1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion 4 * 5 * Copyright IBM Corporation, 2001 6 * 7 * Author: Dipankar Sarma <[email protected]> 8 * 9 * Based on the original work by Paul McKenney <[email protected]> 10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 11 * Papers: 12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 14 * 15 * For detailed explanation of Read-Copy Update mechanism see - 16 * http://lse.sourceforge.net/locking/rcupdate.html 17 * 18 */ 19 20 #ifndef __LINUX_RCUPDATE_H 21 #define __LINUX_RCUPDATE_H 22 23 #include <linux/types.h> 24 #include <linux/compiler.h> 25 #include <linux/atomic.h> 26 #include <linux/irqflags.h> 27 #include <linux/preempt.h> 28 #include <linux/bottom_half.h> 29 #include <linux/lockdep.h> 30 #include <linux/cleanup.h> 31 #include <asm/processor.h> 32 #include <linux/cpumask.h> 33 #include <linux/context_tracking_irq.h> 34 35 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 36 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 37 38 /* Exported common interfaces */ 39 void call_rcu(struct rcu_head *head, rcu_callback_t func); 40 void rcu_barrier_tasks(void); 41 void rcu_barrier_tasks_rude(void); 42 void synchronize_rcu(void); 43 44 struct rcu_gp_oldstate; 45 unsigned long get_completed_synchronize_rcu(void); 46 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp); 47 48 // Maximum number of unsigned long values corresponding to 49 // not-yet-completed RCU grace periods. 50 #define NUM_ACTIVE_RCU_POLL_OLDSTATE 2 51 52 /** 53 * same_state_synchronize_rcu - Are two old-state values identical? 54 * @oldstate1: First old-state value. 55 * @oldstate2: Second old-state value. 56 * 57 * The two old-state values must have been obtained from either 58 * get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or 59 * get_completed_synchronize_rcu(). Returns @true if the two values are 60 * identical and @false otherwise. This allows structures whose lifetimes 61 * are tracked by old-state values to push these values to a list header, 62 * allowing those structures to be slightly smaller. 63 */ 64 static inline bool same_state_synchronize_rcu(unsigned long oldstate1, unsigned long oldstate2) 65 { 66 return oldstate1 == oldstate2; 67 } 68 69 #ifdef CONFIG_PREEMPT_RCU 70 71 void __rcu_read_lock(void); 72 void __rcu_read_unlock(void); 73 74 /* 75 * Defined as a macro as it is a very low level header included from 76 * areas that don't even know about current. This gives the rcu_read_lock() 77 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 78 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 79 */ 80 #define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting) 81 82 #else /* #ifdef CONFIG_PREEMPT_RCU */ 83 84 #ifdef CONFIG_TINY_RCU 85 #define rcu_read_unlock_strict() do { } while (0) 86 #else 87 void rcu_read_unlock_strict(void); 88 #endif 89 90 static inline void __rcu_read_lock(void) 91 { 92 preempt_disable(); 93 } 94 95 static inline void __rcu_read_unlock(void) 96 { 97 preempt_enable(); 98 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 99 rcu_read_unlock_strict(); 100 } 101 102 static inline int rcu_preempt_depth(void) 103 { 104 return 0; 105 } 106 107 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 108 109 #ifdef CONFIG_RCU_LAZY 110 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func); 111 #else 112 static inline void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func) 113 { 114 call_rcu(head, func); 115 } 116 #endif 117 118 /* Internal to kernel */ 119 void rcu_init(void); 120 extern int rcu_scheduler_active; 121 void rcu_sched_clock_irq(int user); 122 123 #ifdef CONFIG_TASKS_RCU_GENERIC 124 void rcu_init_tasks_generic(void); 125 #else 126 static inline void rcu_init_tasks_generic(void) { } 127 #endif 128 129 #ifdef CONFIG_RCU_STALL_COMMON 130 void rcu_sysrq_start(void); 131 void rcu_sysrq_end(void); 132 #else /* #ifdef CONFIG_RCU_STALL_COMMON */ 133 static inline void rcu_sysrq_start(void) { } 134 static inline void rcu_sysrq_end(void) { } 135 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ 136 137 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) 138 void rcu_irq_work_resched(void); 139 #else 140 static inline void rcu_irq_work_resched(void) { } 141 #endif 142 143 #ifdef CONFIG_RCU_NOCB_CPU 144 void rcu_init_nohz(void); 145 int rcu_nocb_cpu_offload(int cpu); 146 int rcu_nocb_cpu_deoffload(int cpu); 147 void rcu_nocb_flush_deferred_wakeup(void); 148 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 149 static inline void rcu_init_nohz(void) { } 150 static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; } 151 static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; } 152 static inline void rcu_nocb_flush_deferred_wakeup(void) { } 153 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 154 155 /* 156 * Note a quasi-voluntary context switch for RCU-tasks's benefit. 157 * This is a macro rather than an inline function to avoid #include hell. 158 */ 159 #ifdef CONFIG_TASKS_RCU_GENERIC 160 161 # ifdef CONFIG_TASKS_RCU 162 # define rcu_tasks_classic_qs(t, preempt) \ 163 do { \ 164 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \ 165 WRITE_ONCE((t)->rcu_tasks_holdout, false); \ 166 } while (0) 167 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func); 168 void synchronize_rcu_tasks(void); 169 # else 170 # define rcu_tasks_classic_qs(t, preempt) do { } while (0) 171 # define call_rcu_tasks call_rcu 172 # define synchronize_rcu_tasks synchronize_rcu 173 # endif 174 175 # ifdef CONFIG_TASKS_TRACE_RCU 176 // Bits for ->trc_reader_special.b.need_qs field. 177 #define TRC_NEED_QS 0x1 // Task needs a quiescent state. 178 #define TRC_NEED_QS_CHECKED 0x2 // Task has been checked for needing quiescent state. 179 180 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new); 181 void rcu_tasks_trace_qs_blkd(struct task_struct *t); 182 183 # define rcu_tasks_trace_qs(t) \ 184 do { \ 185 int ___rttq_nesting = READ_ONCE((t)->trc_reader_nesting); \ 186 \ 187 if (likely(!READ_ONCE((t)->trc_reader_special.b.need_qs)) && \ 188 likely(!___rttq_nesting)) { \ 189 rcu_trc_cmpxchg_need_qs((t), 0, TRC_NEED_QS_CHECKED); \ 190 } else if (___rttq_nesting && ___rttq_nesting != INT_MIN && \ 191 !READ_ONCE((t)->trc_reader_special.b.blocked)) { \ 192 rcu_tasks_trace_qs_blkd(t); \ 193 } \ 194 } while (0) 195 # else 196 # define rcu_tasks_trace_qs(t) do { } while (0) 197 # endif 198 199 #define rcu_tasks_qs(t, preempt) \ 200 do { \ 201 rcu_tasks_classic_qs((t), (preempt)); \ 202 rcu_tasks_trace_qs(t); \ 203 } while (0) 204 205 # ifdef CONFIG_TASKS_RUDE_RCU 206 void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func); 207 void synchronize_rcu_tasks_rude(void); 208 # endif 209 210 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false) 211 void exit_tasks_rcu_start(void); 212 void exit_tasks_rcu_stop(void); 213 void exit_tasks_rcu_finish(void); 214 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 215 #define rcu_tasks_classic_qs(t, preempt) do { } while (0) 216 #define rcu_tasks_qs(t, preempt) do { } while (0) 217 #define rcu_note_voluntary_context_switch(t) do { } while (0) 218 #define call_rcu_tasks call_rcu 219 #define synchronize_rcu_tasks synchronize_rcu 220 static inline void exit_tasks_rcu_start(void) { } 221 static inline void exit_tasks_rcu_stop(void) { } 222 static inline void exit_tasks_rcu_finish(void) { } 223 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 224 225 /** 226 * rcu_trace_implies_rcu_gp - does an RCU Tasks Trace grace period imply an RCU grace period? 227 * 228 * As an accident of implementation, an RCU Tasks Trace grace period also 229 * acts as an RCU grace period. However, this could change at any time. 230 * Code relying on this accident must call this function to verify that 231 * this accident is still happening. 232 * 233 * You have been warned! 234 */ 235 static inline bool rcu_trace_implies_rcu_gp(void) { return true; } 236 237 /** 238 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU 239 * 240 * This macro resembles cond_resched(), except that it is defined to 241 * report potential quiescent states to RCU-tasks even if the cond_resched() 242 * machinery were to be shut off, as some advocate for PREEMPTION kernels. 243 */ 244 #define cond_resched_tasks_rcu_qs() \ 245 do { \ 246 rcu_tasks_qs(current, false); \ 247 cond_resched(); \ 248 } while (0) 249 250 /* 251 * Infrastructure to implement the synchronize_() primitives in 252 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 253 */ 254 255 #if defined(CONFIG_TREE_RCU) 256 #include <linux/rcutree.h> 257 #elif defined(CONFIG_TINY_RCU) 258 #include <linux/rcutiny.h> 259 #else 260 #error "Unknown RCU implementation specified to kernel configuration" 261 #endif 262 263 /* 264 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls 265 * are needed for dynamic initialization and destruction of rcu_head 266 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for 267 * dynamic initialization and destruction of statically allocated rcu_head 268 * structures. However, rcu_head structures allocated dynamically in the 269 * heap don't need any initialization. 270 */ 271 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 272 void init_rcu_head(struct rcu_head *head); 273 void destroy_rcu_head(struct rcu_head *head); 274 void init_rcu_head_on_stack(struct rcu_head *head); 275 void destroy_rcu_head_on_stack(struct rcu_head *head); 276 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 277 static inline void init_rcu_head(struct rcu_head *head) { } 278 static inline void destroy_rcu_head(struct rcu_head *head) { } 279 static inline void init_rcu_head_on_stack(struct rcu_head *head) { } 280 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { } 281 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 282 283 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 284 bool rcu_lockdep_current_cpu_online(void); 285 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 286 static inline bool rcu_lockdep_current_cpu_online(void) { return true; } 287 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 288 289 extern struct lockdep_map rcu_lock_map; 290 extern struct lockdep_map rcu_bh_lock_map; 291 extern struct lockdep_map rcu_sched_lock_map; 292 extern struct lockdep_map rcu_callback_map; 293 294 #ifdef CONFIG_DEBUG_LOCK_ALLOC 295 296 static inline void rcu_lock_acquire(struct lockdep_map *map) 297 { 298 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); 299 } 300 301 static inline void rcu_try_lock_acquire(struct lockdep_map *map) 302 { 303 lock_acquire(map, 0, 1, 2, 0, NULL, _THIS_IP_); 304 } 305 306 static inline void rcu_lock_release(struct lockdep_map *map) 307 { 308 lock_release(map, _THIS_IP_); 309 } 310 311 int debug_lockdep_rcu_enabled(void); 312 int rcu_read_lock_held(void); 313 int rcu_read_lock_bh_held(void); 314 int rcu_read_lock_sched_held(void); 315 int rcu_read_lock_any_held(void); 316 317 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 318 319 # define rcu_lock_acquire(a) do { } while (0) 320 # define rcu_try_lock_acquire(a) do { } while (0) 321 # define rcu_lock_release(a) do { } while (0) 322 323 static inline int rcu_read_lock_held(void) 324 { 325 return 1; 326 } 327 328 static inline int rcu_read_lock_bh_held(void) 329 { 330 return 1; 331 } 332 333 static inline int rcu_read_lock_sched_held(void) 334 { 335 return !preemptible(); 336 } 337 338 static inline int rcu_read_lock_any_held(void) 339 { 340 return !preemptible(); 341 } 342 343 static inline int debug_lockdep_rcu_enabled(void) 344 { 345 return 0; 346 } 347 348 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 349 350 #ifdef CONFIG_PROVE_RCU 351 352 /** 353 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met 354 * @c: condition to check 355 * @s: informative message 356 * 357 * This checks debug_lockdep_rcu_enabled() before checking (c) to 358 * prevent early boot splats due to lockdep not yet being initialized, 359 * and rechecks it after checking (c) to prevent false-positive splats 360 * due to races with lockdep being disabled. See commit 3066820034b5dd 361 * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail. 362 */ 363 #define RCU_LOCKDEP_WARN(c, s) \ 364 do { \ 365 static bool __section(".data.unlikely") __warned; \ 366 if (debug_lockdep_rcu_enabled() && (c) && \ 367 debug_lockdep_rcu_enabled() && !__warned) { \ 368 __warned = true; \ 369 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 370 } \ 371 } while (0) 372 373 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 374 static inline void rcu_preempt_sleep_check(void) 375 { 376 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 377 "Illegal context switch in RCU read-side critical section"); 378 } 379 #else /* #ifdef CONFIG_PROVE_RCU */ 380 static inline void rcu_preempt_sleep_check(void) { } 381 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 382 383 #define rcu_sleep_check() \ 384 do { \ 385 rcu_preempt_sleep_check(); \ 386 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ 387 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ 388 "Illegal context switch in RCU-bh read-side critical section"); \ 389 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ 390 "Illegal context switch in RCU-sched read-side critical section"); \ 391 } while (0) 392 393 #else /* #ifdef CONFIG_PROVE_RCU */ 394 395 #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c)) 396 #define rcu_sleep_check() do { } while (0) 397 398 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 399 400 /* 401 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 402 * and rcu_assign_pointer(). Some of these could be folded into their 403 * callers, but they are left separate in order to ease introduction of 404 * multiple pointers markings to match different RCU implementations 405 * (e.g., __srcu), should this make sense in the future. 406 */ 407 408 #ifdef __CHECKER__ 409 #define rcu_check_sparse(p, space) \ 410 ((void)(((typeof(*p) space *)p) == p)) 411 #else /* #ifdef __CHECKER__ */ 412 #define rcu_check_sparse(p, space) 413 #endif /* #else #ifdef __CHECKER__ */ 414 415 #define __unrcu_pointer(p, local) \ 416 ({ \ 417 typeof(*p) *local = (typeof(*p) *__force)(p); \ 418 rcu_check_sparse(p, __rcu); \ 419 ((typeof(*p) __force __kernel *)(local)); \ 420 }) 421 /** 422 * unrcu_pointer - mark a pointer as not being RCU protected 423 * @p: pointer needing to lose its __rcu property 424 * 425 * Converts @p from an __rcu pointer to a __kernel pointer. 426 * This allows an __rcu pointer to be used with xchg() and friends. 427 */ 428 #define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu)) 429 430 #define __rcu_access_pointer(p, local, space) \ 431 ({ \ 432 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \ 433 rcu_check_sparse(p, space); \ 434 ((typeof(*p) __force __kernel *)(local)); \ 435 }) 436 #define __rcu_dereference_check(p, local, c, space) \ 437 ({ \ 438 /* Dependency order vs. p above. */ \ 439 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \ 440 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ 441 rcu_check_sparse(p, space); \ 442 ((typeof(*p) __force __kernel *)(local)); \ 443 }) 444 #define __rcu_dereference_protected(p, local, c, space) \ 445 ({ \ 446 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ 447 rcu_check_sparse(p, space); \ 448 ((typeof(*p) __force __kernel *)(p)); \ 449 }) 450 #define __rcu_dereference_raw(p, local) \ 451 ({ \ 452 /* Dependency order vs. p above. */ \ 453 typeof(p) local = READ_ONCE(p); \ 454 ((typeof(*p) __force __kernel *)(local)); \ 455 }) 456 #define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu)) 457 458 /** 459 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable 460 * @v: The value to statically initialize with. 461 */ 462 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) 463 464 /** 465 * rcu_assign_pointer() - assign to RCU-protected pointer 466 * @p: pointer to assign to 467 * @v: value to assign (publish) 468 * 469 * Assigns the specified value to the specified RCU-protected 470 * pointer, ensuring that any concurrent RCU readers will see 471 * any prior initialization. 472 * 473 * Inserts memory barriers on architectures that require them 474 * (which is most of them), and also prevents the compiler from 475 * reordering the code that initializes the structure after the pointer 476 * assignment. More importantly, this call documents which pointers 477 * will be dereferenced by RCU read-side code. 478 * 479 * In some special cases, you may use RCU_INIT_POINTER() instead 480 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 481 * to the fact that it does not constrain either the CPU or the compiler. 482 * That said, using RCU_INIT_POINTER() when you should have used 483 * rcu_assign_pointer() is a very bad thing that results in 484 * impossible-to-diagnose memory corruption. So please be careful. 485 * See the RCU_INIT_POINTER() comment header for details. 486 * 487 * Note that rcu_assign_pointer() evaluates each of its arguments only 488 * once, appearances notwithstanding. One of the "extra" evaluations 489 * is in typeof() and the other visible only to sparse (__CHECKER__), 490 * neither of which actually execute the argument. As with most cpp 491 * macros, this execute-arguments-only-once property is important, so 492 * please be careful when making changes to rcu_assign_pointer() and the 493 * other macros that it invokes. 494 */ 495 #define rcu_assign_pointer(p, v) \ 496 do { \ 497 uintptr_t _r_a_p__v = (uintptr_t)(v); \ 498 rcu_check_sparse(p, __rcu); \ 499 \ 500 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \ 501 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \ 502 else \ 503 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \ 504 } while (0) 505 506 /** 507 * rcu_replace_pointer() - replace an RCU pointer, returning its old value 508 * @rcu_ptr: RCU pointer, whose old value is returned 509 * @ptr: regular pointer 510 * @c: the lockdep conditions under which the dereference will take place 511 * 512 * Perform a replacement, where @rcu_ptr is an RCU-annotated 513 * pointer and @c is the lockdep argument that is passed to the 514 * rcu_dereference_protected() call used to read that pointer. The old 515 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr. 516 */ 517 #define rcu_replace_pointer(rcu_ptr, ptr, c) \ 518 ({ \ 519 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \ 520 rcu_assign_pointer((rcu_ptr), (ptr)); \ 521 __tmp; \ 522 }) 523 524 /** 525 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 526 * @p: The pointer to read 527 * 528 * Return the value of the specified RCU-protected pointer, but omit the 529 * lockdep checks for being in an RCU read-side critical section. This is 530 * useful when the value of this pointer is accessed, but the pointer is 531 * not dereferenced, for example, when testing an RCU-protected pointer 532 * against NULL. Although rcu_access_pointer() may also be used in cases 533 * where update-side locks prevent the value of the pointer from changing, 534 * you should instead use rcu_dereference_protected() for this use case. 535 * Within an RCU read-side critical section, there is little reason to 536 * use rcu_access_pointer(). 537 * 538 * It is usually best to test the rcu_access_pointer() return value 539 * directly in order to avoid accidental dereferences being introduced 540 * by later inattentive changes. In other words, assigning the 541 * rcu_access_pointer() return value to a local variable results in an 542 * accident waiting to happen. 543 * 544 * It is also permissible to use rcu_access_pointer() when read-side 545 * access to the pointer was removed at least one grace period ago, as is 546 * the case in the context of the RCU callback that is freeing up the data, 547 * or after a synchronize_rcu() returns. This can be useful when tearing 548 * down multi-linked structures after a grace period has elapsed. However, 549 * rcu_dereference_protected() is normally preferred for this use case. 550 */ 551 #define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu) 552 553 /** 554 * rcu_dereference_check() - rcu_dereference with debug checking 555 * @p: The pointer to read, prior to dereferencing 556 * @c: The conditions under which the dereference will take place 557 * 558 * Do an rcu_dereference(), but check that the conditions under which the 559 * dereference will take place are correct. Typically the conditions 560 * indicate the various locking conditions that should be held at that 561 * point. The check should return true if the conditions are satisfied. 562 * An implicit check for being in an RCU read-side critical section 563 * (rcu_read_lock()) is included. 564 * 565 * For example: 566 * 567 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 568 * 569 * could be used to indicate to lockdep that foo->bar may only be dereferenced 570 * if either rcu_read_lock() is held, or that the lock required to replace 571 * the bar struct at foo->bar is held. 572 * 573 * Note that the list of conditions may also include indications of when a lock 574 * need not be held, for example during initialisation or destruction of the 575 * target struct: 576 * 577 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 578 * atomic_read(&foo->usage) == 0); 579 * 580 * Inserts memory barriers on architectures that require them 581 * (currently only the Alpha), prevents the compiler from refetching 582 * (and from merging fetches), and, more importantly, documents exactly 583 * which pointers are protected by RCU and checks that the pointer is 584 * annotated as __rcu. 585 */ 586 #define rcu_dereference_check(p, c) \ 587 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 588 (c) || rcu_read_lock_held(), __rcu) 589 590 /** 591 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 592 * @p: The pointer to read, prior to dereferencing 593 * @c: The conditions under which the dereference will take place 594 * 595 * This is the RCU-bh counterpart to rcu_dereference_check(). However, 596 * please note that starting in v5.0 kernels, vanilla RCU grace periods 597 * wait for local_bh_disable() regions of code in addition to regions of 598 * code demarked by rcu_read_lock() and rcu_read_unlock(). This means 599 * that synchronize_rcu(), call_rcu, and friends all take not only 600 * rcu_read_lock() but also rcu_read_lock_bh() into account. 601 */ 602 #define rcu_dereference_bh_check(p, c) \ 603 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 604 (c) || rcu_read_lock_bh_held(), __rcu) 605 606 /** 607 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 608 * @p: The pointer to read, prior to dereferencing 609 * @c: The conditions under which the dereference will take place 610 * 611 * This is the RCU-sched counterpart to rcu_dereference_check(). 612 * However, please note that starting in v5.0 kernels, vanilla RCU grace 613 * periods wait for preempt_disable() regions of code in addition to 614 * regions of code demarked by rcu_read_lock() and rcu_read_unlock(). 615 * This means that synchronize_rcu(), call_rcu, and friends all take not 616 * only rcu_read_lock() but also rcu_read_lock_sched() into account. 617 */ 618 #define rcu_dereference_sched_check(p, c) \ 619 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 620 (c) || rcu_read_lock_sched_held(), \ 621 __rcu) 622 623 /* 624 * The tracing infrastructure traces RCU (we want that), but unfortunately 625 * some of the RCU checks causes tracing to lock up the system. 626 * 627 * The no-tracing version of rcu_dereference_raw() must not call 628 * rcu_read_lock_held(). 629 */ 630 #define rcu_dereference_raw_check(p) \ 631 __rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu) 632 633 /** 634 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 635 * @p: The pointer to read, prior to dereferencing 636 * @c: The conditions under which the dereference will take place 637 * 638 * Return the value of the specified RCU-protected pointer, but omit 639 * the READ_ONCE(). This is useful in cases where update-side locks 640 * prevent the value of the pointer from changing. Please note that this 641 * primitive does *not* prevent the compiler from repeating this reference 642 * or combining it with other references, so it should not be used without 643 * protection of appropriate locks. 644 * 645 * This function is only for update-side use. Using this function 646 * when protected only by rcu_read_lock() will result in infrequent 647 * but very ugly failures. 648 */ 649 #define rcu_dereference_protected(p, c) \ 650 __rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu) 651 652 653 /** 654 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 655 * @p: The pointer to read, prior to dereferencing 656 * 657 * This is a simple wrapper around rcu_dereference_check(). 658 */ 659 #define rcu_dereference(p) rcu_dereference_check(p, 0) 660 661 /** 662 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 663 * @p: The pointer to read, prior to dereferencing 664 * 665 * Makes rcu_dereference_check() do the dirty work. 666 */ 667 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 668 669 /** 670 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 671 * @p: The pointer to read, prior to dereferencing 672 * 673 * Makes rcu_dereference_check() do the dirty work. 674 */ 675 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 676 677 /** 678 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism 679 * @p: The pointer to hand off 680 * 681 * This is simply an identity function, but it documents where a pointer 682 * is handed off from RCU to some other synchronization mechanism, for 683 * example, reference counting or locking. In C11, it would map to 684 * kill_dependency(). It could be used as follows:: 685 * 686 * rcu_read_lock(); 687 * p = rcu_dereference(gp); 688 * long_lived = is_long_lived(p); 689 * if (long_lived) { 690 * if (!atomic_inc_not_zero(p->refcnt)) 691 * long_lived = false; 692 * else 693 * p = rcu_pointer_handoff(p); 694 * } 695 * rcu_read_unlock(); 696 */ 697 #define rcu_pointer_handoff(p) (p) 698 699 /** 700 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 701 * 702 * When synchronize_rcu() is invoked on one CPU while other CPUs 703 * are within RCU read-side critical sections, then the 704 * synchronize_rcu() is guaranteed to block until after all the other 705 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 706 * on one CPU while other CPUs are within RCU read-side critical 707 * sections, invocation of the corresponding RCU callback is deferred 708 * until after the all the other CPUs exit their critical sections. 709 * 710 * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also 711 * wait for regions of code with preemption disabled, including regions of 712 * code with interrupts or softirqs disabled. In pre-v5.0 kernels, which 713 * define synchronize_sched(), only code enclosed within rcu_read_lock() 714 * and rcu_read_unlock() are guaranteed to be waited for. 715 * 716 * Note, however, that RCU callbacks are permitted to run concurrently 717 * with new RCU read-side critical sections. One way that this can happen 718 * is via the following sequence of events: (1) CPU 0 enters an RCU 719 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 720 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 721 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 722 * callback is invoked. This is legal, because the RCU read-side critical 723 * section that was running concurrently with the call_rcu() (and which 724 * therefore might be referencing something that the corresponding RCU 725 * callback would free up) has completed before the corresponding 726 * RCU callback is invoked. 727 * 728 * RCU read-side critical sections may be nested. Any deferred actions 729 * will be deferred until the outermost RCU read-side critical section 730 * completes. 731 * 732 * You can avoid reading and understanding the next paragraph by 733 * following this rule: don't put anything in an rcu_read_lock() RCU 734 * read-side critical section that would block in a !PREEMPTION kernel. 735 * But if you want the full story, read on! 736 * 737 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU), 738 * it is illegal to block while in an RCU read-side critical section. 739 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION 740 * kernel builds, RCU read-side critical sections may be preempted, 741 * but explicit blocking is illegal. Finally, in preemptible RCU 742 * implementations in real-time (with -rt patchset) kernel builds, RCU 743 * read-side critical sections may be preempted and they may also block, but 744 * only when acquiring spinlocks that are subject to priority inheritance. 745 */ 746 static __always_inline void rcu_read_lock(void) 747 { 748 __rcu_read_lock(); 749 __acquire(RCU); 750 rcu_lock_acquire(&rcu_lock_map); 751 RCU_LOCKDEP_WARN(!rcu_is_watching(), 752 "rcu_read_lock() used illegally while idle"); 753 } 754 755 /* 756 * So where is rcu_write_lock()? It does not exist, as there is no 757 * way for writers to lock out RCU readers. This is a feature, not 758 * a bug -- this property is what provides RCU's performance benefits. 759 * Of course, writers must coordinate with each other. The normal 760 * spinlock primitives work well for this, but any other technique may be 761 * used as well. RCU does not care how the writers keep out of each 762 * others' way, as long as they do so. 763 */ 764 765 /** 766 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 767 * 768 * In almost all situations, rcu_read_unlock() is immune from deadlock. 769 * In recent kernels that have consolidated synchronize_sched() and 770 * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity 771 * also extends to the scheduler's runqueue and priority-inheritance 772 * spinlocks, courtesy of the quiescent-state deferral that is carried 773 * out when rcu_read_unlock() is invoked with interrupts disabled. 774 * 775 * See rcu_read_lock() for more information. 776 */ 777 static inline void rcu_read_unlock(void) 778 { 779 RCU_LOCKDEP_WARN(!rcu_is_watching(), 780 "rcu_read_unlock() used illegally while idle"); 781 __release(RCU); 782 __rcu_read_unlock(); 783 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ 784 } 785 786 /** 787 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 788 * 789 * This is equivalent to rcu_read_lock(), but also disables softirqs. 790 * Note that anything else that disables softirqs can also serve as an RCU 791 * read-side critical section. However, please note that this equivalence 792 * applies only to v5.0 and later. Before v5.0, rcu_read_lock() and 793 * rcu_read_lock_bh() were unrelated. 794 * 795 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 796 * must occur in the same context, for example, it is illegal to invoke 797 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 798 * was invoked from some other task. 799 */ 800 static inline void rcu_read_lock_bh(void) 801 { 802 local_bh_disable(); 803 __acquire(RCU_BH); 804 rcu_lock_acquire(&rcu_bh_lock_map); 805 RCU_LOCKDEP_WARN(!rcu_is_watching(), 806 "rcu_read_lock_bh() used illegally while idle"); 807 } 808 809 /** 810 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section 811 * 812 * See rcu_read_lock_bh() for more information. 813 */ 814 static inline void rcu_read_unlock_bh(void) 815 { 816 RCU_LOCKDEP_WARN(!rcu_is_watching(), 817 "rcu_read_unlock_bh() used illegally while idle"); 818 rcu_lock_release(&rcu_bh_lock_map); 819 __release(RCU_BH); 820 local_bh_enable(); 821 } 822 823 /** 824 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 825 * 826 * This is equivalent to rcu_read_lock(), but also disables preemption. 827 * Read-side critical sections can also be introduced by anything else that 828 * disables preemption, including local_irq_disable() and friends. However, 829 * please note that the equivalence to rcu_read_lock() applies only to 830 * v5.0 and later. Before v5.0, rcu_read_lock() and rcu_read_lock_sched() 831 * were unrelated. 832 * 833 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 834 * must occur in the same context, for example, it is illegal to invoke 835 * rcu_read_unlock_sched() from process context if the matching 836 * rcu_read_lock_sched() was invoked from an NMI handler. 837 */ 838 static inline void rcu_read_lock_sched(void) 839 { 840 preempt_disable(); 841 __acquire(RCU_SCHED); 842 rcu_lock_acquire(&rcu_sched_lock_map); 843 RCU_LOCKDEP_WARN(!rcu_is_watching(), 844 "rcu_read_lock_sched() used illegally while idle"); 845 } 846 847 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 848 static inline notrace void rcu_read_lock_sched_notrace(void) 849 { 850 preempt_disable_notrace(); 851 __acquire(RCU_SCHED); 852 } 853 854 /** 855 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section 856 * 857 * See rcu_read_lock_sched() for more information. 858 */ 859 static inline void rcu_read_unlock_sched(void) 860 { 861 RCU_LOCKDEP_WARN(!rcu_is_watching(), 862 "rcu_read_unlock_sched() used illegally while idle"); 863 rcu_lock_release(&rcu_sched_lock_map); 864 __release(RCU_SCHED); 865 preempt_enable(); 866 } 867 868 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 869 static inline notrace void rcu_read_unlock_sched_notrace(void) 870 { 871 __release(RCU_SCHED); 872 preempt_enable_notrace(); 873 } 874 875 /** 876 * RCU_INIT_POINTER() - initialize an RCU protected pointer 877 * @p: The pointer to be initialized. 878 * @v: The value to initialized the pointer to. 879 * 880 * Initialize an RCU-protected pointer in special cases where readers 881 * do not need ordering constraints on the CPU or the compiler. These 882 * special cases are: 883 * 884 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or* 885 * 2. The caller has taken whatever steps are required to prevent 886 * RCU readers from concurrently accessing this pointer *or* 887 * 3. The referenced data structure has already been exposed to 888 * readers either at compile time or via rcu_assign_pointer() *and* 889 * 890 * a. You have not made *any* reader-visible changes to 891 * this structure since then *or* 892 * b. It is OK for readers accessing this structure from its 893 * new location to see the old state of the structure. (For 894 * example, the changes were to statistical counters or to 895 * other state where exact synchronization is not required.) 896 * 897 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 898 * result in impossible-to-diagnose memory corruption. As in the structures 899 * will look OK in crash dumps, but any concurrent RCU readers might 900 * see pre-initialized values of the referenced data structure. So 901 * please be very careful how you use RCU_INIT_POINTER()!!! 902 * 903 * If you are creating an RCU-protected linked structure that is accessed 904 * by a single external-to-structure RCU-protected pointer, then you may 905 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 906 * pointers, but you must use rcu_assign_pointer() to initialize the 907 * external-to-structure pointer *after* you have completely initialized 908 * the reader-accessible portions of the linked structure. 909 * 910 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no 911 * ordering guarantees for either the CPU or the compiler. 912 */ 913 #define RCU_INIT_POINTER(p, v) \ 914 do { \ 915 rcu_check_sparse(p, __rcu); \ 916 WRITE_ONCE(p, RCU_INITIALIZER(v)); \ 917 } while (0) 918 919 /** 920 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 921 * @p: The pointer to be initialized. 922 * @v: The value to initialized the pointer to. 923 * 924 * GCC-style initialization for an RCU-protected pointer in a structure field. 925 */ 926 #define RCU_POINTER_INITIALIZER(p, v) \ 927 .p = RCU_INITIALIZER(v) 928 929 /* 930 * Does the specified offset indicate that the corresponding rcu_head 931 * structure can be handled by kvfree_rcu()? 932 */ 933 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096) 934 935 /** 936 * kfree_rcu() - kfree an object after a grace period. 937 * @ptr: pointer to kfree for double-argument invocations. 938 * @rhf: the name of the struct rcu_head within the type of @ptr. 939 * 940 * Many rcu callbacks functions just call kfree() on the base structure. 941 * These functions are trivial, but their size adds up, and furthermore 942 * when they are used in a kernel module, that module must invoke the 943 * high-latency rcu_barrier() function at module-unload time. 944 * 945 * The kfree_rcu() function handles this issue. Rather than encoding a 946 * function address in the embedded rcu_head structure, kfree_rcu() instead 947 * encodes the offset of the rcu_head structure within the base structure. 948 * Because the functions are not allowed in the low-order 4096 bytes of 949 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 950 * If the offset is larger than 4095 bytes, a compile-time error will 951 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can 952 * either fall back to use of call_rcu() or rearrange the structure to 953 * position the rcu_head structure into the first 4096 bytes. 954 * 955 * The object to be freed can be allocated either by kmalloc() or 956 * kmem_cache_alloc(). 957 * 958 * Note that the allowable offset might decrease in the future. 959 * 960 * The BUILD_BUG_ON check must not involve any function calls, hence the 961 * checks are done in macros here. 962 */ 963 #define kfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf) 964 #define kvfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf) 965 966 /** 967 * kfree_rcu_mightsleep() - kfree an object after a grace period. 968 * @ptr: pointer to kfree for single-argument invocations. 969 * 970 * When it comes to head-less variant, only one argument 971 * is passed and that is just a pointer which has to be 972 * freed after a grace period. Therefore the semantic is 973 * 974 * kfree_rcu_mightsleep(ptr); 975 * 976 * where @ptr is the pointer to be freed by kvfree(). 977 * 978 * Please note, head-less way of freeing is permitted to 979 * use from a context that has to follow might_sleep() 980 * annotation. Otherwise, please switch and embed the 981 * rcu_head structure within the type of @ptr. 982 */ 983 #define kfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr) 984 #define kvfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr) 985 986 #define kvfree_rcu_arg_2(ptr, rhf) \ 987 do { \ 988 typeof (ptr) ___p = (ptr); \ 989 \ 990 if (___p) { \ 991 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf))); \ 992 kvfree_call_rcu(&((___p)->rhf), (void *) (___p)); \ 993 } \ 994 } while (0) 995 996 #define kvfree_rcu_arg_1(ptr) \ 997 do { \ 998 typeof(ptr) ___p = (ptr); \ 999 \ 1000 if (___p) \ 1001 kvfree_call_rcu(NULL, (void *) (___p)); \ 1002 } while (0) 1003 1004 /* 1005 * Place this after a lock-acquisition primitive to guarantee that 1006 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies 1007 * if the UNLOCK and LOCK are executed by the same CPU or if the 1008 * UNLOCK and LOCK operate on the same lock variable. 1009 */ 1010 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE 1011 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */ 1012 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 1013 #define smp_mb__after_unlock_lock() do { } while (0) 1014 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 1015 1016 1017 /* Has the specified rcu_head structure been handed to call_rcu()? */ 1018 1019 /** 1020 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu() 1021 * @rhp: The rcu_head structure to initialize. 1022 * 1023 * If you intend to invoke rcu_head_after_call_rcu() to test whether a 1024 * given rcu_head structure has already been passed to call_rcu(), then 1025 * you must also invoke this rcu_head_init() function on it just after 1026 * allocating that structure. Calls to this function must not race with 1027 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation. 1028 */ 1029 static inline void rcu_head_init(struct rcu_head *rhp) 1030 { 1031 rhp->func = (rcu_callback_t)~0L; 1032 } 1033 1034 /** 1035 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()? 1036 * @rhp: The rcu_head structure to test. 1037 * @f: The function passed to call_rcu() along with @rhp. 1038 * 1039 * Returns @true if the @rhp has been passed to call_rcu() with @func, 1040 * and @false otherwise. Emits a warning in any other case, including 1041 * the case where @rhp has already been invoked after a grace period. 1042 * Calls to this function must not race with callback invocation. One way 1043 * to avoid such races is to enclose the call to rcu_head_after_call_rcu() 1044 * in an RCU read-side critical section that includes a read-side fetch 1045 * of the pointer to the structure containing @rhp. 1046 */ 1047 static inline bool 1048 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f) 1049 { 1050 rcu_callback_t func = READ_ONCE(rhp->func); 1051 1052 if (func == f) 1053 return true; 1054 WARN_ON_ONCE(func != (rcu_callback_t)~0L); 1055 return false; 1056 } 1057 1058 /* kernel/ksysfs.c definitions */ 1059 extern int rcu_expedited; 1060 extern int rcu_normal; 1061 1062 DEFINE_LOCK_GUARD_0(rcu, rcu_read_lock(), rcu_read_unlock()) 1063 1064 #endif /* __LINUX_RCUPDATE_H */ 1065