1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion 4 * 5 * Copyright IBM Corporation, 2001 6 * 7 * Author: Dipankar Sarma <[email protected]> 8 * 9 * Based on the original work by Paul McKenney <[email protected]> 10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 11 * Papers: 12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 14 * 15 * For detailed explanation of Read-Copy Update mechanism see - 16 * http://lse.sourceforge.net/locking/rcupdate.html 17 * 18 */ 19 20 #ifndef __LINUX_RCUPDATE_H 21 #define __LINUX_RCUPDATE_H 22 23 #include <linux/types.h> 24 #include <linux/compiler.h> 25 #include <linux/atomic.h> 26 #include <linux/irqflags.h> 27 #include <linux/preempt.h> 28 #include <linux/bottom_half.h> 29 #include <linux/lockdep.h> 30 #include <asm/processor.h> 31 #include <linux/cpumask.h> 32 33 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 34 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 35 #define ulong2long(a) (*(long *)(&(a))) 36 37 /* Exported common interfaces */ 38 void call_rcu(struct rcu_head *head, rcu_callback_t func); 39 void rcu_barrier_tasks(void); 40 void rcu_barrier_tasks_rude(void); 41 void synchronize_rcu(void); 42 43 #ifdef CONFIG_PREEMPT_RCU 44 45 void __rcu_read_lock(void); 46 void __rcu_read_unlock(void); 47 48 /* 49 * Defined as a macro as it is a very low level header included from 50 * areas that don't even know about current. This gives the rcu_read_lock() 51 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 52 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 53 */ 54 #define rcu_preempt_depth() (current->rcu_read_lock_nesting) 55 56 #else /* #ifdef CONFIG_PREEMPT_RCU */ 57 58 #ifdef CONFIG_TINY_RCU 59 #define rcu_read_unlock_strict() do { } while (0) 60 #else 61 void rcu_read_unlock_strict(void); 62 #endif 63 64 static inline void __rcu_read_lock(void) 65 { 66 preempt_disable(); 67 } 68 69 static inline void __rcu_read_unlock(void) 70 { 71 preempt_enable(); 72 rcu_read_unlock_strict(); 73 } 74 75 static inline int rcu_preempt_depth(void) 76 { 77 return 0; 78 } 79 80 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 81 82 /* Internal to kernel */ 83 void rcu_init(void); 84 extern int rcu_scheduler_active __read_mostly; 85 void rcu_sched_clock_irq(int user); 86 void rcu_report_dead(unsigned int cpu); 87 void rcutree_migrate_callbacks(int cpu); 88 89 #ifdef CONFIG_RCU_STALL_COMMON 90 void rcu_sysrq_start(void); 91 void rcu_sysrq_end(void); 92 #else /* #ifdef CONFIG_RCU_STALL_COMMON */ 93 static inline void rcu_sysrq_start(void) { } 94 static inline void rcu_sysrq_end(void) { } 95 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ 96 97 #ifdef CONFIG_NO_HZ_FULL 98 void rcu_user_enter(void); 99 void rcu_user_exit(void); 100 #else 101 static inline void rcu_user_enter(void) { } 102 static inline void rcu_user_exit(void) { } 103 #endif /* CONFIG_NO_HZ_FULL */ 104 105 #ifdef CONFIG_RCU_NOCB_CPU 106 void rcu_init_nohz(void); 107 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 108 static inline void rcu_init_nohz(void) { } 109 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 110 111 /** 112 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers 113 * @a: Code that RCU needs to pay attention to. 114 * 115 * RCU read-side critical sections are forbidden in the inner idle loop, 116 * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU 117 * will happily ignore any such read-side critical sections. However, 118 * things like powertop need tracepoints in the inner idle loop. 119 * 120 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) 121 * will tell RCU that it needs to pay attention, invoke its argument 122 * (in this example, calling the do_something_with_RCU() function), 123 * and then tell RCU to go back to ignoring this CPU. It is permissible 124 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is 125 * on the order of a million or so, even on 32-bit systems). It is 126 * not legal to block within RCU_NONIDLE(), nor is it permissible to 127 * transfer control either into or out of RCU_NONIDLE()'s statement. 128 */ 129 #define RCU_NONIDLE(a) \ 130 do { \ 131 rcu_irq_enter_irqson(); \ 132 do { a; } while (0); \ 133 rcu_irq_exit_irqson(); \ 134 } while (0) 135 136 /* 137 * Note a quasi-voluntary context switch for RCU-tasks's benefit. 138 * This is a macro rather than an inline function to avoid #include hell. 139 */ 140 #ifdef CONFIG_TASKS_RCU_GENERIC 141 142 # ifdef CONFIG_TASKS_RCU 143 # define rcu_tasks_classic_qs(t, preempt) \ 144 do { \ 145 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \ 146 WRITE_ONCE((t)->rcu_tasks_holdout, false); \ 147 } while (0) 148 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func); 149 void synchronize_rcu_tasks(void); 150 # else 151 # define rcu_tasks_classic_qs(t, preempt) do { } while (0) 152 # define call_rcu_tasks call_rcu 153 # define synchronize_rcu_tasks synchronize_rcu 154 # endif 155 156 # ifdef CONFIG_TASKS_RCU_TRACE 157 # define rcu_tasks_trace_qs(t) \ 158 do { \ 159 if (!likely(READ_ONCE((t)->trc_reader_checked)) && \ 160 !unlikely(READ_ONCE((t)->trc_reader_nesting))) { \ 161 smp_store_release(&(t)->trc_reader_checked, true); \ 162 smp_mb(); /* Readers partitioned by store. */ \ 163 } \ 164 } while (0) 165 # else 166 # define rcu_tasks_trace_qs(t) do { } while (0) 167 # endif 168 169 #define rcu_tasks_qs(t, preempt) \ 170 do { \ 171 rcu_tasks_classic_qs((t), (preempt)); \ 172 rcu_tasks_trace_qs((t)); \ 173 } while (0) 174 175 # ifdef CONFIG_TASKS_RUDE_RCU 176 void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func); 177 void synchronize_rcu_tasks_rude(void); 178 # endif 179 180 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false) 181 void exit_tasks_rcu_start(void); 182 void exit_tasks_rcu_finish(void); 183 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 184 #define rcu_tasks_qs(t, preempt) do { } while (0) 185 #define rcu_note_voluntary_context_switch(t) do { } while (0) 186 #define call_rcu_tasks call_rcu 187 #define synchronize_rcu_tasks synchronize_rcu 188 static inline void exit_tasks_rcu_start(void) { } 189 static inline void exit_tasks_rcu_finish(void) { } 190 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 191 192 /** 193 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU 194 * 195 * This macro resembles cond_resched(), except that it is defined to 196 * report potential quiescent states to RCU-tasks even if the cond_resched() 197 * machinery were to be shut off, as some advocate for PREEMPTION kernels. 198 */ 199 #define cond_resched_tasks_rcu_qs() \ 200 do { \ 201 rcu_tasks_qs(current, false); \ 202 cond_resched(); \ 203 } while (0) 204 205 /* 206 * Infrastructure to implement the synchronize_() primitives in 207 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 208 */ 209 210 #if defined(CONFIG_TREE_RCU) 211 #include <linux/rcutree.h> 212 #elif defined(CONFIG_TINY_RCU) 213 #include <linux/rcutiny.h> 214 #else 215 #error "Unknown RCU implementation specified to kernel configuration" 216 #endif 217 218 /* 219 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls 220 * are needed for dynamic initialization and destruction of rcu_head 221 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for 222 * dynamic initialization and destruction of statically allocated rcu_head 223 * structures. However, rcu_head structures allocated dynamically in the 224 * heap don't need any initialization. 225 */ 226 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 227 void init_rcu_head(struct rcu_head *head); 228 void destroy_rcu_head(struct rcu_head *head); 229 void init_rcu_head_on_stack(struct rcu_head *head); 230 void destroy_rcu_head_on_stack(struct rcu_head *head); 231 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 232 static inline void init_rcu_head(struct rcu_head *head) { } 233 static inline void destroy_rcu_head(struct rcu_head *head) { } 234 static inline void init_rcu_head_on_stack(struct rcu_head *head) { } 235 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { } 236 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 237 238 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 239 bool rcu_lockdep_current_cpu_online(void); 240 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 241 static inline bool rcu_lockdep_current_cpu_online(void) { return true; } 242 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 243 244 extern struct lockdep_map rcu_lock_map; 245 extern struct lockdep_map rcu_bh_lock_map; 246 extern struct lockdep_map rcu_sched_lock_map; 247 extern struct lockdep_map rcu_callback_map; 248 249 #ifdef CONFIG_DEBUG_LOCK_ALLOC 250 251 static inline void rcu_lock_acquire(struct lockdep_map *map) 252 { 253 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); 254 } 255 256 static inline void rcu_lock_release(struct lockdep_map *map) 257 { 258 lock_release(map, _THIS_IP_); 259 } 260 261 int debug_lockdep_rcu_enabled(void); 262 int rcu_read_lock_held(void); 263 int rcu_read_lock_bh_held(void); 264 int rcu_read_lock_sched_held(void); 265 int rcu_read_lock_any_held(void); 266 267 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 268 269 # define rcu_lock_acquire(a) do { } while (0) 270 # define rcu_lock_release(a) do { } while (0) 271 272 static inline int rcu_read_lock_held(void) 273 { 274 return 1; 275 } 276 277 static inline int rcu_read_lock_bh_held(void) 278 { 279 return 1; 280 } 281 282 static inline int rcu_read_lock_sched_held(void) 283 { 284 return !preemptible(); 285 } 286 287 static inline int rcu_read_lock_any_held(void) 288 { 289 return !preemptible(); 290 } 291 292 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 293 294 #ifdef CONFIG_PROVE_RCU 295 296 /** 297 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met 298 * @c: condition to check 299 * @s: informative message 300 */ 301 #define RCU_LOCKDEP_WARN(c, s) \ 302 do { \ 303 static bool __section(".data.unlikely") __warned; \ 304 if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \ 305 __warned = true; \ 306 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 307 } \ 308 } while (0) 309 310 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 311 static inline void rcu_preempt_sleep_check(void) 312 { 313 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 314 "Illegal context switch in RCU read-side critical section"); 315 } 316 #else /* #ifdef CONFIG_PROVE_RCU */ 317 static inline void rcu_preempt_sleep_check(void) { } 318 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 319 320 #define rcu_sleep_check() \ 321 do { \ 322 rcu_preempt_sleep_check(); \ 323 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ 324 "Illegal context switch in RCU-bh read-side critical section"); \ 325 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ 326 "Illegal context switch in RCU-sched read-side critical section"); \ 327 } while (0) 328 329 #else /* #ifdef CONFIG_PROVE_RCU */ 330 331 #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c)) 332 #define rcu_sleep_check() do { } while (0) 333 334 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 335 336 /* 337 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 338 * and rcu_assign_pointer(). Some of these could be folded into their 339 * callers, but they are left separate in order to ease introduction of 340 * multiple pointers markings to match different RCU implementations 341 * (e.g., __srcu), should this make sense in the future. 342 */ 343 344 #ifdef __CHECKER__ 345 #define rcu_check_sparse(p, space) \ 346 ((void)(((typeof(*p) space *)p) == p)) 347 #else /* #ifdef __CHECKER__ */ 348 #define rcu_check_sparse(p, space) 349 #endif /* #else #ifdef __CHECKER__ */ 350 351 #define __rcu_access_pointer(p, space) \ 352 ({ \ 353 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \ 354 rcu_check_sparse(p, space); \ 355 ((typeof(*p) __force __kernel *)(_________p1)); \ 356 }) 357 #define __rcu_dereference_check(p, c, space) \ 358 ({ \ 359 /* Dependency order vs. p above. */ \ 360 typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \ 361 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ 362 rcu_check_sparse(p, space); \ 363 ((typeof(*p) __force __kernel *)(________p1)); \ 364 }) 365 #define __rcu_dereference_protected(p, c, space) \ 366 ({ \ 367 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ 368 rcu_check_sparse(p, space); \ 369 ((typeof(*p) __force __kernel *)(p)); \ 370 }) 371 #define rcu_dereference_raw(p) \ 372 ({ \ 373 /* Dependency order vs. p above. */ \ 374 typeof(p) ________p1 = READ_ONCE(p); \ 375 ((typeof(*p) __force __kernel *)(________p1)); \ 376 }) 377 378 /** 379 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable 380 * @v: The value to statically initialize with. 381 */ 382 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) 383 384 /** 385 * rcu_assign_pointer() - assign to RCU-protected pointer 386 * @p: pointer to assign to 387 * @v: value to assign (publish) 388 * 389 * Assigns the specified value to the specified RCU-protected 390 * pointer, ensuring that any concurrent RCU readers will see 391 * any prior initialization. 392 * 393 * Inserts memory barriers on architectures that require them 394 * (which is most of them), and also prevents the compiler from 395 * reordering the code that initializes the structure after the pointer 396 * assignment. More importantly, this call documents which pointers 397 * will be dereferenced by RCU read-side code. 398 * 399 * In some special cases, you may use RCU_INIT_POINTER() instead 400 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 401 * to the fact that it does not constrain either the CPU or the compiler. 402 * That said, using RCU_INIT_POINTER() when you should have used 403 * rcu_assign_pointer() is a very bad thing that results in 404 * impossible-to-diagnose memory corruption. So please be careful. 405 * See the RCU_INIT_POINTER() comment header for details. 406 * 407 * Note that rcu_assign_pointer() evaluates each of its arguments only 408 * once, appearances notwithstanding. One of the "extra" evaluations 409 * is in typeof() and the other visible only to sparse (__CHECKER__), 410 * neither of which actually execute the argument. As with most cpp 411 * macros, this execute-arguments-only-once property is important, so 412 * please be careful when making changes to rcu_assign_pointer() and the 413 * other macros that it invokes. 414 */ 415 #define rcu_assign_pointer(p, v) \ 416 do { \ 417 uintptr_t _r_a_p__v = (uintptr_t)(v); \ 418 rcu_check_sparse(p, __rcu); \ 419 \ 420 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \ 421 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \ 422 else \ 423 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \ 424 } while (0) 425 426 /** 427 * rcu_replace_pointer() - replace an RCU pointer, returning its old value 428 * @rcu_ptr: RCU pointer, whose old value is returned 429 * @ptr: regular pointer 430 * @c: the lockdep conditions under which the dereference will take place 431 * 432 * Perform a replacement, where @rcu_ptr is an RCU-annotated 433 * pointer and @c is the lockdep argument that is passed to the 434 * rcu_dereference_protected() call used to read that pointer. The old 435 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr. 436 */ 437 #define rcu_replace_pointer(rcu_ptr, ptr, c) \ 438 ({ \ 439 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \ 440 rcu_assign_pointer((rcu_ptr), (ptr)); \ 441 __tmp; \ 442 }) 443 444 /** 445 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 446 * @p: The pointer to read 447 * 448 * Return the value of the specified RCU-protected pointer, but omit the 449 * lockdep checks for being in an RCU read-side critical section. This is 450 * useful when the value of this pointer is accessed, but the pointer is 451 * not dereferenced, for example, when testing an RCU-protected pointer 452 * against NULL. Although rcu_access_pointer() may also be used in cases 453 * where update-side locks prevent the value of the pointer from changing, 454 * you should instead use rcu_dereference_protected() for this use case. 455 * 456 * It is also permissible to use rcu_access_pointer() when read-side 457 * access to the pointer was removed at least one grace period ago, as 458 * is the case in the context of the RCU callback that is freeing up 459 * the data, or after a synchronize_rcu() returns. This can be useful 460 * when tearing down multi-linked structures after a grace period 461 * has elapsed. 462 */ 463 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) 464 465 /** 466 * rcu_dereference_check() - rcu_dereference with debug checking 467 * @p: The pointer to read, prior to dereferencing 468 * @c: The conditions under which the dereference will take place 469 * 470 * Do an rcu_dereference(), but check that the conditions under which the 471 * dereference will take place are correct. Typically the conditions 472 * indicate the various locking conditions that should be held at that 473 * point. The check should return true if the conditions are satisfied. 474 * An implicit check for being in an RCU read-side critical section 475 * (rcu_read_lock()) is included. 476 * 477 * For example: 478 * 479 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 480 * 481 * could be used to indicate to lockdep that foo->bar may only be dereferenced 482 * if either rcu_read_lock() is held, or that the lock required to replace 483 * the bar struct at foo->bar is held. 484 * 485 * Note that the list of conditions may also include indications of when a lock 486 * need not be held, for example during initialisation or destruction of the 487 * target struct: 488 * 489 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 490 * atomic_read(&foo->usage) == 0); 491 * 492 * Inserts memory barriers on architectures that require them 493 * (currently only the Alpha), prevents the compiler from refetching 494 * (and from merging fetches), and, more importantly, documents exactly 495 * which pointers are protected by RCU and checks that the pointer is 496 * annotated as __rcu. 497 */ 498 #define rcu_dereference_check(p, c) \ 499 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu) 500 501 /** 502 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 503 * @p: The pointer to read, prior to dereferencing 504 * @c: The conditions under which the dereference will take place 505 * 506 * This is the RCU-bh counterpart to rcu_dereference_check(). 507 */ 508 #define rcu_dereference_bh_check(p, c) \ 509 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu) 510 511 /** 512 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 513 * @p: The pointer to read, prior to dereferencing 514 * @c: The conditions under which the dereference will take place 515 * 516 * This is the RCU-sched counterpart to rcu_dereference_check(). 517 */ 518 #define rcu_dereference_sched_check(p, c) \ 519 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \ 520 __rcu) 521 522 /* 523 * The tracing infrastructure traces RCU (we want that), but unfortunately 524 * some of the RCU checks causes tracing to lock up the system. 525 * 526 * The no-tracing version of rcu_dereference_raw() must not call 527 * rcu_read_lock_held(). 528 */ 529 #define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu) 530 531 /** 532 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 533 * @p: The pointer to read, prior to dereferencing 534 * @c: The conditions under which the dereference will take place 535 * 536 * Return the value of the specified RCU-protected pointer, but omit 537 * the READ_ONCE(). This is useful in cases where update-side locks 538 * prevent the value of the pointer from changing. Please note that this 539 * primitive does *not* prevent the compiler from repeating this reference 540 * or combining it with other references, so it should not be used without 541 * protection of appropriate locks. 542 * 543 * This function is only for update-side use. Using this function 544 * when protected only by rcu_read_lock() will result in infrequent 545 * but very ugly failures. 546 */ 547 #define rcu_dereference_protected(p, c) \ 548 __rcu_dereference_protected((p), (c), __rcu) 549 550 551 /** 552 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 553 * @p: The pointer to read, prior to dereferencing 554 * 555 * This is a simple wrapper around rcu_dereference_check(). 556 */ 557 #define rcu_dereference(p) rcu_dereference_check(p, 0) 558 559 /** 560 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 561 * @p: The pointer to read, prior to dereferencing 562 * 563 * Makes rcu_dereference_check() do the dirty work. 564 */ 565 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 566 567 /** 568 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 569 * @p: The pointer to read, prior to dereferencing 570 * 571 * Makes rcu_dereference_check() do the dirty work. 572 */ 573 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 574 575 /** 576 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism 577 * @p: The pointer to hand off 578 * 579 * This is simply an identity function, but it documents where a pointer 580 * is handed off from RCU to some other synchronization mechanism, for 581 * example, reference counting or locking. In C11, it would map to 582 * kill_dependency(). It could be used as follows:: 583 * 584 * rcu_read_lock(); 585 * p = rcu_dereference(gp); 586 * long_lived = is_long_lived(p); 587 * if (long_lived) { 588 * if (!atomic_inc_not_zero(p->refcnt)) 589 * long_lived = false; 590 * else 591 * p = rcu_pointer_handoff(p); 592 * } 593 * rcu_read_unlock(); 594 */ 595 #define rcu_pointer_handoff(p) (p) 596 597 /** 598 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 599 * 600 * When synchronize_rcu() is invoked on one CPU while other CPUs 601 * are within RCU read-side critical sections, then the 602 * synchronize_rcu() is guaranteed to block until after all the other 603 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 604 * on one CPU while other CPUs are within RCU read-side critical 605 * sections, invocation of the corresponding RCU callback is deferred 606 * until after the all the other CPUs exit their critical sections. 607 * 608 * Note, however, that RCU callbacks are permitted to run concurrently 609 * with new RCU read-side critical sections. One way that this can happen 610 * is via the following sequence of events: (1) CPU 0 enters an RCU 611 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 612 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 613 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 614 * callback is invoked. This is legal, because the RCU read-side critical 615 * section that was running concurrently with the call_rcu() (and which 616 * therefore might be referencing something that the corresponding RCU 617 * callback would free up) has completed before the corresponding 618 * RCU callback is invoked. 619 * 620 * RCU read-side critical sections may be nested. Any deferred actions 621 * will be deferred until the outermost RCU read-side critical section 622 * completes. 623 * 624 * You can avoid reading and understanding the next paragraph by 625 * following this rule: don't put anything in an rcu_read_lock() RCU 626 * read-side critical section that would block in a !PREEMPTION kernel. 627 * But if you want the full story, read on! 628 * 629 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU), 630 * it is illegal to block while in an RCU read-side critical section. 631 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION 632 * kernel builds, RCU read-side critical sections may be preempted, 633 * but explicit blocking is illegal. Finally, in preemptible RCU 634 * implementations in real-time (with -rt patchset) kernel builds, RCU 635 * read-side critical sections may be preempted and they may also block, but 636 * only when acquiring spinlocks that are subject to priority inheritance. 637 */ 638 static __always_inline void rcu_read_lock(void) 639 { 640 __rcu_read_lock(); 641 __acquire(RCU); 642 rcu_lock_acquire(&rcu_lock_map); 643 RCU_LOCKDEP_WARN(!rcu_is_watching(), 644 "rcu_read_lock() used illegally while idle"); 645 } 646 647 /* 648 * So where is rcu_write_lock()? It does not exist, as there is no 649 * way for writers to lock out RCU readers. This is a feature, not 650 * a bug -- this property is what provides RCU's performance benefits. 651 * Of course, writers must coordinate with each other. The normal 652 * spinlock primitives work well for this, but any other technique may be 653 * used as well. RCU does not care how the writers keep out of each 654 * others' way, as long as they do so. 655 */ 656 657 /** 658 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 659 * 660 * In most situations, rcu_read_unlock() is immune from deadlock. 661 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock() 662 * is responsible for deboosting, which it does via rt_mutex_unlock(). 663 * Unfortunately, this function acquires the scheduler's runqueue and 664 * priority-inheritance spinlocks. This means that deadlock could result 665 * if the caller of rcu_read_unlock() already holds one of these locks or 666 * any lock that is ever acquired while holding them. 667 * 668 * That said, RCU readers are never priority boosted unless they were 669 * preempted. Therefore, one way to avoid deadlock is to make sure 670 * that preemption never happens within any RCU read-side critical 671 * section whose outermost rcu_read_unlock() is called with one of 672 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in 673 * a number of ways, for example, by invoking preempt_disable() before 674 * critical section's outermost rcu_read_lock(). 675 * 676 * Given that the set of locks acquired by rt_mutex_unlock() might change 677 * at any time, a somewhat more future-proofed approach is to make sure 678 * that that preemption never happens within any RCU read-side critical 679 * section whose outermost rcu_read_unlock() is called with irqs disabled. 680 * This approach relies on the fact that rt_mutex_unlock() currently only 681 * acquires irq-disabled locks. 682 * 683 * The second of these two approaches is best in most situations, 684 * however, the first approach can also be useful, at least to those 685 * developers willing to keep abreast of the set of locks acquired by 686 * rt_mutex_unlock(). 687 * 688 * See rcu_read_lock() for more information. 689 */ 690 static inline void rcu_read_unlock(void) 691 { 692 RCU_LOCKDEP_WARN(!rcu_is_watching(), 693 "rcu_read_unlock() used illegally while idle"); 694 __release(RCU); 695 __rcu_read_unlock(); 696 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ 697 } 698 699 /** 700 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 701 * 702 * This is equivalent of rcu_read_lock(), but also disables softirqs. 703 * Note that anything else that disables softirqs can also serve as 704 * an RCU read-side critical section. 705 * 706 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 707 * must occur in the same context, for example, it is illegal to invoke 708 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 709 * was invoked from some other task. 710 */ 711 static inline void rcu_read_lock_bh(void) 712 { 713 local_bh_disable(); 714 __acquire(RCU_BH); 715 rcu_lock_acquire(&rcu_bh_lock_map); 716 RCU_LOCKDEP_WARN(!rcu_is_watching(), 717 "rcu_read_lock_bh() used illegally while idle"); 718 } 719 720 /** 721 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section 722 * 723 * See rcu_read_lock_bh() for more information. 724 */ 725 static inline void rcu_read_unlock_bh(void) 726 { 727 RCU_LOCKDEP_WARN(!rcu_is_watching(), 728 "rcu_read_unlock_bh() used illegally while idle"); 729 rcu_lock_release(&rcu_bh_lock_map); 730 __release(RCU_BH); 731 local_bh_enable(); 732 } 733 734 /** 735 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 736 * 737 * This is equivalent of rcu_read_lock(), but disables preemption. 738 * Read-side critical sections can also be introduced by anything else 739 * that disables preemption, including local_irq_disable() and friends. 740 * 741 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 742 * must occur in the same context, for example, it is illegal to invoke 743 * rcu_read_unlock_sched() from process context if the matching 744 * rcu_read_lock_sched() was invoked from an NMI handler. 745 */ 746 static inline void rcu_read_lock_sched(void) 747 { 748 preempt_disable(); 749 __acquire(RCU_SCHED); 750 rcu_lock_acquire(&rcu_sched_lock_map); 751 RCU_LOCKDEP_WARN(!rcu_is_watching(), 752 "rcu_read_lock_sched() used illegally while idle"); 753 } 754 755 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 756 static inline notrace void rcu_read_lock_sched_notrace(void) 757 { 758 preempt_disable_notrace(); 759 __acquire(RCU_SCHED); 760 } 761 762 /** 763 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section 764 * 765 * See rcu_read_lock_sched() for more information. 766 */ 767 static inline void rcu_read_unlock_sched(void) 768 { 769 RCU_LOCKDEP_WARN(!rcu_is_watching(), 770 "rcu_read_unlock_sched() used illegally while idle"); 771 rcu_lock_release(&rcu_sched_lock_map); 772 __release(RCU_SCHED); 773 preempt_enable(); 774 } 775 776 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 777 static inline notrace void rcu_read_unlock_sched_notrace(void) 778 { 779 __release(RCU_SCHED); 780 preempt_enable_notrace(); 781 } 782 783 /** 784 * RCU_INIT_POINTER() - initialize an RCU protected pointer 785 * @p: The pointer to be initialized. 786 * @v: The value to initialized the pointer to. 787 * 788 * Initialize an RCU-protected pointer in special cases where readers 789 * do not need ordering constraints on the CPU or the compiler. These 790 * special cases are: 791 * 792 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or* 793 * 2. The caller has taken whatever steps are required to prevent 794 * RCU readers from concurrently accessing this pointer *or* 795 * 3. The referenced data structure has already been exposed to 796 * readers either at compile time or via rcu_assign_pointer() *and* 797 * 798 * a. You have not made *any* reader-visible changes to 799 * this structure since then *or* 800 * b. It is OK for readers accessing this structure from its 801 * new location to see the old state of the structure. (For 802 * example, the changes were to statistical counters or to 803 * other state where exact synchronization is not required.) 804 * 805 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 806 * result in impossible-to-diagnose memory corruption. As in the structures 807 * will look OK in crash dumps, but any concurrent RCU readers might 808 * see pre-initialized values of the referenced data structure. So 809 * please be very careful how you use RCU_INIT_POINTER()!!! 810 * 811 * If you are creating an RCU-protected linked structure that is accessed 812 * by a single external-to-structure RCU-protected pointer, then you may 813 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 814 * pointers, but you must use rcu_assign_pointer() to initialize the 815 * external-to-structure pointer *after* you have completely initialized 816 * the reader-accessible portions of the linked structure. 817 * 818 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no 819 * ordering guarantees for either the CPU or the compiler. 820 */ 821 #define RCU_INIT_POINTER(p, v) \ 822 do { \ 823 rcu_check_sparse(p, __rcu); \ 824 WRITE_ONCE(p, RCU_INITIALIZER(v)); \ 825 } while (0) 826 827 /** 828 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 829 * @p: The pointer to be initialized. 830 * @v: The value to initialized the pointer to. 831 * 832 * GCC-style initialization for an RCU-protected pointer in a structure field. 833 */ 834 #define RCU_POINTER_INITIALIZER(p, v) \ 835 .p = RCU_INITIALIZER(v) 836 837 /* 838 * Does the specified offset indicate that the corresponding rcu_head 839 * structure can be handled by kvfree_rcu()? 840 */ 841 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096) 842 843 /* 844 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain. 845 */ 846 #define __kvfree_rcu(head, offset) \ 847 do { \ 848 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offset)); \ 849 kvfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \ 850 } while (0) 851 852 /** 853 * kfree_rcu() - kfree an object after a grace period. 854 * @ptr: pointer to kfree 855 * @rhf: the name of the struct rcu_head within the type of @ptr. 856 * 857 * Many rcu callbacks functions just call kfree() on the base structure. 858 * These functions are trivial, but their size adds up, and furthermore 859 * when they are used in a kernel module, that module must invoke the 860 * high-latency rcu_barrier() function at module-unload time. 861 * 862 * The kfree_rcu() function handles this issue. Rather than encoding a 863 * function address in the embedded rcu_head structure, kfree_rcu() instead 864 * encodes the offset of the rcu_head structure within the base structure. 865 * Because the functions are not allowed in the low-order 4096 bytes of 866 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 867 * If the offset is larger than 4095 bytes, a compile-time error will 868 * be generated in __kvfree_rcu(). If this error is triggered, you can 869 * either fall back to use of call_rcu() or rearrange the structure to 870 * position the rcu_head structure into the first 4096 bytes. 871 * 872 * Note that the allowable offset might decrease in the future, for example, 873 * to allow something like kmem_cache_free_rcu(). 874 * 875 * The BUILD_BUG_ON check must not involve any function calls, hence the 876 * checks are done in macros here. 877 */ 878 #define kfree_rcu(ptr, rhf) \ 879 do { \ 880 typeof (ptr) ___p = (ptr); \ 881 \ 882 if (___p) \ 883 __kvfree_rcu(&((___p)->rhf), offsetof(typeof(*(ptr)), rhf)); \ 884 } while (0) 885 886 /** 887 * kvfree_rcu() - kvfree an object after a grace period. 888 * 889 * This macro consists of one or two arguments and it is 890 * based on whether an object is head-less or not. If it 891 * has a head then a semantic stays the same as it used 892 * to be before: 893 * 894 * kvfree_rcu(ptr, rhf); 895 * 896 * where @ptr is a pointer to kvfree(), @rhf is the name 897 * of the rcu_head structure within the type of @ptr. 898 * 899 * When it comes to head-less variant, only one argument 900 * is passed and that is just a pointer which has to be 901 * freed after a grace period. Therefore the semantic is 902 * 903 * kvfree_rcu(ptr); 904 * 905 * where @ptr is a pointer to kvfree(). 906 * 907 * Please note, head-less way of freeing is permitted to 908 * use from a context that has to follow might_sleep() 909 * annotation. Otherwise, please switch and embed the 910 * rcu_head structure within the type of @ptr. 911 */ 912 #define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__, \ 913 kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__) 914 915 #define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME 916 #define kvfree_rcu_arg_2(ptr, rhf) kfree_rcu(ptr, rhf) 917 #define kvfree_rcu_arg_1(ptr) \ 918 do { \ 919 typeof(ptr) ___p = (ptr); \ 920 \ 921 if (___p) \ 922 kvfree_call_rcu(NULL, (rcu_callback_t) (___p)); \ 923 } while (0) 924 925 /* 926 * Place this after a lock-acquisition primitive to guarantee that 927 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies 928 * if the UNLOCK and LOCK are executed by the same CPU or if the 929 * UNLOCK and LOCK operate on the same lock variable. 930 */ 931 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE 932 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */ 933 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 934 #define smp_mb__after_unlock_lock() do { } while (0) 935 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 936 937 938 /* Has the specified rcu_head structure been handed to call_rcu()? */ 939 940 /** 941 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu() 942 * @rhp: The rcu_head structure to initialize. 943 * 944 * If you intend to invoke rcu_head_after_call_rcu() to test whether a 945 * given rcu_head structure has already been passed to call_rcu(), then 946 * you must also invoke this rcu_head_init() function on it just after 947 * allocating that structure. Calls to this function must not race with 948 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation. 949 */ 950 static inline void rcu_head_init(struct rcu_head *rhp) 951 { 952 rhp->func = (rcu_callback_t)~0L; 953 } 954 955 /** 956 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()? 957 * @rhp: The rcu_head structure to test. 958 * @f: The function passed to call_rcu() along with @rhp. 959 * 960 * Returns @true if the @rhp has been passed to call_rcu() with @func, 961 * and @false otherwise. Emits a warning in any other case, including 962 * the case where @rhp has already been invoked after a grace period. 963 * Calls to this function must not race with callback invocation. One way 964 * to avoid such races is to enclose the call to rcu_head_after_call_rcu() 965 * in an RCU read-side critical section that includes a read-side fetch 966 * of the pointer to the structure containing @rhp. 967 */ 968 static inline bool 969 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f) 970 { 971 rcu_callback_t func = READ_ONCE(rhp->func); 972 973 if (func == f) 974 return true; 975 WARN_ON_ONCE(func != (rcu_callback_t)~0L); 976 return false; 977 } 978 979 /* kernel/ksysfs.c definitions */ 980 extern int rcu_expedited; 981 extern int rcu_normal; 982 983 #endif /* __LINUX_RCUPDATE_H */ 984