 #ifdef CONFIG_TASKS_RCU_GENERIC 164 165 # ifdef CONFIG_TASKS_RCU 166 # define rcu_tasks_classic_qs(t, preempt) \ 167 do { \ 168 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \ 169 WRITE_ONCE((t)->rcu_tasks_holdout, false); \ 170 } while (0) 171 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func); 172 void synchronize_rcu_tasks(void); 173 # else 174 # define rcu_tasks_classic_qs(t, preempt) do { } while (0) 175 # define call_rcu_tasks call_rcu 176 # define synchronize_rcu_tasks synchronize_rcu 177 # endif 178 179 # ifdef CONFIG_TASKS_TRACE_RCU 180 // Bits for ->trc_reader_special.b.need_qs field. 181 #define TRC_NEED_QS 0x1 // Task needs a quiescent state. 182 #define TRC_NEED_QS_CHECKED 0x2 // Task has been checked for needing quiescent state. 183 184 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new); 185 void rcu_tasks_trace_qs_blkd(struct task_struct *t); 186 187 # define rcu_tasks_trace_qs(t) \ 188 do { \ 189 int ___rttq_nesting = READ_ONCE((t)->trc_reader_nesting); \ 190 \ 191 if (likely(!READ_ONCE((t)->trc_reader_special.b.need_qs)) && \ 192 likely(!___rttq_nesting)) { \ 193 rcu_trc_cmpxchg_need_qs((t), 0, TRC_NEED_QS_CHECKED); \ 194 } else if (___rttq_nesting && ___rttq_nesting != INT_MIN && \ 195 !READ_ONCE((t)->trc_reader_special.b.blocked)) { \ 196 rcu_tasks_trace_qs_blkd(t); \ 197 } \ 198 } while (0) 199 # else 200 # define rcu_tasks_trace_qs(t) do { } while (0) 201 # endif 202 203 #define rcu_tasks_qs(t, preempt) \ 204 do { \ 205 rcu_tasks_classic_qs((t), (preempt)); \ 206 rcu_tasks_trace_qs(t); \ 207 } while (0) 208 209 # ifdef CONFIG_TASKS_RUDE_RCU 210 void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func); 211 void synchronize_rcu_tasks_rude(void); 212 # endif 213 214 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false) 215 void exit_tasks_rcu_start(void); 216 void exit_tasks_rcu_stop(void); 217 void exit_tasks_rcu_finish(void); 218 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 219 #define rcu_tasks_classic_qs(t, preempt) do { } while (0) 220 #define rcu_tasks_qs(t, preempt) do { } while (0) 221 #define rcu_note_voluntary_context_switch(t) do { } while (0) 222 #define call_rcu_tasks call_rcu 223 #define synchronize_rcu_tasks synchronize_rcu 224 static inline void exit_tasks_rcu_start(void) { } 225 static inline void exit_tasks_rcu_stop(void) { } 226 static inline void exit_tasks_rcu_finish(void) { } 227 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 228 229 /** 230 * rcu_trace_implies_rcu_gp - does an RCU Tasks Trace grace period imply an RCU grace period? 231 * 232 * As an accident of implementation, an RCU Tasks Trace grace period also 233 * acts as an RCU grace period. However, this could change at any time. 234 * Code relying on this accident must call this function to verify that 235 * this accident is still happening. 236 * 237 * You have been warned! 238 */ 239 static inline bool rcu_trace_implies_rcu_gp(void) { return true; } 240 241 /** 242 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU 243 * 244 * This macro resembles cond_resched(), except that it is defined to 245 * report potential quiescent states to RCU-tasks even if the cond_resched() 246 * machinery were to be shut off, as some advocate for PREEMPTION kernels. 247 */ 248 #define cond_resched_tasks_rcu_qs() \ 249 do { \ 250 rcu_tasks_qs(current, false); \ 251 cond_resched(); \ 252 } while (0) 253 254 /* 255 * Infrastructure to implement the synchronize_() primitives in 256 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 257 */ 258 259 #if defined(CONFIG_TREE_RCU) 260 #include <linux/rcutree.h> 261 #elif defined(CONFIG_TINY_RCU) 262 #include <linux/rcutiny.h> 263 #else 264 #error "Unknown RCU implementation specified to kernel configuration" 265 #endif 266 267 /* 268 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls 269 * are needed for dynamic initialization and destruction of rcu_head 270 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for 271 * dynamic initialization and destruction of statically allocated rcu_head 272 * structures. However, rcu_head structures allocated dynamically in the 273 * heap don't need any initialization. 274 */ 275 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 276 void init_rcu_head(struct rcu_head *head); 277 void destroy_rcu_head(struct rcu_head *head); 278 void init_rcu_head_on_stack(struct rcu_head *head); 279 void destroy_rcu_head_on_stack(struct rcu_head *head); 280 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 281 static inline void init_rcu_head(struct rcu_head *head) { } 282 static inline void destroy_rcu_head(struct rcu_head *head) { } 283 static inline void init_rcu_head_on_stack(struct rcu_head *head) { } 284 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { } 285 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 286 287 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 288 bool rcu_lockdep_current_cpu_online(void); 289 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 290 static inline bool rcu_lockdep_current_cpu_online(void) { return true; } 291 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 292 293 extern struct lockdep_map rcu_lock_map; 294 extern struct lockdep_map rcu_bh_lock_map; 295 extern struct lockdep_map rcu_sched_lock_map; 296 extern struct lockdep_map rcu_callback_map; 297 298 #ifdef CONFIG_DEBUG_LOCK_ALLOC 299 300 static inline void rcu_lock_acquire(struct lockdep_map *map) 301 { 302 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); 303 } 304 305 static inline void rcu_lock_release(struct lockdep_map *map) 306 { 307 lock_release(map, _THIS_IP_); 308 } 309 310 int debug_lockdep_rcu_enabled(void); 311 int rcu_read_lock_held(void); 312 int rcu_read_lock_bh_held(void); 313 int rcu_read_lock_sched_held(void); 314 int rcu_read_lock_any_held(void); 315 316 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 317 318 # define rcu_lock_acquire(a) do { } while (0) 319 # define rcu_lock_release(a) do { } while (0) 320 321 static inline int rcu_read_lock_held(void) 322 { 323 return 1; 324 } 325 326 static inline int rcu_read_lock_bh_held(void) 327 { 328 return 1; 329 } 330 331 static inline int rcu_read_lock_sched_held(void) 332 { 333 return !preemptible(); 334 } 335 336 static inline int rcu_read_lock_any_held(void) 337 { 338 return !preemptible(); 339 } 340 341 static inline int debug_lockdep_rcu_enabled(void) 342 { 343 return 0; 344 } 345 346 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 347 348 #ifdef CONFIG_PROVE_RCU 349 350 /** 351 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met 352 * @c: condition to check 353 * @s: informative message 354 * 355 * This checks debug_lockdep_rcu_enabled() before checking (c) to 356 * prevent early boot splats due to lockdep not yet being initialized, 357 * and rechecks it after checking (c) to prevent false-positive splats 358 * due to races with lockdep being disabled. See commit 3066820034b5dd 359 * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail. 360 */ 361 #define RCU_LOCKDEP_WARN(c, s) \ 362 do { \ 363 static bool __section(".data.unlikely") __warned; \ 364 if (debug_lockdep_rcu_enabled() && (c) && \ 365 debug_lockdep_rcu_enabled() && !__warned) { \ 366 __warned = true; \ 367 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 368 } \ 369 } while (0) 370 371 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 372 static inline void rcu_preempt_sleep_check(void) 373 { 374 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 375 "Illegal context switch in RCU read-side critical section"); 376 } 377 #else /* #ifdef CONFIG_PROVE_RCU */ 378 static inline void rcu_preempt_sleep_check(void) { } 379 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 380 381 #define rcu_sleep_check() \ 382 do { \ 383 rcu_preempt_sleep_check(); \ 384 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ 385 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ 386 "Illegal context switch in RCU-bh read-side critical section"); \ 387 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ 388 "Illegal context switch in RCU-sched read-side critical section"); \ 389 } while (0) 390 391 #else /* #ifdef CONFIG_PROVE_RCU */ 392 393 #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c)) 394 #define rcu_sleep_check() do { } while (0) 395 396 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 397 398 /* 399 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 400 * and rcu_assign_pointer(). Some of these could be folded into their 401 * callers, but they are left separate in order to ease introduction of 402 * multiple pointers markings to match different RCU implementations 403 * (e.g., __srcu), should this make sense in the future. 404 */ 405 406 #ifdef __CHECKER__ 407 #define rcu_check_sparse(p, space) \ 408 ((void)(((typeof(*p) space *)p) == p)) 409 #else /* #ifdef __CHECKER__ */ 410 #define rcu_check_sparse(p, space) 411 #endif /* #else #ifdef __CHECKER__ */ 412 413 #define __unrcu_pointer(p, local) \ 414 ({ \ 415 typeof(*p) *local = (typeof(*p) *__force)(p); \ 416 rcu_check_sparse(p, __rcu); \ 417 ((typeof(*p) __force __kernel *)(local)); \ 418 }) 419 /** 420 * unrcu_pointer - mark a pointer as not being RCU protected 421 * @p: pointer needing to lose its __rcu property 422 * 423 * Converts @p from an __rcu pointer to a __kernel pointer. 424 * This allows an __rcu pointer to be used with xchg() and friends. 425 */ 426 #define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu)) 427 428 #define __rcu_access_pointer(p, local, space) \ 429 ({ \ 430 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \ 431 rcu_check_sparse(p, space); \ 432 ((typeof(*p) __force __kernel *)(local)); \ 433 }) 434 #define __rcu_dereference_check(p, local, c, space) \ 435 ({ \ 436 /* Dependency order vs. p above. */ \ 437 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \ 438 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ 439 rcu_check_sparse(p, space); \ 440 ((typeof(*p) __force __kernel *)(local)); \ 441 }) 442 #define __rcu_dereference_protected(p, local, c, space) \ 443 ({ \ 444 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ 445 rcu_check_sparse(p, space); \ 446 ((typeof(*p) __force __kernel *)(p)); \ 447 }) 448 #define __rcu_dereference_raw(p, local) \ 449 ({ \ 450 /* Dependency order vs. p above. */ \ 451 typeof(p) local = READ_ONCE(p); \ 452 ((typeof(*p) __force __kernel *)(local)); \ 453 }) 454 #define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu)) 455 456 /** 457 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable 458 * @v: The value to statically initialize with. 459 */ 460 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) 461 462 /** 463 * rcu_assign_pointer() - assign to RCU-protected pointer 464 * @p: pointer to assign to 465 * @v: value to assign (publish) 466 * 467 * Assigns the specified value to the specified RCU-protected 468 * pointer, ensuring that any concurrent RCU readers will see 469 * any prior initialization. 470 * 471 * Inserts memory barriers on architectures that require them 472 * (which is most of them), and also prevents the compiler from 473 * reordering the code that initializes the structure after the pointer 474 * assignment. More importantly, this call documents which pointers 475 * will be dereferenced by RCU read-side code. 476 * 477 * In some special cases, you may use RCU_INIT_POINTER() instead 478 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 479 * to the fact that it does not constrain either the CPU or the compiler. 480 * That said, using RCU_INIT_POINTER() when you should have used 481 * rcu_assign_pointer() is a very bad thing that results in 482 * impossible-to-diagnose memory corruption. So please be careful. 483 * See the RCU_INIT_POINTER() comment header for details. 484 * 485 * Note that rcu_assign_pointer() evaluates each of its arguments only 486 * once, appearances notwithstanding. One of the "extra" evaluations 487 * is in typeof() and the other visible only to sparse (__CHECKER__), 488 * neither of which actually execute the argument. As with most cpp 489 * macros, this execute-arguments-only-once property is important, so 490 * please be careful when making changes to rcu_assign_pointer() and the 491 * other macros that it invokes. 492 */ 493 #define rcu_assign_pointer(p, v) \ 494 do { \ 495 uintptr_t _r_a_p__v = (uintptr_t)(v); \ 496 rcu_check_sparse(p, __rcu); \ 497 \ 498 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \ 499 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \ 500 else \ 501 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \ 502 } while (0) 503 504 /** 505 * rcu_replace_pointer() - replace an RCU pointer, returning its old value 506 * @rcu_ptr: RCU pointer, whose old value is returned 507 * @ptr: regular pointer 508 * @c: the lockdep conditions under which the dereference will take place 509 * 510 * Perform a replacement, where @rcu_ptr is an RCU-annotated 511 * pointer and @c is the lockdep argument that is passed to the 512 * rcu_dereference_protected() call used to read that pointer. The old 513 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr. 514 */ 515 #define rcu_replace_pointer(rcu_ptr, ptr, c) \ 516 ({ \ 517 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \ 518 rcu_assign_pointer((rcu_ptr), (ptr)); \ 519 __tmp; \ 520 }) 521 522 /** 523 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 524 * @p: The pointer to read 525 * 526 * Return the value of the specified RCU-protected pointer, but omit the 527 * lockdep checks for being in an RCU read-side critical section. This is 528 * useful when the value of this pointer is accessed, but the pointer is 529 * not dereferenced, for example, when testing an RCU-protected pointer 530 * against NULL. Although rcu_access_pointer() may also be used in cases 531 * where update-side locks prevent the value of the pointer from changing, 532 * you should instead use rcu_dereference_protected() for this use case. 533 * Within an RCU read-side critical section, there is little reason to 534 * use rcu_access_pointer(). 535 * 536 * It is usually best to test the rcu_access_pointer() return value 537 * directly in order to avoid accidental dereferences being introduced 538 * by later inattentive changes. In other words, assigning the 539 * rcu_access_pointer() return value to a local variable results in an 540 * accident waiting to happen. 541 * 542 * It is also permissible to use rcu_access_pointer() when read-side 543 * access to the pointer was removed at least one grace period ago, as is 544 * the case in the context of the RCU callback that is freeing up the data, 545 * or after a synchronize_rcu() returns. This can be useful when tearing 546 * down multi-linked structures after a grace period has elapsed. However, 547 * rcu_dereference_protected() is normally preferred for this use case. 548 */ 549 #define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu) 550 551 /** 552 * rcu_dereference_check() - rcu_dereference with debug checking 553 * @p: The pointer to read, prior to dereferencing 554 * @c: The conditions under which the dereference will take place 555 * 556 * Do an rcu_dereference(), but check that the conditions under which the 557 * dereference will take place are correct. Typically the conditions 558 * indicate the various locking conditions that should be held at that 559 * point. The check should return true if the conditions are satisfied. 560 * An implicit check for being in an RCU read-side critical section 561 * (rcu_read_lock()) is included. 562 * 563 * For example: 564 * 565 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 566 * 567 * could be used to indicate to lockdep that foo->bar may only be dereferenced 568 * if either rcu_read_lock() is held, or that the lock required to replace 569 * the bar struct at foo->bar is held. 570 * 571 * Note that the list of conditions may also include indications of when a lock 572 * need not be held, for example during initialisation or destruction of the 573 * target struct: 574 * 575 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 576 * atomic_read(&foo->usage) == 0); 577 * 578 * Inserts memory barriers on architectures that require them 579 * (currently only the Alpha), prevents the compiler from refetching 580 * (and from merging fetches), and, more importantly, documents exactly 581 * which pointers are protected by RCU and checks that the pointer is 582 * annotated as __rcu. 583 */ 584 #define rcu_dereference_check(p, c) \ 585 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 586 (c) || rcu_read_lock_held(), __rcu) 587 588 /** 589 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 590 * @p: The pointer to read, prior to dereferencing 591 * @c: The conditions under which the dereference will take place 592 * 593 * This is the RCU-bh counterpart to rcu_dereference_check(). However, 594 * please note that starting in v5.0 kernels, vanilla RCU grace periods 595 * wait for local_bh_disable() regions of code in addition to regions of 596 * code demarked by rcu_read_lock() and rcu_read_unlock(). This means 597 * that synchronize_rcu(), call_rcu, and friends all take not only 598 * rcu_read_lock() but also rcu_read_lock_bh() into account. 599 */ 600 #define rcu_dereference_bh_check(p, c) \ 601 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 602 (c) || rcu_read_lock_bh_held(), __rcu) 603 604 /** 605 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 606 * @p: The pointer to read, prior to dereferencing 607 * @c: The conditions under which the dereference will take place 608 * 609 * This is the RCU-sched counterpart to rcu_dereference_check(). 610 * However, please note that starting in v5.0 kernels, vanilla RCU grace 611 * periods wait for preempt_disable() regions of code in addition to 612 * regions of code demarked by rcu_read_lock() and rcu_read_unlock(). 613 * This means that synchronize_rcu(), call_rcu, and friends all take not 614 * only rcu_read_lock() but also rcu_read_lock_sched() into account. 615 */ 616 #define rcu_dereference_sched_check(p, c) \ 617 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 618 (c) || rcu_read_lock_sched_held(), \ 619 __rcu) 620 621 /* 622 * The tracing infrastructure traces RCU (we want that), but unfortunately 623 * some of the RCU checks causes tracing to lock up the system. 624 * 625 * The no-tracing version of rcu_dereference_raw() must not call 626 * rcu_read_lock_held(). 627 */ 628 #define rcu_dereference_raw_check(p) \ 629 __rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu) 630 631 /** 632 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 633 * @p: The pointer to read, prior to dereferencing 634 * @c: The conditions under which the dereference will take place 635 * 636 * Return the value of the specified RCU-protected pointer, but omit 637 * the READ_ONCE(). This is useful in cases where update-side locks 638 * prevent the value of the pointer from changing. Please note that this 639 * primitive does *not* prevent the compiler from repeating this reference 640 * or combining it with other references, so it should not be used without 641 * protection of appropriate locks. 642 * 643 * This function is only for update-side use. Using this function 644 * when protected only by rcu_read_lock() will result in infrequent 645 * but very ugly failures. 646 */ 647 #define rcu_dereference_protected(p, c) \ 648 __rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu) 649 650 651 /** 652 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 653 * @p: The pointer to read, prior to dereferencing 654 * 655 * This is a simple wrapper around rcu_dereference_check(). 656 */ 657 #define rcu_dereference(p) rcu_dereference_check(p, 0) 658 659 /** 660 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 661 * @p: The pointer to read, prior to dereferencing 662 * 663 * Makes rcu_dereference_check() do the dirty work. 664 */ 665 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 666 667 /** 668 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 669 * @p: The pointer to read, prior to dereferencing 670 * 671 * Makes rcu_dereference_check() do the dirty work. 672 */ 673 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 674 675 /** 676 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism 677 * @p: The pointer to hand off 678 * 679 * This is simply an identity function, but it documents where a pointer 680 * is handed off from RCU to some other synchronization mechanism, for 681 * example, reference counting or locking. In C11, it would map to 682 * kill_dependency(). It could be used as follows:: 683 * 684 * rcu_read_lock(); 685 * p = rcu_dereference(gp); 686 * long_lived = is_long_lived(p); 687 * if (long_lived) { 688 * if (!atomic_inc_not_zero(p->refcnt)) 689 * long_lived = false; 690 * else 691 * p = rcu_pointer_handoff(p); 692 * } 693 * rcu_read_unlock(); 694 */ 695 #define rcu_pointer_handoff(p) (p) 696 697 /** 698 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 699 * 700 * When synchronize_rcu() is invoked on one CPU while other CPUs 701 * are within RCU read-side critical sections, then the 702 * synchronize_rcu() is guaranteed to block until after all the other 703 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 704 * on one CPU while other CPUs are within RCU read-side critical 705 * sections, invocation of the corresponding RCU callback is deferred 706 * until after the all the other CPUs exit their critical sections. 707 * 708 * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also 709 * wait for regions of code with preemption disabled, including regions of 710 * code with interrupts or softirqs disabled. In pre-v5.0 kernels, which 711 * define synchronize_sched(), only code enclosed within rcu_read_lock() 712 * and rcu_read_unlock() are guaranteed to be waited for. 713 * 714 * Note, however, that RCU callbacks are permitted to run concurrently 715 * with new RCU read-side critical sections. One way that this can happen 716 * is via the following sequence of events: (1) CPU 0 enters an RCU 717 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 718 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 719 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 720 * callback is invoked. This is legal, because the RCU read-side critical 721 * section that was running concurrently with the call_rcu() (and which 722 * therefore might be referencing something that the corresponding RCU 723 * callback would free up) has completed before the corresponding 724 * RCU callback is invoked. 725 * 726 * RCU read-side critical sections may be nested. Any deferred actions 727 * will be deferred until the outermost RCU read-side critical section 728 * completes. 729 * 730 * You can avoid reading and understanding the next paragraph by 731 * following this rule: don't put anything in an rcu_read_lock() RCU 732 * read-side critical section that would block in a !PREEMPTION kernel. 733 * But if you want the full story, read on! 734 * 735 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU), 736 * it is illegal to block while in an RCU read-side critical section. 737 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION 738 * kernel builds, RCU read-side critical sections may be preempted, 739 * but explicit blocking is illegal. Finally, in preemptible RCU 740 * implementations in real-time (with -rt patchset) kernel builds, RCU 741 * read-side critical sections may be preempted and they may also block, but 742 * only when acquiring spinlocks that are subject to priority inheritance. 743 */ 744 static __always_inline void rcu_read_lock(void) 745 { 746 __rcu_read_lock(); 747 __acquire(RCU); 748 rcu_lock_acquire(&rcu_lock_map); 749 RCU_LOCKDEP_WARN(!rcu_is_watching(), 750 "rcu_read_lock() used illegally while idle"); 751 } 752 753 /* 754 * So where is rcu_write_lock()? It does not exist, as there is no 755 * way for writers to lock out RCU readers. This is a feature, not 756 * a bug -- this property is what provides RCU's performance benefits. 757 * Of course, writers must coordinate with each other. The normal 758 * spinlock primitives work well for this, but any other technique may be 759 * used as well. RCU does not care how the writers keep out of each 760 * others' way, as long as they do so. 761 */ 762 763 /** 764 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 765 * 766 * In almost all situations, rcu_read_unlock() is immune from deadlock. 767 * In recent kernels that have consolidated synchronize_sched() and 768 * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity 769 * also extends to the scheduler's runqueue and priority-inheritance 770 * spinlocks, courtesy of the quiescent-state deferral that is carried 771 * out when rcu_read_unlock() is invoked with interrupts disabled. 772 * 773 * See rcu_read_lock() for more information. 774 */ 775 static inline void rcu_read_unlock(void) 776 { 777 RCU_LOCKDEP_WARN(!rcu_is_watching(), 778 "rcu_read_unlock() used illegally while idle"); 779 __release(RCU); 780 __rcu_read_unlock(); 781 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ 782 } 783 784 /** 785 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 786 * 787 * This is equivalent to rcu_read_lock(), but also disables softirqs. 788 * Note that anything else that disables softirqs can also serve as an RCU 789 * read-side critical section. However, please note that this equivalence 790 * applies only to v5.0 and later. Before v5.0, rcu_read_lock() and 791 * rcu_read_lock_bh() were unrelated. 792 * 793 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 794 * must occur in the same context, for example, it is illegal to invoke 795 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 796 * was invoked from some other task. 797 */ 798 static inline void rcu_read_lock_bh(void) 799 { 800 local_bh_disable(); 801 __acquire(RCU_BH); 802 rcu_lock_acquire(&rcu_bh_lock_map); 803 RCU_LOCKDEP_WARN(!rcu_is_watching(), 804 "rcu_read_lock_bh() used illegally while idle"); 805 } 806 807 /** 808 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section 809 * 810 * See rcu_read_lock_bh() for more information. 811 */ 812 static inline void rcu_read_unlock_bh(void) 813 { 814 RCU_LOCKDEP_WARN(!rcu_is_watching(), 815 "rcu_read_unlock_bh() used illegally while idle"); 816 rcu_lock_release(&rcu_bh_lock_map); 817 __release(RCU_BH); 818 local_bh_enable(); 819 } 820 821 /** 822 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 823 * 824 * This is equivalent to rcu_read_lock(), but also disables preemption. 825 * Read-side critical sections can also be introduced by anything else that 826 * disables preemption, including local_irq_disable() and friends. However, 827 * please note that the equivalence to rcu_read_lock() applies only to 828 * v5.0 and later. Before v5.0, rcu_read_lock() and rcu_read_lock_sched() 829 * were unrelated. 830 * 831 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 832 * must occur in the same context, for example, it is illegal to invoke 833 * rcu_read_unlock_sched() from process context if the matching 834 * rcu_read_lock_sched() was invoked from an NMI handler. 835 */ 836 static inline void rcu_read_lock_sched(void) 837 { 838 preempt_disable(); 839 __acquire(RCU_SCHED); 840 rcu_lock_acquire(&rcu_sched_lock_map); 841 RCU_LOCKDEP_WARN(!rcu_is_watching(), 842 "rcu_read_lock_sched() used illegally while idle"); 843 } 844 845 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 846 static inline notrace void rcu_read_lock_sched_notrace(void) 847 { 848 preempt_disable_notrace(); 849 __acquire(RCU_SCHED); 850 } 851 852 /** 853 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section 854 * 855 * See rcu_read_lock_sched() for more information. 856 */ 857 static inline void rcu_read_unlock_sched(void) 858 { 859 RCU_LOCKDEP_WARN(!rcu_is_watching(), 860 "rcu_read_unlock_sched() used illegally while idle"); 861 rcu_lock_release(&rcu_sched_lock_map); 862 __release(RCU_SCHED); 863 preempt_enable(); 864 } 865 866 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 867 static inline notrace void rcu_read_unlock_sched_notrace(void) 868 { 869 __release(RCU_SCHED); 870 preempt_enable_notrace(); 871 } 872 873 /** 874 * RCU_INIT_POINTER() - initialize an RCU protected pointer 875 * @p: The pointer to be initialized. 876 * @v: The value to initialized the pointer to. 877 * 878 * Initialize an RCU-protected pointer in special cases where readers 879 * do not need ordering constraints on the CPU or the compiler. These 880 * special cases are: 881 * 882 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or* 883 * 2. The caller has taken whatever steps are required to prevent 884 * RCU readers from concurrently accessing this pointer *or* 885 * 3. The referenced data structure has already been exposed to 886 * readers either at compile time or via rcu_assign_pointer() *and* 887 * 888 * a. You have not made *any* reader-visible changes to 889 * this structure since then *or* 890 * b. It is OK for readers accessing this structure from its 891 * new location to see the old state of the structure. (For 892 * example, the changes were to statistical counters or to 893 * other state where exact synchronization is not required.) 894 * 895 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 896 * result in impossible-to-diagnose memory corruption. As in the structures 897 * will look OK in crash dumps, but any concurrent RCU readers might 898 * see pre-initialized values of the referenced data structure. So 899 * please be very careful how you use RCU_INIT_POINTER()!!! 900 * 901 * If you are creating an RCU-protected linked structure that is accessed 902 * by a single external-to-structure RCU-protected pointer, then you may 903 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 904 * pointers, but you must use rcu_assign_pointer() to initialize the 905 * external-to-structure pointer *after* you have completely initialized 906 * the reader-accessible portions of the linked structure. 907 * 908 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no 909 * ordering guarantees for either the CPU or the compiler. 910 */ 911 #define RCU_INIT_POINTER(p, v) \ 912 do { \ 913 rcu_check_sparse(p, __rcu); \ 914 WRITE_ONCE(p, RCU_INITIALIZER(v)); \ 915 } while (0) 916 917 /** 918 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 919 * @p: The pointer to be initialized. 920 * @v: The value to initialized the pointer to. 921 * 922 * GCC-style initialization for an RCU-protected pointer in a structure field. 923 */ 924 #define RCU_POINTER_INITIALIZER(p, v) \ 925 .p = RCU_INITIALIZER(v) 926 927 /* 928 * Does the specified offset indicate that the corresponding rcu_head 929 * structure can be handled by kvfree_rcu()? 930 */ 931 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096) 932 933 /** 934 * kfree_rcu() - kfree an object after a grace period. 935 * @ptr: pointer to kfree for double-argument invocations. 936 * @rhf: the name of the struct rcu_head within the type of @ptr. 937 * 938 * Many rcu callbacks functions just call kfree() on the base structure. 939 * These functions are trivial, but their size adds up, and furthermore 940 * when they are used in a kernel module, that module must invoke the 941 * high-latency rcu_barrier() function at module-unload time. 942 * 943 * The kfree_rcu() function handles this issue. Rather than encoding a 944 * function address in the embedded rcu_head structure, kfree_rcu() instead 945 * encodes the offset of the rcu_head structure within the base structure. 946 * Because the functions are not allowed in the low-order 4096 bytes of 947 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 948 * If the offset is larger than 4095 bytes, a compile-time error will 949 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can 950 * either fall back to use of call_rcu() or rearrange the structure to 951 * position the rcu_head structure into the first 4096 bytes. 952 * 953 * The object to be freed can be allocated either by kmalloc() or 954 * kmem_cache_alloc(). 955 * 956 * Note that the allowable offset might decrease in the future. 957 * 958 * The BUILD_BUG_ON check must not involve any function calls, hence the 959 * checks are done in macros here. 960 */ 961 #define kfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf) 962 #define kvfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf) 963 964 /** 965 * kfree_rcu_mightsleep() - kfree an object after a grace period. 966 * @ptr: pointer to kfree for single-argument invocations. 967 * 968 * When it comes to head-less variant, only one argument 969 * is passed and that is just a pointer which has to be 970 * freed after a grace period. Therefore the semantic is 971 * 972 * kfree_rcu_mightsleep(ptr); 973 * 974 * where @ptr is the pointer to be freed by kvfree(). 975 * 976 * Please note, head-less way of freeing is permitted to 977 * use from a context that has to follow might_sleep() 978 * annotation. Otherwise, please switch and embed the 979 * rcu_head structure within the type of @ptr. 980 */ 981 #define kfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr) 982 #define kvfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr) 983 984 #define kvfree_rcu_arg_2(ptr, rhf) \ 985 do { \ 986 typeof (ptr) ___p = (ptr); \ 987 \ 988 if (___p) { \ 989 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf))); \ 990 kvfree_call_rcu(&((___p)->rhf), (void *) (___p)); \ 991 } \ 992 } while (0) 993 994 #define kvfree_rcu_arg_1(ptr) \ 995 do { \ 996 typeof(ptr) ___p = (ptr); \ 997 \ 998 if (___p) \ 999 kvfree_call_rcu(NULL, (void *) (___p)); \ 1000 } while (0) 1001 1002 /* 1003 * Place this after a lock-acquisition primitive to guarantee that 1004 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies 1005 * if the UNLOCK and LOCK are executed by the same CPU or if the 1006 * UNLOCK and LOCK operate on the same lock variable. 1007 */ 1008 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE 1009 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */ 1010 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 1011 #define smp_mb__after_unlock_lock() do { } while (0) 1012 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 1013 1014 1015 /* Has the specified rcu_head structure been handed to call_rcu()? */ 1016 1017 /** 1018 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu() 1019 * @rhp: The rcu_head structure to initialize. 1020 * 1021 * If you intend to invoke rcu_head_after_call_rcu() to test whether a 1022 * given rcu_head structure has already been passed to call_rcu(), then 1023 * you must also invoke this rcu_head_init() function on it just after 1024 * allocating that structure. Calls to this function must not race with 1025 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation. 1026 */ 1027 static inline void rcu_head_init(struct rcu_head *rhp) 1028 { 1029 rhp->func = (rcu_callback_t)~0L; 1030 } 1031 1032 /** 1033 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()? 1034 * @rhp: The rcu_head structure to test. 1035 * @f: The function passed to call_rcu() along with @rhp. 1036 * 1037 * Returns @true if the @rhp has been passed to call_rcu() with @func, 1038 * and @false otherwise. Emits a warning in any other case, including 1039 * the case where @rhp has already been invoked after a grace period. 1040 * Calls to this function must not race with callback invocation. One way 1041 * to avoid such races is to enclose the call to rcu_head_after_call_rcu() 1042 * in an RCU read-side critical section that includes a read-side fetch 1043 * of the pointer to the structure containing @rhp. 1044 */ 1045 static inline bool 1046 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f) 1047 { 1048 rcu_callback_t func = READ_ONCE(rhp->func); 1049 1050 if (func == f) 1051 return true; 1052 WARN_ON_ONCE(func != (rcu_callback_t)~0L); 1053 return false; 1054 } 1055 1056 /* kernel/ksysfs.c definitions */ 1057 extern int rcu_expedited; 1058 extern int rcu_normal; 1059 1060 #endif /* __LINUX_RCUPDATE_H */ 1061