1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright IBM Corporation, 2001 19 * 20 * Author: Dipankar Sarma <[email protected]> 21 * 22 * Based on the original work by Paul McKenney <[email protected]> 23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 24 * Papers: 25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 27 * 28 * For detailed explanation of Read-Copy Update mechanism see - 29 * http://lse.sourceforge.net/locking/rcupdate.html 30 * 31 */ 32 33 #ifndef __LINUX_RCUPDATE_H 34 #define __LINUX_RCUPDATE_H 35 36 #include <linux/types.h> 37 #include <linux/cache.h> 38 #include <linux/spinlock.h> 39 #include <linux/threads.h> 40 #include <linux/cpumask.h> 41 #include <linux/seqlock.h> 42 #include <linux/lockdep.h> 43 #include <linux/completion.h> 44 #include <linux/debugobjects.h> 45 #include <linux/bug.h> 46 #include <linux/compiler.h> 47 48 #ifdef CONFIG_RCU_TORTURE_TEST 49 extern int rcutorture_runnable; /* for sysctl */ 50 #endif /* #ifdef CONFIG_RCU_TORTURE_TEST */ 51 52 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) 53 extern void rcutorture_record_test_transition(void); 54 extern void rcutorture_record_progress(unsigned long vernum); 55 extern void do_trace_rcu_torture_read(char *rcutorturename, 56 struct rcu_head *rhp); 57 #else 58 static inline void rcutorture_record_test_transition(void) 59 { 60 } 61 static inline void rcutorture_record_progress(unsigned long vernum) 62 { 63 } 64 #ifdef CONFIG_RCU_TRACE 65 extern void do_trace_rcu_torture_read(char *rcutorturename, 66 struct rcu_head *rhp); 67 #else 68 #define do_trace_rcu_torture_read(rcutorturename, rhp) do { } while (0) 69 #endif 70 #endif 71 72 #define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b)) 73 #define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b)) 74 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 75 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 76 77 /* Exported common interfaces */ 78 79 #ifdef CONFIG_PREEMPT_RCU 80 81 /** 82 * call_rcu() - Queue an RCU callback for invocation after a grace period. 83 * @head: structure to be used for queueing the RCU updates. 84 * @func: actual callback function to be invoked after the grace period 85 * 86 * The callback function will be invoked some time after a full grace 87 * period elapses, in other words after all pre-existing RCU read-side 88 * critical sections have completed. However, the callback function 89 * might well execute concurrently with RCU read-side critical sections 90 * that started after call_rcu() was invoked. RCU read-side critical 91 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), 92 * and may be nested. 93 */ 94 extern void call_rcu(struct rcu_head *head, 95 void (*func)(struct rcu_head *head)); 96 97 #else /* #ifdef CONFIG_PREEMPT_RCU */ 98 99 /* In classic RCU, call_rcu() is just call_rcu_sched(). */ 100 #define call_rcu call_rcu_sched 101 102 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 103 104 /** 105 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period. 106 * @head: structure to be used for queueing the RCU updates. 107 * @func: actual callback function to be invoked after the grace period 108 * 109 * The callback function will be invoked some time after a full grace 110 * period elapses, in other words after all currently executing RCU 111 * read-side critical sections have completed. call_rcu_bh() assumes 112 * that the read-side critical sections end on completion of a softirq 113 * handler. This means that read-side critical sections in process 114 * context must not be interrupted by softirqs. This interface is to be 115 * used when most of the read-side critical sections are in softirq context. 116 * RCU read-side critical sections are delimited by : 117 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context. 118 * OR 119 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context. 120 * These may be nested. 121 */ 122 extern void call_rcu_bh(struct rcu_head *head, 123 void (*func)(struct rcu_head *head)); 124 125 /** 126 * call_rcu_sched() - Queue an RCU for invocation after sched grace period. 127 * @head: structure to be used for queueing the RCU updates. 128 * @func: actual callback function to be invoked after the grace period 129 * 130 * The callback function will be invoked some time after a full grace 131 * period elapses, in other words after all currently executing RCU 132 * read-side critical sections have completed. call_rcu_sched() assumes 133 * that the read-side critical sections end on enabling of preemption 134 * or on voluntary preemption. 135 * RCU read-side critical sections are delimited by : 136 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), 137 * OR 138 * anything that disables preemption. 139 * These may be nested. 140 */ 141 extern void call_rcu_sched(struct rcu_head *head, 142 void (*func)(struct rcu_head *rcu)); 143 144 extern void synchronize_sched(void); 145 146 #ifdef CONFIG_PREEMPT_RCU 147 148 extern void __rcu_read_lock(void); 149 extern void __rcu_read_unlock(void); 150 void synchronize_rcu(void); 151 152 /* 153 * Defined as a macro as it is a very low level header included from 154 * areas that don't even know about current. This gives the rcu_read_lock() 155 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 156 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 157 */ 158 #define rcu_preempt_depth() (current->rcu_read_lock_nesting) 159 160 #else /* #ifdef CONFIG_PREEMPT_RCU */ 161 162 static inline void __rcu_read_lock(void) 163 { 164 preempt_disable(); 165 } 166 167 static inline void __rcu_read_unlock(void) 168 { 169 preempt_enable(); 170 } 171 172 static inline void synchronize_rcu(void) 173 { 174 synchronize_sched(); 175 } 176 177 static inline int rcu_preempt_depth(void) 178 { 179 return 0; 180 } 181 182 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 183 184 /* Internal to kernel */ 185 extern void rcu_sched_qs(int cpu); 186 extern void rcu_bh_qs(int cpu); 187 extern void rcu_preempt_note_context_switch(void); 188 extern void rcu_check_callbacks(int cpu, int user); 189 struct notifier_block; 190 extern void rcu_idle_enter(void); 191 extern void rcu_idle_exit(void); 192 extern void rcu_irq_enter(void); 193 extern void rcu_irq_exit(void); 194 extern void exit_rcu(void); 195 196 /** 197 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers 198 * @a: Code that RCU needs to pay attention to. 199 * 200 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden 201 * in the inner idle loop, that is, between the rcu_idle_enter() and 202 * the rcu_idle_exit() -- RCU will happily ignore any such read-side 203 * critical sections. However, things like powertop need tracepoints 204 * in the inner idle loop. 205 * 206 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) 207 * will tell RCU that it needs to pay attending, invoke its argument 208 * (in this example, a call to the do_something_with_RCU() function), 209 * and then tell RCU to go back to ignoring this CPU. It is permissible 210 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently 211 * quite limited. If deeper nesting is required, it will be necessary 212 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly. 213 * 214 * This macro may be used from process-level code only. 215 */ 216 #define RCU_NONIDLE(a) \ 217 do { \ 218 rcu_idle_exit(); \ 219 do { a; } while (0); \ 220 rcu_idle_enter(); \ 221 } while (0) 222 223 /* 224 * Infrastructure to implement the synchronize_() primitives in 225 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 226 */ 227 228 typedef void call_rcu_func_t(struct rcu_head *head, 229 void (*func)(struct rcu_head *head)); 230 void wait_rcu_gp(call_rcu_func_t crf); 231 232 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) 233 #include <linux/rcutree.h> 234 #elif defined(CONFIG_TINY_RCU) || defined(CONFIG_TINY_PREEMPT_RCU) 235 #include <linux/rcutiny.h> 236 #else 237 #error "Unknown RCU implementation specified to kernel configuration" 238 #endif 239 240 /* 241 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic 242 * initialization and destruction of rcu_head on the stack. rcu_head structures 243 * allocated dynamically in the heap or defined statically don't need any 244 * initialization. 245 */ 246 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 247 extern void init_rcu_head_on_stack(struct rcu_head *head); 248 extern void destroy_rcu_head_on_stack(struct rcu_head *head); 249 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 250 static inline void init_rcu_head_on_stack(struct rcu_head *head) 251 { 252 } 253 254 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) 255 { 256 } 257 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 258 259 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 260 bool rcu_lockdep_current_cpu_online(void); 261 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 262 static inline bool rcu_lockdep_current_cpu_online(void) 263 { 264 return 1; 265 } 266 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 267 268 #ifdef CONFIG_DEBUG_LOCK_ALLOC 269 270 #ifdef CONFIG_PROVE_RCU 271 extern int rcu_is_cpu_idle(void); 272 #else /* !CONFIG_PROVE_RCU */ 273 static inline int rcu_is_cpu_idle(void) 274 { 275 return 0; 276 } 277 #endif /* else !CONFIG_PROVE_RCU */ 278 279 static inline void rcu_lock_acquire(struct lockdep_map *map) 280 { 281 lock_acquire(map, 0, 0, 2, 1, NULL, _THIS_IP_); 282 } 283 284 static inline void rcu_lock_release(struct lockdep_map *map) 285 { 286 lock_release(map, 1, _THIS_IP_); 287 } 288 289 extern struct lockdep_map rcu_lock_map; 290 extern struct lockdep_map rcu_bh_lock_map; 291 extern struct lockdep_map rcu_sched_lock_map; 292 extern int debug_lockdep_rcu_enabled(void); 293 294 /** 295 * rcu_read_lock_held() - might we be in RCU read-side critical section? 296 * 297 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU 298 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC, 299 * this assumes we are in an RCU read-side critical section unless it can 300 * prove otherwise. This is useful for debug checks in functions that 301 * require that they be called within an RCU read-side critical section. 302 * 303 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot 304 * and while lockdep is disabled. 305 * 306 * Note that rcu_read_lock() and the matching rcu_read_unlock() must 307 * occur in the same context, for example, it is illegal to invoke 308 * rcu_read_unlock() in process context if the matching rcu_read_lock() 309 * was invoked from within an irq handler. 310 * 311 * Note that rcu_read_lock() is disallowed if the CPU is either idle or 312 * offline from an RCU perspective, so check for those as well. 313 */ 314 static inline int rcu_read_lock_held(void) 315 { 316 if (!debug_lockdep_rcu_enabled()) 317 return 1; 318 if (rcu_is_cpu_idle()) 319 return 0; 320 if (!rcu_lockdep_current_cpu_online()) 321 return 0; 322 return lock_is_held(&rcu_lock_map); 323 } 324 325 /* 326 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file 327 * hell. 328 */ 329 extern int rcu_read_lock_bh_held(void); 330 331 /** 332 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section? 333 * 334 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an 335 * RCU-sched read-side critical section. In absence of 336 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side 337 * critical section unless it can prove otherwise. Note that disabling 338 * of preemption (including disabling irqs) counts as an RCU-sched 339 * read-side critical section. This is useful for debug checks in functions 340 * that required that they be called within an RCU-sched read-side 341 * critical section. 342 * 343 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot 344 * and while lockdep is disabled. 345 * 346 * Note that if the CPU is in the idle loop from an RCU point of 347 * view (ie: that we are in the section between rcu_idle_enter() and 348 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU 349 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs 350 * that are in such a section, considering these as in extended quiescent 351 * state, so such a CPU is effectively never in an RCU read-side critical 352 * section regardless of what RCU primitives it invokes. This state of 353 * affairs is required --- we need to keep an RCU-free window in idle 354 * where the CPU may possibly enter into low power mode. This way we can 355 * notice an extended quiescent state to other CPUs that started a grace 356 * period. Otherwise we would delay any grace period as long as we run in 357 * the idle task. 358 * 359 * Similarly, we avoid claiming an SRCU read lock held if the current 360 * CPU is offline. 361 */ 362 #ifdef CONFIG_PREEMPT_COUNT 363 static inline int rcu_read_lock_sched_held(void) 364 { 365 int lockdep_opinion = 0; 366 367 if (!debug_lockdep_rcu_enabled()) 368 return 1; 369 if (rcu_is_cpu_idle()) 370 return 0; 371 if (!rcu_lockdep_current_cpu_online()) 372 return 0; 373 if (debug_locks) 374 lockdep_opinion = lock_is_held(&rcu_sched_lock_map); 375 return lockdep_opinion || preempt_count() != 0 || irqs_disabled(); 376 } 377 #else /* #ifdef CONFIG_PREEMPT_COUNT */ 378 static inline int rcu_read_lock_sched_held(void) 379 { 380 return 1; 381 } 382 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ 383 384 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 385 386 # define rcu_lock_acquire(a) do { } while (0) 387 # define rcu_lock_release(a) do { } while (0) 388 389 static inline int rcu_read_lock_held(void) 390 { 391 return 1; 392 } 393 394 static inline int rcu_read_lock_bh_held(void) 395 { 396 return 1; 397 } 398 399 #ifdef CONFIG_PREEMPT_COUNT 400 static inline int rcu_read_lock_sched_held(void) 401 { 402 return preempt_count() != 0 || irqs_disabled(); 403 } 404 #else /* #ifdef CONFIG_PREEMPT_COUNT */ 405 static inline int rcu_read_lock_sched_held(void) 406 { 407 return 1; 408 } 409 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ 410 411 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 412 413 #ifdef CONFIG_PROVE_RCU 414 415 extern int rcu_my_thread_group_empty(void); 416 417 /** 418 * rcu_lockdep_assert - emit lockdep splat if specified condition not met 419 * @c: condition to check 420 * @s: informative message 421 */ 422 #define rcu_lockdep_assert(c, s) \ 423 do { \ 424 static bool __section(.data.unlikely) __warned; \ 425 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \ 426 __warned = true; \ 427 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 428 } \ 429 } while (0) 430 431 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 432 static inline void rcu_preempt_sleep_check(void) 433 { 434 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map), 435 "Illegal context switch in RCU read-side " 436 "critical section"); 437 } 438 #else /* #ifdef CONFIG_PROVE_RCU */ 439 static inline void rcu_preempt_sleep_check(void) 440 { 441 } 442 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 443 444 #define rcu_sleep_check() \ 445 do { \ 446 rcu_preempt_sleep_check(); \ 447 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \ 448 "Illegal context switch in RCU-bh" \ 449 " read-side critical section"); \ 450 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \ 451 "Illegal context switch in RCU-sched"\ 452 " read-side critical section"); \ 453 } while (0) 454 455 #else /* #ifdef CONFIG_PROVE_RCU */ 456 457 #define rcu_lockdep_assert(c, s) do { } while (0) 458 #define rcu_sleep_check() do { } while (0) 459 460 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 461 462 /* 463 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 464 * and rcu_assign_pointer(). Some of these could be folded into their 465 * callers, but they are left separate in order to ease introduction of 466 * multiple flavors of pointers to match the multiple flavors of RCU 467 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in 468 * the future. 469 */ 470 471 #ifdef __CHECKER__ 472 #define rcu_dereference_sparse(p, space) \ 473 ((void)(((typeof(*p) space *)p) == p)) 474 #else /* #ifdef __CHECKER__ */ 475 #define rcu_dereference_sparse(p, space) 476 #endif /* #else #ifdef __CHECKER__ */ 477 478 #define __rcu_access_pointer(p, space) \ 479 ({ \ 480 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \ 481 rcu_dereference_sparse(p, space); \ 482 ((typeof(*p) __force __kernel *)(_________p1)); \ 483 }) 484 #define __rcu_dereference_check(p, c, space) \ 485 ({ \ 486 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \ 487 rcu_lockdep_assert(c, "suspicious rcu_dereference_check()" \ 488 " usage"); \ 489 rcu_dereference_sparse(p, space); \ 490 smp_read_barrier_depends(); \ 491 ((typeof(*p) __force __kernel *)(_________p1)); \ 492 }) 493 #define __rcu_dereference_protected(p, c, space) \ 494 ({ \ 495 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected()" \ 496 " usage"); \ 497 rcu_dereference_sparse(p, space); \ 498 ((typeof(*p) __force __kernel *)(p)); \ 499 }) 500 501 #define __rcu_access_index(p, space) \ 502 ({ \ 503 typeof(p) _________p1 = ACCESS_ONCE(p); \ 504 rcu_dereference_sparse(p, space); \ 505 (_________p1); \ 506 }) 507 #define __rcu_dereference_index_check(p, c) \ 508 ({ \ 509 typeof(p) _________p1 = ACCESS_ONCE(p); \ 510 rcu_lockdep_assert(c, \ 511 "suspicious rcu_dereference_index_check()" \ 512 " usage"); \ 513 smp_read_barrier_depends(); \ 514 (_________p1); \ 515 }) 516 #define __rcu_assign_pointer(p, v, space) \ 517 ({ \ 518 smp_wmb(); \ 519 (p) = (typeof(*v) __force space *)(v); \ 520 }) 521 522 523 /** 524 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 525 * @p: The pointer to read 526 * 527 * Return the value of the specified RCU-protected pointer, but omit the 528 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful 529 * when the value of this pointer is accessed, but the pointer is not 530 * dereferenced, for example, when testing an RCU-protected pointer against 531 * NULL. Although rcu_access_pointer() may also be used in cases where 532 * update-side locks prevent the value of the pointer from changing, you 533 * should instead use rcu_dereference_protected() for this use case. 534 * 535 * It is also permissible to use rcu_access_pointer() when read-side 536 * access to the pointer was removed at least one grace period ago, as 537 * is the case in the context of the RCU callback that is freeing up 538 * the data, or after a synchronize_rcu() returns. This can be useful 539 * when tearing down multi-linked structures after a grace period 540 * has elapsed. 541 */ 542 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) 543 544 /** 545 * rcu_dereference_check() - rcu_dereference with debug checking 546 * @p: The pointer to read, prior to dereferencing 547 * @c: The conditions under which the dereference will take place 548 * 549 * Do an rcu_dereference(), but check that the conditions under which the 550 * dereference will take place are correct. Typically the conditions 551 * indicate the various locking conditions that should be held at that 552 * point. The check should return true if the conditions are satisfied. 553 * An implicit check for being in an RCU read-side critical section 554 * (rcu_read_lock()) is included. 555 * 556 * For example: 557 * 558 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 559 * 560 * could be used to indicate to lockdep that foo->bar may only be dereferenced 561 * if either rcu_read_lock() is held, or that the lock required to replace 562 * the bar struct at foo->bar is held. 563 * 564 * Note that the list of conditions may also include indications of when a lock 565 * need not be held, for example during initialisation or destruction of the 566 * target struct: 567 * 568 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 569 * atomic_read(&foo->usage) == 0); 570 * 571 * Inserts memory barriers on architectures that require them 572 * (currently only the Alpha), prevents the compiler from refetching 573 * (and from merging fetches), and, more importantly, documents exactly 574 * which pointers are protected by RCU and checks that the pointer is 575 * annotated as __rcu. 576 */ 577 #define rcu_dereference_check(p, c) \ 578 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu) 579 580 /** 581 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 582 * @p: The pointer to read, prior to dereferencing 583 * @c: The conditions under which the dereference will take place 584 * 585 * This is the RCU-bh counterpart to rcu_dereference_check(). 586 */ 587 #define rcu_dereference_bh_check(p, c) \ 588 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu) 589 590 /** 591 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 592 * @p: The pointer to read, prior to dereferencing 593 * @c: The conditions under which the dereference will take place 594 * 595 * This is the RCU-sched counterpart to rcu_dereference_check(). 596 */ 597 #define rcu_dereference_sched_check(p, c) \ 598 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \ 599 __rcu) 600 601 #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/ 602 603 /** 604 * rcu_access_index() - fetch RCU index with no dereferencing 605 * @p: The index to read 606 * 607 * Return the value of the specified RCU-protected index, but omit the 608 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful 609 * when the value of this index is accessed, but the index is not 610 * dereferenced, for example, when testing an RCU-protected index against 611 * -1. Although rcu_access_index() may also be used in cases where 612 * update-side locks prevent the value of the index from changing, you 613 * should instead use rcu_dereference_index_protected() for this use case. 614 */ 615 #define rcu_access_index(p) __rcu_access_index((p), __rcu) 616 617 /** 618 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking 619 * @p: The pointer to read, prior to dereferencing 620 * @c: The conditions under which the dereference will take place 621 * 622 * Similar to rcu_dereference_check(), but omits the sparse checking. 623 * This allows rcu_dereference_index_check() to be used on integers, 624 * which can then be used as array indices. Attempting to use 625 * rcu_dereference_check() on an integer will give compiler warnings 626 * because the sparse address-space mechanism relies on dereferencing 627 * the RCU-protected pointer. Dereferencing integers is not something 628 * that even gcc will put up with. 629 * 630 * Note that this function does not implicitly check for RCU read-side 631 * critical sections. If this function gains lots of uses, it might 632 * make sense to provide versions for each flavor of RCU, but it does 633 * not make sense as of early 2010. 634 */ 635 #define rcu_dereference_index_check(p, c) \ 636 __rcu_dereference_index_check((p), (c)) 637 638 /** 639 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 640 * @p: The pointer to read, prior to dereferencing 641 * @c: The conditions under which the dereference will take place 642 * 643 * Return the value of the specified RCU-protected pointer, but omit 644 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This 645 * is useful in cases where update-side locks prevent the value of the 646 * pointer from changing. Please note that this primitive does -not- 647 * prevent the compiler from repeating this reference or combining it 648 * with other references, so it should not be used without protection 649 * of appropriate locks. 650 * 651 * This function is only for update-side use. Using this function 652 * when protected only by rcu_read_lock() will result in infrequent 653 * but very ugly failures. 654 */ 655 #define rcu_dereference_protected(p, c) \ 656 __rcu_dereference_protected((p), (c), __rcu) 657 658 659 /** 660 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 661 * @p: The pointer to read, prior to dereferencing 662 * 663 * This is a simple wrapper around rcu_dereference_check(). 664 */ 665 #define rcu_dereference(p) rcu_dereference_check(p, 0) 666 667 /** 668 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 669 * @p: The pointer to read, prior to dereferencing 670 * 671 * Makes rcu_dereference_check() do the dirty work. 672 */ 673 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 674 675 /** 676 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 677 * @p: The pointer to read, prior to dereferencing 678 * 679 * Makes rcu_dereference_check() do the dirty work. 680 */ 681 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 682 683 /** 684 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 685 * 686 * When synchronize_rcu() is invoked on one CPU while other CPUs 687 * are within RCU read-side critical sections, then the 688 * synchronize_rcu() is guaranteed to block until after all the other 689 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 690 * on one CPU while other CPUs are within RCU read-side critical 691 * sections, invocation of the corresponding RCU callback is deferred 692 * until after the all the other CPUs exit their critical sections. 693 * 694 * Note, however, that RCU callbacks are permitted to run concurrently 695 * with new RCU read-side critical sections. One way that this can happen 696 * is via the following sequence of events: (1) CPU 0 enters an RCU 697 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 698 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 699 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 700 * callback is invoked. This is legal, because the RCU read-side critical 701 * section that was running concurrently with the call_rcu() (and which 702 * therefore might be referencing something that the corresponding RCU 703 * callback would free up) has completed before the corresponding 704 * RCU callback is invoked. 705 * 706 * RCU read-side critical sections may be nested. Any deferred actions 707 * will be deferred until the outermost RCU read-side critical section 708 * completes. 709 * 710 * You can avoid reading and understanding the next paragraph by 711 * following this rule: don't put anything in an rcu_read_lock() RCU 712 * read-side critical section that would block in a !PREEMPT kernel. 713 * But if you want the full story, read on! 714 * 715 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it 716 * is illegal to block while in an RCU read-side critical section. In 717 * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU) 718 * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may 719 * be preempted, but explicit blocking is illegal. Finally, in preemptible 720 * RCU implementations in real-time (CONFIG_PREEMPT_RT) kernel builds, 721 * RCU read-side critical sections may be preempted and they may also 722 * block, but only when acquiring spinlocks that are subject to priority 723 * inheritance. 724 */ 725 static inline void rcu_read_lock(void) 726 { 727 __rcu_read_lock(); 728 __acquire(RCU); 729 rcu_lock_acquire(&rcu_lock_map); 730 rcu_lockdep_assert(!rcu_is_cpu_idle(), 731 "rcu_read_lock() used illegally while idle"); 732 } 733 734 /* 735 * So where is rcu_write_lock()? It does not exist, as there is no 736 * way for writers to lock out RCU readers. This is a feature, not 737 * a bug -- this property is what provides RCU's performance benefits. 738 * Of course, writers must coordinate with each other. The normal 739 * spinlock primitives work well for this, but any other technique may be 740 * used as well. RCU does not care how the writers keep out of each 741 * others' way, as long as they do so. 742 */ 743 744 /** 745 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 746 * 747 * See rcu_read_lock() for more information. 748 */ 749 static inline void rcu_read_unlock(void) 750 { 751 rcu_lockdep_assert(!rcu_is_cpu_idle(), 752 "rcu_read_unlock() used illegally while idle"); 753 rcu_lock_release(&rcu_lock_map); 754 __release(RCU); 755 __rcu_read_unlock(); 756 } 757 758 /** 759 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 760 * 761 * This is equivalent of rcu_read_lock(), but to be used when updates 762 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since 763 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a 764 * softirq handler to be a quiescent state, a process in RCU read-side 765 * critical section must be protected by disabling softirqs. Read-side 766 * critical sections in interrupt context can use just rcu_read_lock(), 767 * though this should at least be commented to avoid confusing people 768 * reading the code. 769 * 770 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 771 * must occur in the same context, for example, it is illegal to invoke 772 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 773 * was invoked from some other task. 774 */ 775 static inline void rcu_read_lock_bh(void) 776 { 777 local_bh_disable(); 778 __acquire(RCU_BH); 779 rcu_lock_acquire(&rcu_bh_lock_map); 780 rcu_lockdep_assert(!rcu_is_cpu_idle(), 781 "rcu_read_lock_bh() used illegally while idle"); 782 } 783 784 /* 785 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section 786 * 787 * See rcu_read_lock_bh() for more information. 788 */ 789 static inline void rcu_read_unlock_bh(void) 790 { 791 rcu_lockdep_assert(!rcu_is_cpu_idle(), 792 "rcu_read_unlock_bh() used illegally while idle"); 793 rcu_lock_release(&rcu_bh_lock_map); 794 __release(RCU_BH); 795 local_bh_enable(); 796 } 797 798 /** 799 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 800 * 801 * This is equivalent of rcu_read_lock(), but to be used when updates 802 * are being done using call_rcu_sched() or synchronize_rcu_sched(). 803 * Read-side critical sections can also be introduced by anything that 804 * disables preemption, including local_irq_disable() and friends. 805 * 806 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 807 * must occur in the same context, for example, it is illegal to invoke 808 * rcu_read_unlock_sched() from process context if the matching 809 * rcu_read_lock_sched() was invoked from an NMI handler. 810 */ 811 static inline void rcu_read_lock_sched(void) 812 { 813 preempt_disable(); 814 __acquire(RCU_SCHED); 815 rcu_lock_acquire(&rcu_sched_lock_map); 816 rcu_lockdep_assert(!rcu_is_cpu_idle(), 817 "rcu_read_lock_sched() used illegally while idle"); 818 } 819 820 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 821 static inline notrace void rcu_read_lock_sched_notrace(void) 822 { 823 preempt_disable_notrace(); 824 __acquire(RCU_SCHED); 825 } 826 827 /* 828 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section 829 * 830 * See rcu_read_lock_sched for more information. 831 */ 832 static inline void rcu_read_unlock_sched(void) 833 { 834 rcu_lockdep_assert(!rcu_is_cpu_idle(), 835 "rcu_read_unlock_sched() used illegally while idle"); 836 rcu_lock_release(&rcu_sched_lock_map); 837 __release(RCU_SCHED); 838 preempt_enable(); 839 } 840 841 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 842 static inline notrace void rcu_read_unlock_sched_notrace(void) 843 { 844 __release(RCU_SCHED); 845 preempt_enable_notrace(); 846 } 847 848 /** 849 * rcu_assign_pointer() - assign to RCU-protected pointer 850 * @p: pointer to assign to 851 * @v: value to assign (publish) 852 * 853 * Assigns the specified value to the specified RCU-protected 854 * pointer, ensuring that any concurrent RCU readers will see 855 * any prior initialization. Returns the value assigned. 856 * 857 * Inserts memory barriers on architectures that require them 858 * (which is most of them), and also prevents the compiler from 859 * reordering the code that initializes the structure after the pointer 860 * assignment. More importantly, this call documents which pointers 861 * will be dereferenced by RCU read-side code. 862 * 863 * In some special cases, you may use RCU_INIT_POINTER() instead 864 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 865 * to the fact that it does not constrain either the CPU or the compiler. 866 * That said, using RCU_INIT_POINTER() when you should have used 867 * rcu_assign_pointer() is a very bad thing that results in 868 * impossible-to-diagnose memory corruption. So please be careful. 869 * See the RCU_INIT_POINTER() comment header for details. 870 */ 871 #define rcu_assign_pointer(p, v) \ 872 __rcu_assign_pointer((p), (v), __rcu) 873 874 /** 875 * RCU_INIT_POINTER() - initialize an RCU protected pointer 876 * 877 * Initialize an RCU-protected pointer in special cases where readers 878 * do not need ordering constraints on the CPU or the compiler. These 879 * special cases are: 880 * 881 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or- 882 * 2. The caller has taken whatever steps are required to prevent 883 * RCU readers from concurrently accessing this pointer -or- 884 * 3. The referenced data structure has already been exposed to 885 * readers either at compile time or via rcu_assign_pointer() -and- 886 * a. You have not made -any- reader-visible changes to 887 * this structure since then -or- 888 * b. It is OK for readers accessing this structure from its 889 * new location to see the old state of the structure. (For 890 * example, the changes were to statistical counters or to 891 * other state where exact synchronization is not required.) 892 * 893 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 894 * result in impossible-to-diagnose memory corruption. As in the structures 895 * will look OK in crash dumps, but any concurrent RCU readers might 896 * see pre-initialized values of the referenced data structure. So 897 * please be very careful how you use RCU_INIT_POINTER()!!! 898 * 899 * If you are creating an RCU-protected linked structure that is accessed 900 * by a single external-to-structure RCU-protected pointer, then you may 901 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 902 * pointers, but you must use rcu_assign_pointer() to initialize the 903 * external-to-structure pointer -after- you have completely initialized 904 * the reader-accessible portions of the linked structure. 905 */ 906 #define RCU_INIT_POINTER(p, v) \ 907 p = (typeof(*v) __force __rcu *)(v) 908 909 static __always_inline bool __is_kfree_rcu_offset(unsigned long offset) 910 { 911 return offset < 4096; 912 } 913 914 static __always_inline 915 void __kfree_rcu(struct rcu_head *head, unsigned long offset) 916 { 917 typedef void (*rcu_callback)(struct rcu_head *); 918 919 BUILD_BUG_ON(!__builtin_constant_p(offset)); 920 921 /* See the kfree_rcu() header comment. */ 922 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); 923 924 kfree_call_rcu(head, (rcu_callback)offset); 925 } 926 927 /* 928 * Does the specified offset indicate that the corresponding rcu_head 929 * structure can be handled by kfree_rcu()? 930 */ 931 #define __is_kfree_rcu_offset(offset) ((offset) < 4096) 932 933 /* 934 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain. 935 */ 936 #define __kfree_rcu(head, offset) \ 937 do { \ 938 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \ 939 call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \ 940 } while (0) 941 942 /** 943 * kfree_rcu() - kfree an object after a grace period. 944 * @ptr: pointer to kfree 945 * @rcu_head: the name of the struct rcu_head within the type of @ptr. 946 * 947 * Many rcu callbacks functions just call kfree() on the base structure. 948 * These functions are trivial, but their size adds up, and furthermore 949 * when they are used in a kernel module, that module must invoke the 950 * high-latency rcu_barrier() function at module-unload time. 951 * 952 * The kfree_rcu() function handles this issue. Rather than encoding a 953 * function address in the embedded rcu_head structure, kfree_rcu() instead 954 * encodes the offset of the rcu_head structure within the base structure. 955 * Because the functions are not allowed in the low-order 4096 bytes of 956 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 957 * If the offset is larger than 4095 bytes, a compile-time error will 958 * be generated in __kfree_rcu(). If this error is triggered, you can 959 * either fall back to use of call_rcu() or rearrange the structure to 960 * position the rcu_head structure into the first 4096 bytes. 961 * 962 * Note that the allowable offset might decrease in the future, for example, 963 * to allow something like kmem_cache_free_rcu(). 964 * 965 * The BUILD_BUG_ON check must not involve any function calls, hence the 966 * checks are done in macros here. 967 */ 968 #define kfree_rcu(ptr, rcu_head) \ 969 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head)) 970 971 #endif /* __LINUX_RCUPDATE_H */ 972