1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion 4 * 5 * Copyright IBM Corporation, 2001 6 * 7 * Author: Dipankar Sarma <[email protected]> 8 * 9 * Based on the original work by Paul McKenney <[email protected]> 10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 11 * Papers: 12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 14 * 15 * For detailed explanation of Read-Copy Update mechanism see - 16 * http://lse.sourceforge.net/locking/rcupdate.html 17 * 18 */ 19 20 #ifndef __LINUX_RCUPDATE_H 21 #define __LINUX_RCUPDATE_H 22 23 #include <linux/types.h> 24 #include <linux/compiler.h> 25 #include <linux/atomic.h> 26 #include <linux/irqflags.h> 27 #include <linux/preempt.h> 28 #include <linux/bottom_half.h> 29 #include <linux/lockdep.h> 30 #include <linux/cleanup.h> 31 #include <asm/processor.h> 32 #include <linux/cpumask.h> 33 #include <linux/context_tracking_irq.h> 34 35 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 36 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 37 #define ulong2long(a) (*(long *)(&(a))) 38 #define USHORT_CMP_GE(a, b) (USHRT_MAX / 2 >= (unsigned short)((a) - (b))) 39 #define USHORT_CMP_LT(a, b) (USHRT_MAX / 2 < (unsigned short)((a) - (b))) 40 41 /* Exported common interfaces */ 42 void call_rcu(struct rcu_head *head, rcu_callback_t func); 43 void rcu_barrier_tasks(void); 44 void rcu_barrier_tasks_rude(void); 45 void synchronize_rcu(void); 46 47 struct rcu_gp_oldstate; 48 unsigned long get_completed_synchronize_rcu(void); 49 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp); 50 51 // Maximum number of unsigned long values corresponding to 52 // not-yet-completed RCU grace periods. 53 #define NUM_ACTIVE_RCU_POLL_OLDSTATE 2 54 55 /** 56 * same_state_synchronize_rcu - Are two old-state values identical? 57 * @oldstate1: First old-state value. 58 * @oldstate2: Second old-state value. 59 * 60 * The two old-state values must have been obtained from either 61 * get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or 62 * get_completed_synchronize_rcu(). Returns @true if the two values are 63 * identical and @false otherwise. This allows structures whose lifetimes 64 * are tracked by old-state values to push these values to a list header, 65 * allowing those structures to be slightly smaller. 66 */ 67 static inline bool same_state_synchronize_rcu(unsigned long oldstate1, unsigned long oldstate2) 68 { 69 return oldstate1 == oldstate2; 70 } 71 72 #ifdef CONFIG_PREEMPT_RCU 73 74 void __rcu_read_lock(void); 75 void __rcu_read_unlock(void); 76 77 /* 78 * Defined as a macro as it is a very low level header included from 79 * areas that don't even know about current. This gives the rcu_read_lock() 80 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 81 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 82 */ 83 #define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting) 84 85 #else /* #ifdef CONFIG_PREEMPT_RCU */ 86 87 #ifdef CONFIG_TINY_RCU 88 #define rcu_read_unlock_strict() do { } while (0) 89 #else 90 void rcu_read_unlock_strict(void); 91 #endif 92 93 static inline void __rcu_read_lock(void) 94 { 95 preempt_disable(); 96 } 97 98 static inline void __rcu_read_unlock(void) 99 { 100 preempt_enable(); 101 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 102 rcu_read_unlock_strict(); 103 } 104 105 static inline int rcu_preempt_depth(void) 106 { 107 return 0; 108 } 109 110 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 111 112 #ifdef CONFIG_RCU_LAZY 113 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func); 114 #else 115 static inline void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func) 116 { 117 call_rcu(head, func); 118 } 119 #endif 120 121 /* Internal to kernel */ 122 void rcu_init(void); 123 extern int rcu_scheduler_active; 124 void rcu_sched_clock_irq(int user); 125 void rcu_report_dead(unsigned int cpu); 126 void rcutree_migrate_callbacks(int cpu); 127 128 #ifdef CONFIG_TASKS_RCU_GENERIC 129 void rcu_init_tasks_generic(void); 130 #else 131 static inline void rcu_init_tasks_generic(void) { } 132 #endif 133 134 #ifdef CONFIG_RCU_STALL_COMMON 135 void rcu_sysrq_start(void); 136 void rcu_sysrq_end(void); 137 #else /* #ifdef CONFIG_RCU_STALL_COMMON */ 138 static inline void rcu_sysrq_start(void) { } 139 static inline void rcu_sysrq_end(void) { } 140 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ 141 142 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) 143 void rcu_irq_work_resched(void); 144 #else 145 static inline void rcu_irq_work_resched(void) { } 146 #endif 147 148 #ifdef CONFIG_RCU_NOCB_CPU 149 void rcu_init_nohz(void); 150 int rcu_nocb_cpu_offload(int cpu); 151 int rcu_nocb_cpu_deoffload(int cpu); 152 void rcu_nocb_flush_deferred_wakeup(void); 153 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 154 static inline void rcu_init_nohz(void) { } 155 static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; } 156 static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; } 157 static inline void rcu_nocb_flush_deferred_wakeup(void) { } 158 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 159 160 /* 161 * Note a quasi-voluntary context switch for RCU-tasks's benefit. 162 * This is a macro rather than an inline function to avoid #include hell. 163 */ 164 #ifdef CONFIG_TASKS_RCU_GENERIC 165 166 # ifdef CONFIG_TASKS_RCU 167 # define rcu_tasks_classic_qs(t, preempt) \ 168 do { \ 169 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \ 170 WRITE_ONCE((t)->rcu_tasks_holdout, false); \ 171 } while (0) 172 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func); 173 void synchronize_rcu_tasks(void); 174 # else 175 # define rcu_tasks_classic_qs(t, preempt) do { } while (0) 176 # define call_rcu_tasks call_rcu 177 # define synchronize_rcu_tasks synchronize_rcu 178 # endif 179 180 # ifdef CONFIG_TASKS_TRACE_RCU 181 // Bits for ->trc_reader_special.b.need_qs field. 182 #define TRC_NEED_QS 0x1 // Task needs a quiescent state. 183 #define TRC_NEED_QS_CHECKED 0x2 // Task has been checked for needing quiescent state. 184 185 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new); 186 void rcu_tasks_trace_qs_blkd(struct task_struct *t); 187 188 # define rcu_tasks_trace_qs(t) \ 189 do { \ 190 int ___rttq_nesting = READ_ONCE((t)->trc_reader_nesting); \ 191 \ 192 if (likely(!READ_ONCE((t)->trc_reader_special.b.need_qs)) && \ 193 likely(!___rttq_nesting)) { \ 194 rcu_trc_cmpxchg_need_qs((t), 0, TRC_NEED_QS_CHECKED); \ 195 } else if (___rttq_nesting && ___rttq_nesting != INT_MIN && \ 196 !READ_ONCE((t)->trc_reader_special.b.blocked)) { \ 197 rcu_tasks_trace_qs_blkd(t); \ 198 } \ 199 } while (0) 200 # else 201 # define rcu_tasks_trace_qs(t) do { } while (0) 202 # endif 203 204 #define rcu_tasks_qs(t, preempt) \ 205 do { \ 206 rcu_tasks_classic_qs((t), (preempt)); \ 207 rcu_tasks_trace_qs(t); \ 208 } while (0) 209 210 # ifdef CONFIG_TASKS_RUDE_RCU 211 void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func); 212 void synchronize_rcu_tasks_rude(void); 213 # endif 214 215 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false) 216 void exit_tasks_rcu_start(void); 217 void exit_tasks_rcu_stop(void); 218 void exit_tasks_rcu_finish(void); 219 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 220 #define rcu_tasks_classic_qs(t, preempt) do { } while (0) 221 #define rcu_tasks_qs(t, preempt) do { } while (0) 222 #define rcu_note_voluntary_context_switch(t) do { } while (0) 223 #define call_rcu_tasks call_rcu 224 #define synchronize_rcu_tasks synchronize_rcu 225 static inline void exit_tasks_rcu_start(void) { } 226 static inline void exit_tasks_rcu_stop(void) { } 227 static inline void exit_tasks_rcu_finish(void) { } 228 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 229 230 /** 231 * rcu_trace_implies_rcu_gp - does an RCU Tasks Trace grace period imply an RCU grace period? 232 * 233 * As an accident of implementation, an RCU Tasks Trace grace period also 234 * acts as an RCU grace period. However, this could change at any time. 235 * Code relying on this accident must call this function to verify that 236 * this accident is still happening. 237 * 238 * You have been warned! 239 */ 240 static inline bool rcu_trace_implies_rcu_gp(void) { return true; } 241 242 /** 243 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU 244 * 245 * This macro resembles cond_resched(), except that it is defined to 246 * report potential quiescent states to RCU-tasks even if the cond_resched() 247 * machinery were to be shut off, as some advocate for PREEMPTION kernels. 248 */ 249 #define cond_resched_tasks_rcu_qs() \ 250 do { \ 251 rcu_tasks_qs(current, false); \ 252 cond_resched(); \ 253 } while (0) 254 255 /* 256 * Infrastructure to implement the synchronize_() primitives in 257 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 258 */ 259 260 #if defined(CONFIG_TREE_RCU) 261 #include <linux/rcutree.h> 262 #elif defined(CONFIG_TINY_RCU) 263 #include <linux/rcutiny.h> 264 #else 265 #error "Unknown RCU implementation specified to kernel configuration" 266 #endif 267 268 /* 269 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls 270 * are needed for dynamic initialization and destruction of rcu_head 271 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for 272 * dynamic initialization and destruction of statically allocated rcu_head 273 * structures. However, rcu_head structures allocated dynamically in the 274 * heap don't need any initialization. 275 */ 276 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 277 void init_rcu_head(struct rcu_head *head); 278 void destroy_rcu_head(struct rcu_head *head); 279 void init_rcu_head_on_stack(struct rcu_head *head); 280 void destroy_rcu_head_on_stack(struct rcu_head *head); 281 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 282 static inline void init_rcu_head(struct rcu_head *head) { } 283 static inline void destroy_rcu_head(struct rcu_head *head) { } 284 static inline void init_rcu_head_on_stack(struct rcu_head *head) { } 285 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { } 286 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 287 288 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 289 bool rcu_lockdep_current_cpu_online(void); 290 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 291 static inline bool rcu_lockdep_current_cpu_online(void) { return true; } 292 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 293 294 extern struct lockdep_map rcu_lock_map; 295 extern struct lockdep_map rcu_bh_lock_map; 296 extern struct lockdep_map rcu_sched_lock_map; 297 extern struct lockdep_map rcu_callback_map; 298 299 #ifdef CONFIG_DEBUG_LOCK_ALLOC 300 301 static inline void rcu_lock_acquire(struct lockdep_map *map) 302 { 303 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); 304 } 305 306 static inline void rcu_lock_release(struct lockdep_map *map) 307 { 308 lock_release(map, _THIS_IP_); 309 } 310 311 int debug_lockdep_rcu_enabled(void); 312 int rcu_read_lock_held(void); 313 int rcu_read_lock_bh_held(void); 314 int rcu_read_lock_sched_held(void); 315 int rcu_read_lock_any_held(void); 316 317 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 318 319 # define rcu_lock_acquire(a) do { } while (0) 320 # define rcu_lock_release(a) do { } while (0) 321 322 static inline int rcu_read_lock_held(void) 323 { 324 return 1; 325 } 326 327 static inline int rcu_read_lock_bh_held(void) 328 { 329 return 1; 330 } 331 332 static inline int rcu_read_lock_sched_held(void) 333 { 334 return !preemptible(); 335 } 336 337 static inline int rcu_read_lock_any_held(void) 338 { 339 return !preemptible(); 340 } 341 342 static inline int debug_lockdep_rcu_enabled(void) 343 { 344 return 0; 345 } 346 347 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 348 349 #ifdef CONFIG_PROVE_RCU 350 351 /** 352 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met 353 * @c: condition to check 354 * @s: informative message 355 * 356 * This checks debug_lockdep_rcu_enabled() before checking (c) to 357 * prevent early boot splats due to lockdep not yet being initialized, 358 * and rechecks it after checking (c) to prevent false-positive splats 359 * due to races with lockdep being disabled. See commit 3066820034b5dd 360 * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail. 361 */ 362 #define RCU_LOCKDEP_WARN(c, s) \ 363 do { \ 364 static bool __section(".data.unlikely") __warned; \ 365 if (debug_lockdep_rcu_enabled() && (c) && \ 366 debug_lockdep_rcu_enabled() && !__warned) { \ 367 __warned = true; \ 368 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 369 } \ 370 } while (0) 371 372 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 373 static inline void rcu_preempt_sleep_check(void) 374 { 375 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 376 "Illegal context switch in RCU read-side critical section"); 377 } 378 #else /* #ifdef CONFIG_PROVE_RCU */ 379 static inline void rcu_preempt_sleep_check(void) { } 380 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 381 382 #define rcu_sleep_check() \ 383 do { \ 384 rcu_preempt_sleep_check(); \ 385 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ 386 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ 387 "Illegal context switch in RCU-bh read-side critical section"); \ 388 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ 389 "Illegal context switch in RCU-sched read-side critical section"); \ 390 } while (0) 391 392 #else /* #ifdef CONFIG_PROVE_RCU */ 393 394 #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c)) 395 #define rcu_sleep_check() do { } while (0) 396 397 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 398 399 /* 400 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 401 * and rcu_assign_pointer(). Some of these could be folded into their 402 * callers, but they are left separate in order to ease introduction of 403 * multiple pointers markings to match different RCU implementations 404 * (e.g., __srcu), should this make sense in the future. 405 */ 406 407 #ifdef __CHECKER__ 408 #define rcu_check_sparse(p, space) \ 409 ((void)(((typeof(*p) space *)p) == p)) 410 #else /* #ifdef __CHECKER__ */ 411 #define rcu_check_sparse(p, space) 412 #endif /* #else #ifdef __CHECKER__ */ 413 414 #define __unrcu_pointer(p, local) \ 415 ({ \ 416 typeof(*p) *local = (typeof(*p) *__force)(p); \ 417 rcu_check_sparse(p, __rcu); \ 418 ((typeof(*p) __force __kernel *)(local)); \ 419 }) 420 /** 421 * unrcu_pointer - mark a pointer as not being RCU protected 422 * @p: pointer needing to lose its __rcu property 423 * 424 * Converts @p from an __rcu pointer to a __kernel pointer. 425 * This allows an __rcu pointer to be used with xchg() and friends. 426 */ 427 #define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu)) 428 429 #define __rcu_access_pointer(p, local, space) \ 430 ({ \ 431 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \ 432 rcu_check_sparse(p, space); \ 433 ((typeof(*p) __force __kernel *)(local)); \ 434 }) 435 #define __rcu_dereference_check(p, local, c, space) \ 436 ({ \ 437 /* Dependency order vs. p above. */ \ 438 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \ 439 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ 440 rcu_check_sparse(p, space); \ 441 ((typeof(*p) __force __kernel *)(local)); \ 442 }) 443 #define __rcu_dereference_protected(p, local, c, space) \ 444 ({ \ 445 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ 446 rcu_check_sparse(p, space); \ 447 ((typeof(*p) __force __kernel *)(p)); \ 448 }) 449 #define __rcu_dereference_raw(p, local) \ 450 ({ \ 451 /* Dependency order vs. p above. */ \ 452 typeof(p) local = READ_ONCE(p); \ 453 ((typeof(*p) __force __kernel *)(local)); \ 454 }) 455 #define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu)) 456 457 /** 458 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable 459 * @v: The value to statically initialize with. 460 */ 461 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) 462 463 /** 464 * rcu_assign_pointer() - assign to RCU-protected pointer 465 * @p: pointer to assign to 466 * @v: value to assign (publish) 467 * 468 * Assigns the specified value to the specified RCU-protected 469 * pointer, ensuring that any concurrent RCU readers will see 470 * any prior initialization. 471 * 472 * Inserts memory barriers on architectures that require them 473 * (which is most of them), and also prevents the compiler from 474 * reordering the code that initializes the structure after the pointer 475 * assignment. More importantly, this call documents which pointers 476 * will be dereferenced by RCU read-side code. 477 * 478 * In some special cases, you may use RCU_INIT_POINTER() instead 479 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 480 * to the fact that it does not constrain either the CPU or the compiler. 481 * That said, using RCU_INIT_POINTER() when you should have used 482 * rcu_assign_pointer() is a very bad thing that results in 483 * impossible-to-diagnose memory corruption. So please be careful. 484 * See the RCU_INIT_POINTER() comment header for details. 485 * 486 * Note that rcu_assign_pointer() evaluates each of its arguments only 487 * once, appearances notwithstanding. One of the "extra" evaluations 488 * is in typeof() and the other visible only to sparse (__CHECKER__), 489 * neither of which actually execute the argument. As with most cpp 490 * macros, this execute-arguments-only-once property is important, so 491 * please be careful when making changes to rcu_assign_pointer() and the 492 * other macros that it invokes. 493 */ 494 #define rcu_assign_pointer(p, v) \ 495 do { \ 496 uintptr_t _r_a_p__v = (uintptr_t)(v); \ 497 rcu_check_sparse(p, __rcu); \ 498 \ 499 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \ 500 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \ 501 else \ 502 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \ 503 } while (0) 504 505 /** 506 * rcu_replace_pointer() - replace an RCU pointer, returning its old value 507 * @rcu_ptr: RCU pointer, whose old value is returned 508 * @ptr: regular pointer 509 * @c: the lockdep conditions under which the dereference will take place 510 * 511 * Perform a replacement, where @rcu_ptr is an RCU-annotated 512 * pointer and @c is the lockdep argument that is passed to the 513 * rcu_dereference_protected() call used to read that pointer. The old 514 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr. 515 */ 516 #define rcu_replace_pointer(rcu_ptr, ptr, c) \ 517 ({ \ 518 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \ 519 rcu_assign_pointer((rcu_ptr), (ptr)); \ 520 __tmp; \ 521 }) 522 523 /** 524 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 525 * @p: The pointer to read 526 * 527 * Return the value of the specified RCU-protected pointer, but omit the 528 * lockdep checks for being in an RCU read-side critical section. This is 529 * useful when the value of this pointer is accessed, but the pointer is 530 * not dereferenced, for example, when testing an RCU-protected pointer 531 * against NULL. Although rcu_access_pointer() may also be used in cases 532 * where update-side locks prevent the value of the pointer from changing, 533 * you should instead use rcu_dereference_protected() for this use case. 534 * Within an RCU read-side critical section, there is little reason to 535 * use rcu_access_pointer(). 536 * 537 * It is usually best to test the rcu_access_pointer() return value 538 * directly in order to avoid accidental dereferences being introduced 539 * by later inattentive changes. In other words, assigning the 540 * rcu_access_pointer() return value to a local variable results in an 541 * accident waiting to happen. 542 * 543 * It is also permissible to use rcu_access_pointer() when read-side 544 * access to the pointer was removed at least one grace period ago, as is 545 * the case in the context of the RCU callback that is freeing up the data, 546 * or after a synchronize_rcu() returns. This can be useful when tearing 547 * down multi-linked structures after a grace period has elapsed. However, 548 * rcu_dereference_protected() is normally preferred for this use case. 549 */ 550 #define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu) 551 552 /** 553 * rcu_dereference_check() - rcu_dereference with debug checking 554 * @p: The pointer to read, prior to dereferencing 555 * @c: The conditions under which the dereference will take place 556 * 557 * Do an rcu_dereference(), but check that the conditions under which the 558 * dereference will take place are correct. Typically the conditions 559 * indicate the various locking conditions that should be held at that 560 * point. The check should return true if the conditions are satisfied. 561 * An implicit check for being in an RCU read-side critical section 562 * (rcu_read_lock()) is included. 563 * 564 * For example: 565 * 566 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 567 * 568 * could be used to indicate to lockdep that foo->bar may only be dereferenced 569 * if either rcu_read_lock() is held, or that the lock required to replace 570 * the bar struct at foo->bar is held. 571 * 572 * Note that the list of conditions may also include indications of when a lock 573 * need not be held, for example during initialisation or destruction of the 574 * target struct: 575 * 576 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 577 * atomic_read(&foo->usage) == 0); 578 * 579 * Inserts memory barriers on architectures that require them 580 * (currently only the Alpha), prevents the compiler from refetching 581 * (and from merging fetches), and, more importantly, documents exactly 582 * which pointers are protected by RCU and checks that the pointer is 583 * annotated as __rcu. 584 */ 585 #define rcu_dereference_check(p, c) \ 586 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 587 (c) || rcu_read_lock_held(), __rcu) 588 589 /** 590 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 591 * @p: The pointer to read, prior to dereferencing 592 * @c: The conditions under which the dereference will take place 593 * 594 * This is the RCU-bh counterpart to rcu_dereference_check(). However, 595 * please note that starting in v5.0 kernels, vanilla RCU grace periods 596 * wait for local_bh_disable() regions of code in addition to regions of 597 * code demarked by rcu_read_lock() and rcu_read_unlock(). This means 598 * that synchronize_rcu(), call_rcu, and friends all take not only 599 * rcu_read_lock() but also rcu_read_lock_bh() into account. 600 */ 601 #define rcu_dereference_bh_check(p, c) \ 602 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 603 (c) || rcu_read_lock_bh_held(), __rcu) 604 605 /** 606 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 607 * @p: The pointer to read, prior to dereferencing 608 * @c: The conditions under which the dereference will take place 609 * 610 * This is the RCU-sched counterpart to rcu_dereference_check(). 611 * However, please note that starting in v5.0 kernels, vanilla RCU grace 612 * periods wait for preempt_disable() regions of code in addition to 613 * regions of code demarked by rcu_read_lock() and rcu_read_unlock(). 614 * This means that synchronize_rcu(), call_rcu, and friends all take not 615 * only rcu_read_lock() but also rcu_read_lock_sched() into account. 616 */ 617 #define rcu_dereference_sched_check(p, c) \ 618 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 619 (c) || rcu_read_lock_sched_held(), \ 620 __rcu) 621 622 /* 623 * The tracing infrastructure traces RCU (we want that), but unfortunately 624 * some of the RCU checks causes tracing to lock up the system. 625 * 626 * The no-tracing version of rcu_dereference_raw() must not call 627 * rcu_read_lock_held(). 628 */ 629 #define rcu_dereference_raw_check(p) \ 630 __rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu) 631 632 /** 633 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 634 * @p: The pointer to read, prior to dereferencing 635 * @c: The conditions under which the dereference will take place 636 * 637 * Return the value of the specified RCU-protected pointer, but omit 638 * the READ_ONCE(). This is useful in cases where update-side locks 639 * prevent the value of the pointer from changing. Please note that this 640 * primitive does *not* prevent the compiler from repeating this reference 641 * or combining it with other references, so it should not be used without 642 * protection of appropriate locks. 643 * 644 * This function is only for update-side use. Using this function 645 * when protected only by rcu_read_lock() will result in infrequent 646 * but very ugly failures. 647 */ 648 #define rcu_dereference_protected(p, c) \ 649 __rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu) 650 651 652 /** 653 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 654 * @p: The pointer to read, prior to dereferencing 655 * 656 * This is a simple wrapper around rcu_dereference_check(). 657 */ 658 #define rcu_dereference(p) rcu_dereference_check(p, 0) 659 660 /** 661 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 662 * @p: The pointer to read, prior to dereferencing 663 * 664 * Makes rcu_dereference_check() do the dirty work. 665 */ 666 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 667 668 /** 669 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 670 * @p: The pointer to read, prior to dereferencing 671 * 672 * Makes rcu_dereference_check() do the dirty work. 673 */ 674 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 675 676 /** 677 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism 678 * @p: The pointer to hand off 679 * 680 * This is simply an identity function, but it documents where a pointer 681 * is handed off from RCU to some other synchronization mechanism, for 682 * example, reference counting or locking. In C11, it would map to 683 * kill_dependency(). It could be used as follows:: 684 * 685 * rcu_read_lock(); 686 * p = rcu_dereference(gp); 687 * long_lived = is_long_lived(p); 688 * if (long_lived) { 689 * if (!atomic_inc_not_zero(p->refcnt)) 690 * long_lived = false; 691 * else 692 * p = rcu_pointer_handoff(p); 693 * } 694 * rcu_read_unlock(); 695 */ 696 #define rcu_pointer_handoff(p) (p) 697 698 /** 699 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 700 * 701 * When synchronize_rcu() is invoked on one CPU while other CPUs 702 * are within RCU read-side critical sections, then the 703 * synchronize_rcu() is guaranteed to block until after all the other 704 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 705 * on one CPU while other CPUs are within RCU read-side critical 706 * sections, invocation of the corresponding RCU callback is deferred 707 * until after the all the other CPUs exit their critical sections. 708 * 709 * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also 710 * wait for regions of code with preemption disabled, including regions of 711 * code with interrupts or softirqs disabled. In pre-v5.0 kernels, which 712 * define synchronize_sched(), only code enclosed within rcu_read_lock() 713 * and rcu_read_unlock() are guaranteed to be waited for. 714 * 715 * Note, however, that RCU callbacks are permitted to run concurrently 716 * with new RCU read-side critical sections. One way that this can happen 717 * is via the following sequence of events: (1) CPU 0 enters an RCU 718 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 719 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 720 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 721 * callback is invoked. This is legal, because the RCU read-side critical 722 * section that was running concurrently with the call_rcu() (and which 723 * therefore might be referencing something that the corresponding RCU 724 * callback would free up) has completed before the corresponding 725 * RCU callback is invoked. 726 * 727 * RCU read-side critical sections may be nested. Any deferred actions 728 * will be deferred until the outermost RCU read-side critical section 729 * completes. 730 * 731 * You can avoid reading and understanding the next paragraph by 732 * following this rule: don't put anything in an rcu_read_lock() RCU 733 * read-side critical section that would block in a !PREEMPTION kernel. 734 * But if you want the full story, read on! 735 * 736 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU), 737 * it is illegal to block while in an RCU read-side critical section. 738 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION 739 * kernel builds, RCU read-side critical sections may be preempted, 740 * but explicit blocking is illegal. Finally, in preemptible RCU 741 * implementations in real-time (with -rt patchset) kernel builds, RCU 742 * read-side critical sections may be preempted and they may also block, but 743 * only when acquiring spinlocks that are subject to priority inheritance. 744 */ 745 static __always_inline void rcu_read_lock(void) 746 { 747 __rcu_read_lock(); 748 __acquire(RCU); 749 rcu_lock_acquire(&rcu_lock_map); 750 RCU_LOCKDEP_WARN(!rcu_is_watching(), 751 "rcu_read_lock() used illegally while idle"); 752 } 753 754 /* 755 * So where is rcu_write_lock()? It does not exist, as there is no 756 * way for writers to lock out RCU readers. This is a feature, not 757 * a bug -- this property is what provides RCU's performance benefits. 758 * Of course, writers must coordinate with each other. The normal 759 * spinlock primitives work well for this, but any other technique may be 760 * used as well. RCU does not care how the writers keep out of each 761 * others' way, as long as they do so. 762 */ 763 764 /** 765 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 766 * 767 * In almost all situations, rcu_read_unlock() is immune from deadlock. 768 * In recent kernels that have consolidated synchronize_sched() and 769 * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity 770 * also extends to the scheduler's runqueue and priority-inheritance 771 * spinlocks, courtesy of the quiescent-state deferral that is carried 772 * out when rcu_read_unlock() is invoked with interrupts disabled. 773 * 774 * See rcu_read_lock() for more information. 775 */ 776 static inline void rcu_read_unlock(void) 777 { 778 RCU_LOCKDEP_WARN(!rcu_is_watching(), 779 "rcu_read_unlock() used illegally while idle"); 780 __release(RCU); 781 __rcu_read_unlock(); 782 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ 783 } 784 785 /** 786 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 787 * 788 * This is equivalent to rcu_read_lock(), but also disables softirqs. 789 * Note that anything else that disables softirqs can also serve as an RCU 790 * read-side critical section. However, please note that this equivalence 791 * applies only to v5.0 and later. Before v5.0, rcu_read_lock() and 792 * rcu_read_lock_bh() were unrelated. 793 * 794 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 795 * must occur in the same context, for example, it is illegal to invoke 796 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 797 * was invoked from some other task. 798 */ 799 static inline void rcu_read_lock_bh(void) 800 { 801 local_bh_disable(); 802 __acquire(RCU_BH); 803 rcu_lock_acquire(&rcu_bh_lock_map); 804 RCU_LOCKDEP_WARN(!rcu_is_watching(), 805 "rcu_read_lock_bh() used illegally while idle"); 806 } 807 808 /** 809 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section 810 * 811 * See rcu_read_lock_bh() for more information. 812 */ 813 static inline void rcu_read_unlock_bh(void) 814 { 815 RCU_LOCKDEP_WARN(!rcu_is_watching(), 816 "rcu_read_unlock_bh() used illegally while idle"); 817 rcu_lock_release(&rcu_bh_lock_map); 818 __release(RCU_BH); 819 local_bh_enable(); 820 } 821 822 /** 823 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 824 * 825 * This is equivalent to rcu_read_lock(), but also disables preemption. 826 * Read-side critical sections can also be introduced by anything else that 827 * disables preemption, including local_irq_disable() and friends. However, 828 * please note that the equivalence to rcu_read_lock() applies only to 829 * v5.0 and later. Before v5.0, rcu_read_lock() and rcu_read_lock_sched() 830 * were unrelated. 831 * 832 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 833 * must occur in the same context, for example, it is illegal to invoke 834 * rcu_read_unlock_sched() from process context if the matching 835 * rcu_read_lock_sched() was invoked from an NMI handler. 836 */ 837 static inline void rcu_read_lock_sched(void) 838 { 839 preempt_disable(); 840 __acquire(RCU_SCHED); 841 rcu_lock_acquire(&rcu_sched_lock_map); 842 RCU_LOCKDEP_WARN(!rcu_is_watching(), 843 "rcu_read_lock_sched() used illegally while idle"); 844 } 845 846 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 847 static inline notrace void rcu_read_lock_sched_notrace(void) 848 { 849 preempt_disable_notrace(); 850 __acquire(RCU_SCHED); 851 } 852 853 /** 854 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section 855 * 856 * See rcu_read_lock_sched() for more information. 857 */ 858 static inline void rcu_read_unlock_sched(void) 859 { 860 RCU_LOCKDEP_WARN(!rcu_is_watching(), 861 "rcu_read_unlock_sched() used illegally while idle"); 862 rcu_lock_release(&rcu_sched_lock_map); 863 __release(RCU_SCHED); 864 preempt_enable(); 865 } 866 867 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 868 static inline notrace void rcu_read_unlock_sched_notrace(void) 869 { 870 __release(RCU_SCHED); 871 preempt_enable_notrace(); 872 } 873 874 /** 875 * RCU_INIT_POINTER() - initialize an RCU protected pointer 876 * @p: The pointer to be initialized. 877 * @v: The value to initialized the pointer to. 878 * 879 * Initialize an RCU-protected pointer in special cases where readers 880 * do not need ordering constraints on the CPU or the compiler. These 881 * special cases are: 882 * 883 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or* 884 * 2. The caller has taken whatever steps are required to prevent 885 * RCU readers from concurrently accessing this pointer *or* 886 * 3. The referenced data structure has already been exposed to 887 * readers either at compile time or via rcu_assign_pointer() *and* 888 * 889 * a. You have not made *any* reader-visible changes to 890 * this structure since then *or* 891 * b. It is OK for readers accessing this structure from its 892 * new location to see the old state of the structure. (For 893 * example, the changes were to statistical counters or to 894 * other state where exact synchronization is not required.) 895 * 896 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 897 * result in impossible-to-diagnose memory corruption. As in the structures 898 * will look OK in crash dumps, but any concurrent RCU readers might 899 * see pre-initialized values of the referenced data structure. So 900 * please be very careful how you use RCU_INIT_POINTER()!!! 901 * 902 * If you are creating an RCU-protected linked structure that is accessed 903 * by a single external-to-structure RCU-protected pointer, then you may 904 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 905 * pointers, but you must use rcu_assign_pointer() to initialize the 906 * external-to-structure pointer *after* you have completely initialized 907 * the reader-accessible portions of the linked structure. 908 * 909 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no 910 * ordering guarantees for either the CPU or the compiler. 911 */ 912 #define RCU_INIT_POINTER(p, v) \ 913 do { \ 914 rcu_check_sparse(p, __rcu); \ 915 WRITE_ONCE(p, RCU_INITIALIZER(v)); \ 916 } while (0) 917 918 /** 919 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 920 * @p: The pointer to be initialized. 921 * @v: The value to initialized the pointer to. 922 * 923 * GCC-style initialization for an RCU-protected pointer in a structure field. 924 */ 925 #define RCU_POINTER_INITIALIZER(p, v) \ 926 .p = RCU_INITIALIZER(v) 927 928 /* 929 * Does the specified offset indicate that the corresponding rcu_head 930 * structure can be handled by kvfree_rcu()? 931 */ 932 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096) 933 934 /** 935 * kfree_rcu() - kfree an object after a grace period. 936 * @ptr: pointer to kfree for double-argument invocations. 937 * @rhf: the name of the struct rcu_head within the type of @ptr. 938 * 939 * Many rcu callbacks functions just call kfree() on the base structure. 940 * These functions are trivial, but their size adds up, and furthermore 941 * when they are used in a kernel module, that module must invoke the 942 * high-latency rcu_barrier() function at module-unload time. 943 * 944 * The kfree_rcu() function handles this issue. Rather than encoding a 945 * function address in the embedded rcu_head structure, kfree_rcu() instead 946 * encodes the offset of the rcu_head structure within the base structure. 947 * Because the functions are not allowed in the low-order 4096 bytes of 948 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 949 * If the offset is larger than 4095 bytes, a compile-time error will 950 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can 951 * either fall back to use of call_rcu() or rearrange the structure to 952 * position the rcu_head structure into the first 4096 bytes. 953 * 954 * The object to be freed can be allocated either by kmalloc() or 955 * kmem_cache_alloc(). 956 * 957 * Note that the allowable offset might decrease in the future. 958 * 959 * The BUILD_BUG_ON check must not involve any function calls, hence the 960 * checks are done in macros here. 961 */ 962 #define kfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf) 963 #define kvfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf) 964 965 /** 966 * kfree_rcu_mightsleep() - kfree an object after a grace period. 967 * @ptr: pointer to kfree for single-argument invocations. 968 * 969 * When it comes to head-less variant, only one argument 970 * is passed and that is just a pointer which has to be 971 * freed after a grace period. Therefore the semantic is 972 * 973 * kfree_rcu_mightsleep(ptr); 974 * 975 * where @ptr is the pointer to be freed by kvfree(). 976 * 977 * Please note, head-less way of freeing is permitted to 978 * use from a context that has to follow might_sleep() 979 * annotation. Otherwise, please switch and embed the 980 * rcu_head structure within the type of @ptr. 981 */ 982 #define kfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr) 983 #define kvfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr) 984 985 #define kvfree_rcu_arg_2(ptr, rhf) \ 986 do { \ 987 typeof (ptr) ___p = (ptr); \ 988 \ 989 if (___p) { \ 990 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf))); \ 991 kvfree_call_rcu(&((___p)->rhf), (void *) (___p)); \ 992 } \ 993 } while (0) 994 995 #define kvfree_rcu_arg_1(ptr) \ 996 do { \ 997 typeof(ptr) ___p = (ptr); \ 998 \ 999 if (___p) \ 1000 kvfree_call_rcu(NULL, (void *) (___p)); \ 1001 } while (0) 1002 1003 /* 1004 * Place this after a lock-acquisition primitive to guarantee that 1005 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies 1006 * if the UNLOCK and LOCK are executed by the same CPU or if the 1007 * UNLOCK and LOCK operate on the same lock variable. 1008 */ 1009 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE 1010 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */ 1011 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 1012 #define smp_mb__after_unlock_lock() do { } while (0) 1013 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 1014 1015 1016 /* Has the specified rcu_head structure been handed to call_rcu()? */ 1017 1018 /** 1019 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu() 1020 * @rhp: The rcu_head structure to initialize. 1021 * 1022 * If you intend to invoke rcu_head_after_call_rcu() to test whether a 1023 * given rcu_head structure has already been passed to call_rcu(), then 1024 * you must also invoke this rcu_head_init() function on it just after 1025 * allocating that structure. Calls to this function must not race with 1026 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation. 1027 */ 1028 static inline void rcu_head_init(struct rcu_head *rhp) 1029 { 1030 rhp->func = (rcu_callback_t)~0L; 1031 } 1032 1033 /** 1034 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()? 1035 * @rhp: The rcu_head structure to test. 1036 * @f: The function passed to call_rcu() along with @rhp. 1037 * 1038 * Returns @true if the @rhp has been passed to call_rcu() with @func, 1039 * and @false otherwise. Emits a warning in any other case, including 1040 * the case where @rhp has already been invoked after a grace period. 1041 * Calls to this function must not race with callback invocation. One way 1042 * to avoid such races is to enclose the call to rcu_head_after_call_rcu() 1043 * in an RCU read-side critical section that includes a read-side fetch 1044 * of the pointer to the structure containing @rhp. 1045 */ 1046 static inline bool 1047 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f) 1048 { 1049 rcu_callback_t func = READ_ONCE(rhp->func); 1050 1051 if (func == f) 1052 return true; 1053 WARN_ON_ONCE(func != (rcu_callback_t)~0L); 1054 return false; 1055 } 1056 1057 /* kernel/ksysfs.c definitions */ 1058 extern int rcu_expedited; 1059 extern int rcu_normal; 1060 1061 DEFINE_LOCK_GUARD_0(rcu, rcu_read_lock(), rcu_read_unlock()) 1062 1063 #endif /* __LINUX_RCUPDATE_H */ 1064