1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion 4 * 5 * Copyright IBM Corporation, 2001 6 * 7 * Author: Dipankar Sarma <[email protected]> 8 * 9 * Based on the original work by Paul McKenney <[email protected]> 10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 11 * Papers: 12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 14 * 15 * For detailed explanation of Read-Copy Update mechanism see - 16 * http://lse.sourceforge.net/locking/rcupdate.html 17 * 18 */ 19 20 #ifndef __LINUX_RCUPDATE_H 21 #define __LINUX_RCUPDATE_H 22 23 #include <linux/types.h> 24 #include <linux/compiler.h> 25 #include <linux/atomic.h> 26 #include <linux/irqflags.h> 27 #include <linux/preempt.h> 28 #include <linux/bottom_half.h> 29 #include <linux/lockdep.h> 30 #include <linux/cleanup.h> 31 #include <asm/processor.h> 32 #include <linux/context_tracking_irq.h> 33 34 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 35 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 36 37 /* Exported common interfaces */ 38 void call_rcu(struct rcu_head *head, rcu_callback_t func); 39 void rcu_barrier_tasks(void); 40 void rcu_barrier_tasks_rude(void); 41 void synchronize_rcu(void); 42 43 struct rcu_gp_oldstate; 44 unsigned long get_completed_synchronize_rcu(void); 45 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp); 46 47 // Maximum number of unsigned long values corresponding to 48 // not-yet-completed RCU grace periods. 49 #define NUM_ACTIVE_RCU_POLL_OLDSTATE 2 50 51 /** 52 * same_state_synchronize_rcu - Are two old-state values identical? 53 * @oldstate1: First old-state value. 54 * @oldstate2: Second old-state value. 55 * 56 * The two old-state values must have been obtained from either 57 * get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or 58 * get_completed_synchronize_rcu(). Returns @true if the two values are 59 * identical and @false otherwise. This allows structures whose lifetimes 60 * are tracked by old-state values to push these values to a list header, 61 * allowing those structures to be slightly smaller. 62 */ 63 static inline bool same_state_synchronize_rcu(unsigned long oldstate1, unsigned long oldstate2) 64 { 65 return oldstate1 == oldstate2; 66 } 67 68 #ifdef CONFIG_PREEMPT_RCU 69 70 void __rcu_read_lock(void); 71 void __rcu_read_unlock(void); 72 73 /* 74 * Defined as a macro as it is a very low level header included from 75 * areas that don't even know about current. This gives the rcu_read_lock() 76 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 77 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 78 */ 79 #define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting) 80 81 #else /* #ifdef CONFIG_PREEMPT_RCU */ 82 83 #ifdef CONFIG_TINY_RCU 84 #define rcu_read_unlock_strict() do { } while (0) 85 #else 86 void rcu_read_unlock_strict(void); 87 #endif 88 89 static inline void __rcu_read_lock(void) 90 { 91 preempt_disable(); 92 } 93 94 static inline void __rcu_read_unlock(void) 95 { 96 preempt_enable(); 97 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 98 rcu_read_unlock_strict(); 99 } 100 101 static inline int rcu_preempt_depth(void) 102 { 103 return 0; 104 } 105 106 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 107 108 #ifdef CONFIG_RCU_LAZY 109 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func); 110 #else 111 static inline void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func) 112 { 113 call_rcu(head, func); 114 } 115 #endif 116 117 /* Internal to kernel */ 118 void rcu_init(void); 119 extern int rcu_scheduler_active; 120 void rcu_sched_clock_irq(int user); 121 122 #ifdef CONFIG_TASKS_RCU_GENERIC 123 void rcu_init_tasks_generic(void); 124 #else 125 static inline void rcu_init_tasks_generic(void) { } 126 #endif 127 128 #ifdef CONFIG_RCU_STALL_COMMON 129 void rcu_sysrq_start(void); 130 void rcu_sysrq_end(void); 131 #else /* #ifdef CONFIG_RCU_STALL_COMMON */ 132 static inline void rcu_sysrq_start(void) { } 133 static inline void rcu_sysrq_end(void) { } 134 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ 135 136 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) 137 void rcu_irq_work_resched(void); 138 #else 139 static inline void rcu_irq_work_resched(void) { } 140 #endif 141 142 #ifdef CONFIG_RCU_NOCB_CPU 143 void rcu_init_nohz(void); 144 int rcu_nocb_cpu_offload(int cpu); 145 int rcu_nocb_cpu_deoffload(int cpu); 146 void rcu_nocb_flush_deferred_wakeup(void); 147 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 148 static inline void rcu_init_nohz(void) { } 149 static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; } 150 static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; } 151 static inline void rcu_nocb_flush_deferred_wakeup(void) { } 152 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 153 154 /* 155 * Note a quasi-voluntary context switch for RCU-tasks's benefit. 156 * This is a macro rather than an inline function to avoid #include hell. 157 */ 158 #ifdef CONFIG_TASKS_RCU_GENERIC 159 160 # ifdef CONFIG_TASKS_RCU 161 # define rcu_tasks_classic_qs(t, preempt) \ 162 do { \ 163 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \ 164 WRITE_ONCE((t)->rcu_tasks_holdout, false); \ 165 } while (0) 166 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func); 167 void synchronize_rcu_tasks(void); 168 # else 169 # define rcu_tasks_classic_qs(t, preempt) do { } while (0) 170 # define call_rcu_tasks call_rcu 171 # define synchronize_rcu_tasks synchronize_rcu 172 # endif 173 174 # ifdef CONFIG_TASKS_TRACE_RCU 175 // Bits for ->trc_reader_special.b.need_qs field. 176 #define TRC_NEED_QS 0x1 // Task needs a quiescent state. 177 #define TRC_NEED_QS_CHECKED 0x2 // Task has been checked for needing quiescent state. 178 179 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new); 180 void rcu_tasks_trace_qs_blkd(struct task_struct *t); 181 182 # define rcu_tasks_trace_qs(t) \ 183 do { \ 184 int ___rttq_nesting = READ_ONCE((t)->trc_reader_nesting); \ 185 \ 186 if (unlikely(READ_ONCE((t)->trc_reader_special.b.need_qs) == TRC_NEED_QS) && \ 187 likely(!___rttq_nesting)) { \ 188 rcu_trc_cmpxchg_need_qs((t), TRC_NEED_QS, TRC_NEED_QS_CHECKED); \ 189 } else if (___rttq_nesting && ___rttq_nesting != INT_MIN && \ 190 !READ_ONCE((t)->trc_reader_special.b.blocked)) { \ 191 rcu_tasks_trace_qs_blkd(t); \ 192 } \ 193 } while (0) 194 # else 195 # define rcu_tasks_trace_qs(t) do { } while (0) 196 # endif 197 198 #define rcu_tasks_qs(t, preempt) \ 199 do { \ 200 rcu_tasks_classic_qs((t), (preempt)); \ 201 rcu_tasks_trace_qs(t); \ 202 } while (0) 203 204 # ifdef CONFIG_TASKS_RUDE_RCU 205 void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func); 206 void synchronize_rcu_tasks_rude(void); 207 # endif 208 209 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false) 210 void exit_tasks_rcu_start(void); 211 void exit_tasks_rcu_finish(void); 212 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 213 #define rcu_tasks_classic_qs(t, preempt) do { } while (0) 214 #define rcu_tasks_qs(t, preempt) do { } while (0) 215 #define rcu_note_voluntary_context_switch(t) do { } while (0) 216 #define call_rcu_tasks call_rcu 217 #define synchronize_rcu_tasks synchronize_rcu 218 static inline void exit_tasks_rcu_start(void) { } 219 static inline void exit_tasks_rcu_finish(void) { } 220 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 221 222 /** 223 * rcu_trace_implies_rcu_gp - does an RCU Tasks Trace grace period imply an RCU grace period? 224 * 225 * As an accident of implementation, an RCU Tasks Trace grace period also 226 * acts as an RCU grace period. However, this could change at any time. 227 * Code relying on this accident must call this function to verify that 228 * this accident is still happening. 229 * 230 * You have been warned! 231 */ 232 static inline bool rcu_trace_implies_rcu_gp(void) { return true; } 233 234 /** 235 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU 236 * 237 * This macro resembles cond_resched(), except that it is defined to 238 * report potential quiescent states to RCU-tasks even if the cond_resched() 239 * machinery were to be shut off, as some advocate for PREEMPTION kernels. 240 */ 241 #define cond_resched_tasks_rcu_qs() \ 242 do { \ 243 rcu_tasks_qs(current, false); \ 244 cond_resched(); \ 245 } while (0) 246 247 /** 248 * rcu_softirq_qs_periodic - Report RCU and RCU-Tasks quiescent states 249 * @old_ts: jiffies at start of processing. 250 * 251 * This helper is for long-running softirq handlers, such as NAPI threads in 252 * networking. The caller should initialize the variable passed in as @old_ts 253 * at the beginning of the softirq handler. When invoked frequently, this macro 254 * will invoke rcu_softirq_qs() every 100 milliseconds thereafter, which will 255 * provide both RCU and RCU-Tasks quiescent states. Note that this macro 256 * modifies its old_ts argument. 257 * 258 * Because regions of code that have disabled softirq act as RCU read-side 259 * critical sections, this macro should be invoked with softirq (and 260 * preemption) enabled. 261 * 262 * The macro is not needed when CONFIG_PREEMPT_RT is defined. RT kernels would 263 * have more chance to invoke schedule() calls and provide necessary quiescent 264 * states. As a contrast, calling cond_resched() only won't achieve the same 265 * effect because cond_resched() does not provide RCU-Tasks quiescent states. 266 */ 267 #define rcu_softirq_qs_periodic(old_ts) \ 268 do { \ 269 if (!IS_ENABLED(CONFIG_PREEMPT_RT) && \ 270 time_after(jiffies, (old_ts) + HZ / 10)) { \ 271 preempt_disable(); \ 272 rcu_softirq_qs(); \ 273 preempt_enable(); \ 274 (old_ts) = jiffies; \ 275 } \ 276 } while (0) 277 278 /* 279 * Infrastructure to implement the synchronize_() primitives in 280 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 281 */ 282 283 #if defined(CONFIG_TREE_RCU) 284 #include <linux/rcutree.h> 285 #elif defined(CONFIG_TINY_RCU) 286 #include <linux/rcutiny.h> 287 #else 288 #error "Unknown RCU implementation specified to kernel configuration" 289 #endif 290 291 /* 292 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls 293 * are needed for dynamic initialization and destruction of rcu_head 294 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for 295 * dynamic initialization and destruction of statically allocated rcu_head 296 * structures. However, rcu_head structures allocated dynamically in the 297 * heap don't need any initialization. 298 */ 299 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 300 void init_rcu_head(struct rcu_head *head); 301 void destroy_rcu_head(struct rcu_head *head); 302 void init_rcu_head_on_stack(struct rcu_head *head); 303 void destroy_rcu_head_on_stack(struct rcu_head *head); 304 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 305 static inline void init_rcu_head(struct rcu_head *head) { } 306 static inline void destroy_rcu_head(struct rcu_head *head) { } 307 static inline void init_rcu_head_on_stack(struct rcu_head *head) { } 308 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { } 309 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 310 311 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 312 bool rcu_lockdep_current_cpu_online(void); 313 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 314 static inline bool rcu_lockdep_current_cpu_online(void) { return true; } 315 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 316 317 extern struct lockdep_map rcu_lock_map; 318 extern struct lockdep_map rcu_bh_lock_map; 319 extern struct lockdep_map rcu_sched_lock_map; 320 extern struct lockdep_map rcu_callback_map; 321 322 #ifdef CONFIG_DEBUG_LOCK_ALLOC 323 324 static inline void rcu_lock_acquire(struct lockdep_map *map) 325 { 326 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); 327 } 328 329 static inline void rcu_try_lock_acquire(struct lockdep_map *map) 330 { 331 lock_acquire(map, 0, 1, 2, 0, NULL, _THIS_IP_); 332 } 333 334 static inline void rcu_lock_release(struct lockdep_map *map) 335 { 336 lock_release(map, _THIS_IP_); 337 } 338 339 int debug_lockdep_rcu_enabled(void); 340 int rcu_read_lock_held(void); 341 int rcu_read_lock_bh_held(void); 342 int rcu_read_lock_sched_held(void); 343 int rcu_read_lock_any_held(void); 344 345 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 346 347 # define rcu_lock_acquire(a) do { } while (0) 348 # define rcu_try_lock_acquire(a) do { } while (0) 349 # define rcu_lock_release(a) do { } while (0) 350 351 static inline int rcu_read_lock_held(void) 352 { 353 return 1; 354 } 355 356 static inline int rcu_read_lock_bh_held(void) 357 { 358 return 1; 359 } 360 361 static inline int rcu_read_lock_sched_held(void) 362 { 363 return !preemptible(); 364 } 365 366 static inline int rcu_read_lock_any_held(void) 367 { 368 return !preemptible(); 369 } 370 371 static inline int debug_lockdep_rcu_enabled(void) 372 { 373 return 0; 374 } 375 376 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 377 378 #ifdef CONFIG_PROVE_RCU 379 380 /** 381 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met 382 * @c: condition to check 383 * @s: informative message 384 * 385 * This checks debug_lockdep_rcu_enabled() before checking (c) to 386 * prevent early boot splats due to lockdep not yet being initialized, 387 * and rechecks it after checking (c) to prevent false-positive splats 388 * due to races with lockdep being disabled. See commit 3066820034b5dd 389 * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail. 390 */ 391 #define RCU_LOCKDEP_WARN(c, s) \ 392 do { \ 393 static bool __section(".data.unlikely") __warned; \ 394 if (debug_lockdep_rcu_enabled() && (c) && \ 395 debug_lockdep_rcu_enabled() && !__warned) { \ 396 __warned = true; \ 397 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 398 } \ 399 } while (0) 400 401 #ifndef CONFIG_PREEMPT_RCU 402 static inline void rcu_preempt_sleep_check(void) 403 { 404 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 405 "Illegal context switch in RCU read-side critical section"); 406 } 407 #else // #ifndef CONFIG_PREEMPT_RCU 408 static inline void rcu_preempt_sleep_check(void) { } 409 #endif // #else // #ifndef CONFIG_PREEMPT_RCU 410 411 #define rcu_sleep_check() \ 412 do { \ 413 rcu_preempt_sleep_check(); \ 414 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ 415 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ 416 "Illegal context switch in RCU-bh read-side critical section"); \ 417 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ 418 "Illegal context switch in RCU-sched read-side critical section"); \ 419 } while (0) 420 421 // See RCU_LOCKDEP_WARN() for an explanation of the double call to 422 // debug_lockdep_rcu_enabled(). 423 static inline bool lockdep_assert_rcu_helper(bool c) 424 { 425 return debug_lockdep_rcu_enabled() && 426 (c || !rcu_is_watching() || !rcu_lockdep_current_cpu_online()) && 427 debug_lockdep_rcu_enabled(); 428 } 429 430 /** 431 * lockdep_assert_in_rcu_read_lock - WARN if not protected by rcu_read_lock() 432 * 433 * Splats if lockdep is enabled and there is no rcu_read_lock() in effect. 434 */ 435 #define lockdep_assert_in_rcu_read_lock() \ 436 WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_lock_map))) 437 438 /** 439 * lockdep_assert_in_rcu_read_lock_bh - WARN if not protected by rcu_read_lock_bh() 440 * 441 * Splats if lockdep is enabled and there is no rcu_read_lock_bh() in effect. 442 * Note that local_bh_disable() and friends do not suffice here, instead an 443 * actual rcu_read_lock_bh() is required. 444 */ 445 #define lockdep_assert_in_rcu_read_lock_bh() \ 446 WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_bh_lock_map))) 447 448 /** 449 * lockdep_assert_in_rcu_read_lock_sched - WARN if not protected by rcu_read_lock_sched() 450 * 451 * Splats if lockdep is enabled and there is no rcu_read_lock_sched() 452 * in effect. Note that preempt_disable() and friends do not suffice here, 453 * instead an actual rcu_read_lock_sched() is required. 454 */ 455 #define lockdep_assert_in_rcu_read_lock_sched() \ 456 WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_sched_lock_map))) 457 458 /** 459 * lockdep_assert_in_rcu_reader - WARN if not within some type of RCU reader 460 * 461 * Splats if lockdep is enabled and there is no RCU reader of any 462 * type in effect. Note that regions of code protected by things like 463 * preempt_disable, local_bh_disable(), and local_irq_disable() all qualify 464 * as RCU readers. 465 * 466 * Note that this will never trigger in PREEMPT_NONE or PREEMPT_VOLUNTARY 467 * kernels that are not also built with PREEMPT_COUNT. But if you have 468 * lockdep enabled, you might as well also enable PREEMPT_COUNT. 469 */ 470 #define lockdep_assert_in_rcu_reader() \ 471 WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_lock_map) && \ 472 !lock_is_held(&rcu_bh_lock_map) && \ 473 !lock_is_held(&rcu_sched_lock_map) && \ 474 preemptible())) 475 476 #else /* #ifdef CONFIG_PROVE_RCU */ 477 478 #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c)) 479 #define rcu_sleep_check() do { } while (0) 480 481 #define lockdep_assert_in_rcu_read_lock() do { } while (0) 482 #define lockdep_assert_in_rcu_read_lock_bh() do { } while (0) 483 #define lockdep_assert_in_rcu_read_lock_sched() do { } while (0) 484 #define lockdep_assert_in_rcu_reader() do { } while (0) 485 486 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 487 488 /* 489 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 490 * and rcu_assign_pointer(). Some of these could be folded into their 491 * callers, but they are left separate in order to ease introduction of 492 * multiple pointers markings to match different RCU implementations 493 * (e.g., __srcu), should this make sense in the future. 494 */ 495 496 #ifdef __CHECKER__ 497 #define rcu_check_sparse(p, space) \ 498 ((void)(((typeof(*p) space *)p) == p)) 499 #else /* #ifdef __CHECKER__ */ 500 #define rcu_check_sparse(p, space) 501 #endif /* #else #ifdef __CHECKER__ */ 502 503 #define __unrcu_pointer(p, local) \ 504 ({ \ 505 typeof(*p) *local = (typeof(*p) *__force)(p); \ 506 rcu_check_sparse(p, __rcu); \ 507 ((typeof(*p) __force __kernel *)(local)); \ 508 }) 509 /** 510 * unrcu_pointer - mark a pointer as not being RCU protected 511 * @p: pointer needing to lose its __rcu property 512 * 513 * Converts @p from an __rcu pointer to a __kernel pointer. 514 * This allows an __rcu pointer to be used with xchg() and friends. 515 */ 516 #define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu)) 517 518 #define __rcu_access_pointer(p, local, space) \ 519 ({ \ 520 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \ 521 rcu_check_sparse(p, space); \ 522 ((typeof(*p) __force __kernel *)(local)); \ 523 }) 524 #define __rcu_dereference_check(p, local, c, space) \ 525 ({ \ 526 /* Dependency order vs. p above. */ \ 527 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \ 528 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ 529 rcu_check_sparse(p, space); \ 530 ((typeof(*p) __force __kernel *)(local)); \ 531 }) 532 #define __rcu_dereference_protected(p, local, c, space) \ 533 ({ \ 534 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ 535 rcu_check_sparse(p, space); \ 536 ((typeof(*p) __force __kernel *)(p)); \ 537 }) 538 #define __rcu_dereference_raw(p, local) \ 539 ({ \ 540 /* Dependency order vs. p above. */ \ 541 typeof(p) local = READ_ONCE(p); \ 542 ((typeof(*p) __force __kernel *)(local)); \ 543 }) 544 #define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu)) 545 546 /** 547 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable 548 * @v: The value to statically initialize with. 549 */ 550 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) 551 552 /** 553 * rcu_assign_pointer() - assign to RCU-protected pointer 554 * @p: pointer to assign to 555 * @v: value to assign (publish) 556 * 557 * Assigns the specified value to the specified RCU-protected 558 * pointer, ensuring that any concurrent RCU readers will see 559 * any prior initialization. 560 * 561 * Inserts memory barriers on architectures that require them 562 * (which is most of them), and also prevents the compiler from 563 * reordering the code that initializes the structure after the pointer 564 * assignment. More importantly, this call documents which pointers 565 * will be dereferenced by RCU read-side code. 566 * 567 * In some special cases, you may use RCU_INIT_POINTER() instead 568 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 569 * to the fact that it does not constrain either the CPU or the compiler. 570 * That said, using RCU_INIT_POINTER() when you should have used 571 * rcu_assign_pointer() is a very bad thing that results in 572 * impossible-to-diagnose memory corruption. So please be careful. 573 * See the RCU_INIT_POINTER() comment header for details. 574 * 575 * Note that rcu_assign_pointer() evaluates each of its arguments only 576 * once, appearances notwithstanding. One of the "extra" evaluations 577 * is in typeof() and the other visible only to sparse (__CHECKER__), 578 * neither of which actually execute the argument. As with most cpp 579 * macros, this execute-arguments-only-once property is important, so 580 * please be careful when making changes to rcu_assign_pointer() and the 581 * other macros that it invokes. 582 */ 583 #define rcu_assign_pointer(p, v) \ 584 do { \ 585 uintptr_t _r_a_p__v = (uintptr_t)(v); \ 586 rcu_check_sparse(p, __rcu); \ 587 \ 588 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \ 589 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \ 590 else \ 591 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \ 592 } while (0) 593 594 /** 595 * rcu_replace_pointer() - replace an RCU pointer, returning its old value 596 * @rcu_ptr: RCU pointer, whose old value is returned 597 * @ptr: regular pointer 598 * @c: the lockdep conditions under which the dereference will take place 599 * 600 * Perform a replacement, where @rcu_ptr is an RCU-annotated 601 * pointer and @c is the lockdep argument that is passed to the 602 * rcu_dereference_protected() call used to read that pointer. The old 603 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr. 604 */ 605 #define rcu_replace_pointer(rcu_ptr, ptr, c) \ 606 ({ \ 607 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \ 608 rcu_assign_pointer((rcu_ptr), (ptr)); \ 609 __tmp; \ 610 }) 611 612 /** 613 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 614 * @p: The pointer to read 615 * 616 * Return the value of the specified RCU-protected pointer, but omit the 617 * lockdep checks for being in an RCU read-side critical section. This is 618 * useful when the value of this pointer is accessed, but the pointer is 619 * not dereferenced, for example, when testing an RCU-protected pointer 620 * against NULL. Although rcu_access_pointer() may also be used in cases 621 * where update-side locks prevent the value of the pointer from changing, 622 * you should instead use rcu_dereference_protected() for this use case. 623 * Within an RCU read-side critical section, there is little reason to 624 * use rcu_access_pointer(). 625 * 626 * It is usually best to test the rcu_access_pointer() return value 627 * directly in order to avoid accidental dereferences being introduced 628 * by later inattentive changes. In other words, assigning the 629 * rcu_access_pointer() return value to a local variable results in an 630 * accident waiting to happen. 631 * 632 * It is also permissible to use rcu_access_pointer() when read-side 633 * access to the pointer was removed at least one grace period ago, as is 634 * the case in the context of the RCU callback that is freeing up the data, 635 * or after a synchronize_rcu() returns. This can be useful when tearing 636 * down multi-linked structures after a grace period has elapsed. However, 637 * rcu_dereference_protected() is normally preferred for this use case. 638 */ 639 #define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu) 640 641 /** 642 * rcu_dereference_check() - rcu_dereference with debug checking 643 * @p: The pointer to read, prior to dereferencing 644 * @c: The conditions under which the dereference will take place 645 * 646 * Do an rcu_dereference(), but check that the conditions under which the 647 * dereference will take place are correct. Typically the conditions 648 * indicate the various locking conditions that should be held at that 649 * point. The check should return true if the conditions are satisfied. 650 * An implicit check for being in an RCU read-side critical section 651 * (rcu_read_lock()) is included. 652 * 653 * For example: 654 * 655 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 656 * 657 * could be used to indicate to lockdep that foo->bar may only be dereferenced 658 * if either rcu_read_lock() is held, or that the lock required to replace 659 * the bar struct at foo->bar is held. 660 * 661 * Note that the list of conditions may also include indications of when a lock 662 * need not be held, for example during initialisation or destruction of the 663 * target struct: 664 * 665 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 666 * atomic_read(&foo->usage) == 0); 667 * 668 * Inserts memory barriers on architectures that require them 669 * (currently only the Alpha), prevents the compiler from refetching 670 * (and from merging fetches), and, more importantly, documents exactly 671 * which pointers are protected by RCU and checks that the pointer is 672 * annotated as __rcu. 673 */ 674 #define rcu_dereference_check(p, c) \ 675 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 676 (c) || rcu_read_lock_held(), __rcu) 677 678 /** 679 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 680 * @p: The pointer to read, prior to dereferencing 681 * @c: The conditions under which the dereference will take place 682 * 683 * This is the RCU-bh counterpart to rcu_dereference_check(). However, 684 * please note that starting in v5.0 kernels, vanilla RCU grace periods 685 * wait for local_bh_disable() regions of code in addition to regions of 686 * code demarked by rcu_read_lock() and rcu_read_unlock(). This means 687 * that synchronize_rcu(), call_rcu, and friends all take not only 688 * rcu_read_lock() but also rcu_read_lock_bh() into account. 689 */ 690 #define rcu_dereference_bh_check(p, c) \ 691 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 692 (c) || rcu_read_lock_bh_held(), __rcu) 693 694 /** 695 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 696 * @p: The pointer to read, prior to dereferencing 697 * @c: The conditions under which the dereference will take place 698 * 699 * This is the RCU-sched counterpart to rcu_dereference_check(). 700 * However, please note that starting in v5.0 kernels, vanilla RCU grace 701 * periods wait for preempt_disable() regions of code in addition to 702 * regions of code demarked by rcu_read_lock() and rcu_read_unlock(). 703 * This means that synchronize_rcu(), call_rcu, and friends all take not 704 * only rcu_read_lock() but also rcu_read_lock_sched() into account. 705 */ 706 #define rcu_dereference_sched_check(p, c) \ 707 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 708 (c) || rcu_read_lock_sched_held(), \ 709 __rcu) 710 711 /* 712 * The tracing infrastructure traces RCU (we want that), but unfortunately 713 * some of the RCU checks causes tracing to lock up the system. 714 * 715 * The no-tracing version of rcu_dereference_raw() must not call 716 * rcu_read_lock_held(). 717 */ 718 #define rcu_dereference_raw_check(p) \ 719 __rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu) 720 721 /** 722 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 723 * @p: The pointer to read, prior to dereferencing 724 * @c: The conditions under which the dereference will take place 725 * 726 * Return the value of the specified RCU-protected pointer, but omit 727 * the READ_ONCE(). This is useful in cases where update-side locks 728 * prevent the value of the pointer from changing. Please note that this 729 * primitive does *not* prevent the compiler from repeating this reference 730 * or combining it with other references, so it should not be used without 731 * protection of appropriate locks. 732 * 733 * This function is only for update-side use. Using this function 734 * when protected only by rcu_read_lock() will result in infrequent 735 * but very ugly failures. 736 */ 737 #define rcu_dereference_protected(p, c) \ 738 __rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu) 739 740 741 /** 742 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 743 * @p: The pointer to read, prior to dereferencing 744 * 745 * This is a simple wrapper around rcu_dereference_check(). 746 */ 747 #define rcu_dereference(p) rcu_dereference_check(p, 0) 748 749 /** 750 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 751 * @p: The pointer to read, prior to dereferencing 752 * 753 * Makes rcu_dereference_check() do the dirty work. 754 */ 755 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 756 757 /** 758 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 759 * @p: The pointer to read, prior to dereferencing 760 * 761 * Makes rcu_dereference_check() do the dirty work. 762 */ 763 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 764 765 /** 766 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism 767 * @p: The pointer to hand off 768 * 769 * This is simply an identity function, but it documents where a pointer 770 * is handed off from RCU to some other synchronization mechanism, for 771 * example, reference counting or locking. In C11, it would map to 772 * kill_dependency(). It could be used as follows:: 773 * 774 * rcu_read_lock(); 775 * p = rcu_dereference(gp); 776 * long_lived = is_long_lived(p); 777 * if (long_lived) { 778 * if (!atomic_inc_not_zero(p->refcnt)) 779 * long_lived = false; 780 * else 781 * p = rcu_pointer_handoff(p); 782 * } 783 * rcu_read_unlock(); 784 */ 785 #define rcu_pointer_handoff(p) (p) 786 787 /** 788 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 789 * 790 * When synchronize_rcu() is invoked on one CPU while other CPUs 791 * are within RCU read-side critical sections, then the 792 * synchronize_rcu() is guaranteed to block until after all the other 793 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 794 * on one CPU while other CPUs are within RCU read-side critical 795 * sections, invocation of the corresponding RCU callback is deferred 796 * until after the all the other CPUs exit their critical sections. 797 * 798 * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also 799 * wait for regions of code with preemption disabled, including regions of 800 * code with interrupts or softirqs disabled. In pre-v5.0 kernels, which 801 * define synchronize_sched(), only code enclosed within rcu_read_lock() 802 * and rcu_read_unlock() are guaranteed to be waited for. 803 * 804 * Note, however, that RCU callbacks are permitted to run concurrently 805 * with new RCU read-side critical sections. One way that this can happen 806 * is via the following sequence of events: (1) CPU 0 enters an RCU 807 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 808 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 809 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 810 * callback is invoked. This is legal, because the RCU read-side critical 811 * section that was running concurrently with the call_rcu() (and which 812 * therefore might be referencing something that the corresponding RCU 813 * callback would free up) has completed before the corresponding 814 * RCU callback is invoked. 815 * 816 * RCU read-side critical sections may be nested. Any deferred actions 817 * will be deferred until the outermost RCU read-side critical section 818 * completes. 819 * 820 * You can avoid reading and understanding the next paragraph by 821 * following this rule: don't put anything in an rcu_read_lock() RCU 822 * read-side critical section that would block in a !PREEMPTION kernel. 823 * But if you want the full story, read on! 824 * 825 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU), 826 * it is illegal to block while in an RCU read-side critical section. 827 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION 828 * kernel builds, RCU read-side critical sections may be preempted, 829 * but explicit blocking is illegal. Finally, in preemptible RCU 830 * implementations in real-time (with -rt patchset) kernel builds, RCU 831 * read-side critical sections may be preempted and they may also block, but 832 * only when acquiring spinlocks that are subject to priority inheritance. 833 */ 834 static __always_inline void rcu_read_lock(void) 835 { 836 __rcu_read_lock(); 837 __acquire(RCU); 838 rcu_lock_acquire(&rcu_lock_map); 839 RCU_LOCKDEP_WARN(!rcu_is_watching(), 840 "rcu_read_lock() used illegally while idle"); 841 } 842 843 /* 844 * So where is rcu_write_lock()? It does not exist, as there is no 845 * way for writers to lock out RCU readers. This is a feature, not 846 * a bug -- this property is what provides RCU's performance benefits. 847 * Of course, writers must coordinate with each other. The normal 848 * spinlock primitives work well for this, but any other technique may be 849 * used as well. RCU does not care how the writers keep out of each 850 * others' way, as long as they do so. 851 */ 852 853 /** 854 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 855 * 856 * In almost all situations, rcu_read_unlock() is immune from deadlock. 857 * In recent kernels that have consolidated synchronize_sched() and 858 * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity 859 * also extends to the scheduler's runqueue and priority-inheritance 860 * spinlocks, courtesy of the quiescent-state deferral that is carried 861 * out when rcu_read_unlock() is invoked with interrupts disabled. 862 * 863 * See rcu_read_lock() for more information. 864 */ 865 static inline void rcu_read_unlock(void) 866 { 867 RCU_LOCKDEP_WARN(!rcu_is_watching(), 868 "rcu_read_unlock() used illegally while idle"); 869 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ 870 __release(RCU); 871 __rcu_read_unlock(); 872 } 873 874 /** 875 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 876 * 877 * This is equivalent to rcu_read_lock(), but also disables softirqs. 878 * Note that anything else that disables softirqs can also serve as an RCU 879 * read-side critical section. However, please note that this equivalence 880 * applies only to v5.0 and later. Before v5.0, rcu_read_lock() and 881 * rcu_read_lock_bh() were unrelated. 882 * 883 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 884 * must occur in the same context, for example, it is illegal to invoke 885 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 886 * was invoked from some other task. 887 */ 888 static inline void rcu_read_lock_bh(void) 889 { 890 local_bh_disable(); 891 __acquire(RCU_BH); 892 rcu_lock_acquire(&rcu_bh_lock_map); 893 RCU_LOCKDEP_WARN(!rcu_is_watching(), 894 "rcu_read_lock_bh() used illegally while idle"); 895 } 896 897 /** 898 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section 899 * 900 * See rcu_read_lock_bh() for more information. 901 */ 902 static inline void rcu_read_unlock_bh(void) 903 { 904 RCU_LOCKDEP_WARN(!rcu_is_watching(), 905 "rcu_read_unlock_bh() used illegally while idle"); 906 rcu_lock_release(&rcu_bh_lock_map); 907 __release(RCU_BH); 908 local_bh_enable(); 909 } 910 911 /** 912 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 913 * 914 * This is equivalent to rcu_read_lock(), but also disables preemption. 915 * Read-side critical sections can also be introduced by anything else that 916 * disables preemption, including local_irq_disable() and friends. However, 917 * please note that the equivalence to rcu_read_lock() applies only to 918 * v5.0 and later. Before v5.0, rcu_read_lock() and rcu_read_lock_sched() 919 * were unrelated. 920 * 921 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 922 * must occur in the same context, for example, it is illegal to invoke 923 * rcu_read_unlock_sched() from process context if the matching 924 * rcu_read_lock_sched() was invoked from an NMI handler. 925 */ 926 static inline void rcu_read_lock_sched(void) 927 { 928 preempt_disable(); 929 __acquire(RCU_SCHED); 930 rcu_lock_acquire(&rcu_sched_lock_map); 931 RCU_LOCKDEP_WARN(!rcu_is_watching(), 932 "rcu_read_lock_sched() used illegally while idle"); 933 } 934 935 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 936 static inline notrace void rcu_read_lock_sched_notrace(void) 937 { 938 preempt_disable_notrace(); 939 __acquire(RCU_SCHED); 940 } 941 942 /** 943 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section 944 * 945 * See rcu_read_lock_sched() for more information. 946 */ 947 static inline void rcu_read_unlock_sched(void) 948 { 949 RCU_LOCKDEP_WARN(!rcu_is_watching(), 950 "rcu_read_unlock_sched() used illegally while idle"); 951 rcu_lock_release(&rcu_sched_lock_map); 952 __release(RCU_SCHED); 953 preempt_enable(); 954 } 955 956 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 957 static inline notrace void rcu_read_unlock_sched_notrace(void) 958 { 959 __release(RCU_SCHED); 960 preempt_enable_notrace(); 961 } 962 963 /** 964 * RCU_INIT_POINTER() - initialize an RCU protected pointer 965 * @p: The pointer to be initialized. 966 * @v: The value to initialized the pointer to. 967 * 968 * Initialize an RCU-protected pointer in special cases where readers 969 * do not need ordering constraints on the CPU or the compiler. These 970 * special cases are: 971 * 972 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or* 973 * 2. The caller has taken whatever steps are required to prevent 974 * RCU readers from concurrently accessing this pointer *or* 975 * 3. The referenced data structure has already been exposed to 976 * readers either at compile time or via rcu_assign_pointer() *and* 977 * 978 * a. You have not made *any* reader-visible changes to 979 * this structure since then *or* 980 * b. It is OK for readers accessing this structure from its 981 * new location to see the old state of the structure. (For 982 * example, the changes were to statistical counters or to 983 * other state where exact synchronization is not required.) 984 * 985 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 986 * result in impossible-to-diagnose memory corruption. As in the structures 987 * will look OK in crash dumps, but any concurrent RCU readers might 988 * see pre-initialized values of the referenced data structure. So 989 * please be very careful how you use RCU_INIT_POINTER()!!! 990 * 991 * If you are creating an RCU-protected linked structure that is accessed 992 * by a single external-to-structure RCU-protected pointer, then you may 993 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 994 * pointers, but you must use rcu_assign_pointer() to initialize the 995 * external-to-structure pointer *after* you have completely initialized 996 * the reader-accessible portions of the linked structure. 997 * 998 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no 999 * ordering guarantees for either the CPU or the compiler. 1000 */ 1001 #define RCU_INIT_POINTER(p, v) \ 1002 do { \ 1003 rcu_check_sparse(p, __rcu); \ 1004 WRITE_ONCE(p, RCU_INITIALIZER(v)); \ 1005 } while (0) 1006 1007 /** 1008 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 1009 * @p: The pointer to be initialized. 1010 * @v: The value to initialized the pointer to. 1011 * 1012 * GCC-style initialization for an RCU-protected pointer in a structure field. 1013 */ 1014 #define RCU_POINTER_INITIALIZER(p, v) \ 1015 .p = RCU_INITIALIZER(v) 1016 1017 /* 1018 * Does the specified offset indicate that the corresponding rcu_head 1019 * structure can be handled by kvfree_rcu()? 1020 */ 1021 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096) 1022 1023 /** 1024 * kfree_rcu() - kfree an object after a grace period. 1025 * @ptr: pointer to kfree for double-argument invocations. 1026 * @rhf: the name of the struct rcu_head within the type of @ptr. 1027 * 1028 * Many rcu callbacks functions just call kfree() on the base structure. 1029 * These functions are trivial, but their size adds up, and furthermore 1030 * when they are used in a kernel module, that module must invoke the 1031 * high-latency rcu_barrier() function at module-unload time. 1032 * 1033 * The kfree_rcu() function handles this issue. Rather than encoding a 1034 * function address in the embedded rcu_head structure, kfree_rcu() instead 1035 * encodes the offset of the rcu_head structure within the base structure. 1036 * Because the functions are not allowed in the low-order 4096 bytes of 1037 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 1038 * If the offset is larger than 4095 bytes, a compile-time error will 1039 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can 1040 * either fall back to use of call_rcu() or rearrange the structure to 1041 * position the rcu_head structure into the first 4096 bytes. 1042 * 1043 * The object to be freed can be allocated either by kmalloc() or 1044 * kmem_cache_alloc(). 1045 * 1046 * Note that the allowable offset might decrease in the future. 1047 * 1048 * The BUILD_BUG_ON check must not involve any function calls, hence the 1049 * checks are done in macros here. 1050 */ 1051 #define kfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf) 1052 #define kvfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf) 1053 1054 /** 1055 * kfree_rcu_mightsleep() - kfree an object after a grace period. 1056 * @ptr: pointer to kfree for single-argument invocations. 1057 * 1058 * When it comes to head-less variant, only one argument 1059 * is passed and that is just a pointer which has to be 1060 * freed after a grace period. Therefore the semantic is 1061 * 1062 * kfree_rcu_mightsleep(ptr); 1063 * 1064 * where @ptr is the pointer to be freed by kvfree(). 1065 * 1066 * Please note, head-less way of freeing is permitted to 1067 * use from a context that has to follow might_sleep() 1068 * annotation. Otherwise, please switch and embed the 1069 * rcu_head structure within the type of @ptr. 1070 */ 1071 #define kfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr) 1072 #define kvfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr) 1073 1074 #define kvfree_rcu_arg_2(ptr, rhf) \ 1075 do { \ 1076 typeof (ptr) ___p = (ptr); \ 1077 \ 1078 if (___p) { \ 1079 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf))); \ 1080 kvfree_call_rcu(&((___p)->rhf), (void *) (___p)); \ 1081 } \ 1082 } while (0) 1083 1084 #define kvfree_rcu_arg_1(ptr) \ 1085 do { \ 1086 typeof(ptr) ___p = (ptr); \ 1087 \ 1088 if (___p) \ 1089 kvfree_call_rcu(NULL, (void *) (___p)); \ 1090 } while (0) 1091 1092 /* 1093 * Place this after a lock-acquisition primitive to guarantee that 1094 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies 1095 * if the UNLOCK and LOCK are executed by the same CPU or if the 1096 * UNLOCK and LOCK operate on the same lock variable. 1097 */ 1098 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE 1099 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */ 1100 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 1101 #define smp_mb__after_unlock_lock() do { } while (0) 1102 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 1103 1104 1105 /* Has the specified rcu_head structure been handed to call_rcu()? */ 1106 1107 /** 1108 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu() 1109 * @rhp: The rcu_head structure to initialize. 1110 * 1111 * If you intend to invoke rcu_head_after_call_rcu() to test whether a 1112 * given rcu_head structure has already been passed to call_rcu(), then 1113 * you must also invoke this rcu_head_init() function on it just after 1114 * allocating that structure. Calls to this function must not race with 1115 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation. 1116 */ 1117 static inline void rcu_head_init(struct rcu_head *rhp) 1118 { 1119 rhp->func = (rcu_callback_t)~0L; 1120 } 1121 1122 /** 1123 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()? 1124 * @rhp: The rcu_head structure to test. 1125 * @f: The function passed to call_rcu() along with @rhp. 1126 * 1127 * Returns @true if the @rhp has been passed to call_rcu() with @func, 1128 * and @false otherwise. Emits a warning in any other case, including 1129 * the case where @rhp has already been invoked after a grace period. 1130 * Calls to this function must not race with callback invocation. One way 1131 * to avoid such races is to enclose the call to rcu_head_after_call_rcu() 1132 * in an RCU read-side critical section that includes a read-side fetch 1133 * of the pointer to the structure containing @rhp. 1134 */ 1135 static inline bool 1136 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f) 1137 { 1138 rcu_callback_t func = READ_ONCE(rhp->func); 1139 1140 if (func == f) 1141 return true; 1142 WARN_ON_ONCE(func != (rcu_callback_t)~0L); 1143 return false; 1144 } 1145 1146 /* kernel/ksysfs.c definitions */ 1147 extern int rcu_expedited; 1148 extern int rcu_normal; 1149 1150 DEFINE_LOCK_GUARD_0(rcu, 1151 do { 1152 rcu_read_lock(); 1153 /* 1154 * sparse doesn't call the cleanup function, 1155 * so just release immediately and don't track 1156 * the context. We don't need to anyway, since 1157 * the whole point of the guard is to not need 1158 * the explicit unlock. 1159 */ 1160 __release(RCU); 1161 } while (0), 1162 rcu_read_unlock()) 1163 1164 #endif /* __LINUX_RCUPDATE_H */ 1165