xref: /linux-6.15/include/linux/rculist.h (revision 4dfd5cd8)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_RCULIST_H
3 #define _LINUX_RCULIST_H
4 
5 #ifdef __KERNEL__
6 
7 /*
8  * RCU-protected list version
9  */
10 #include <linux/list.h>
11 #include <linux/rcupdate.h>
12 
13 /*
14  * Why is there no list_empty_rcu()?  Because list_empty() serves this
15  * purpose.  The list_empty() function fetches the RCU-protected pointer
16  * and compares it to the address of the list head, but neither dereferences
17  * this pointer itself nor provides this pointer to the caller.  Therefore,
18  * it is not necessary to use rcu_dereference(), so that list_empty() can
19  * be used anywhere you would want to use a list_empty_rcu().
20  */
21 
22 /*
23  * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers
24  * @list: list to be initialized
25  *
26  * You should instead use INIT_LIST_HEAD() for normal initialization and
27  * cleanup tasks, when readers have no access to the list being initialized.
28  * However, if the list being initialized is visible to readers, you
29  * need to keep the compiler from being too mischievous.
30  */
31 static inline void INIT_LIST_HEAD_RCU(struct list_head *list)
32 {
33 	WRITE_ONCE(list->next, list);
34 	WRITE_ONCE(list->prev, list);
35 }
36 
37 /*
38  * return the ->next pointer of a list_head in an rcu safe
39  * way, we must not access it directly
40  */
41 #define list_next_rcu(list)	(*((struct list_head __rcu **)(&(list)->next)))
42 
43 /**
44  * list_tail_rcu - returns the prev pointer of the head of the list
45  * @head: the head of the list
46  *
47  * Note: This should only be used with the list header, and even then
48  * only if list_del() and similar primitives are not also used on the
49  * list header.
50  */
51 #define list_tail_rcu(head)	(*((struct list_head __rcu **)(&(head)->prev)))
52 
53 /*
54  * Check during list traversal that we are within an RCU reader
55  */
56 
57 #define check_arg_count_one(dummy)
58 
59 #ifdef CONFIG_PROVE_RCU_LIST
60 #define __list_check_rcu(dummy, cond, extra...)				\
61 	({								\
62 	check_arg_count_one(extra);					\
63 	RCU_LOCKDEP_WARN(!(cond) && !rcu_read_lock_any_held(),		\
64 			 "RCU-list traversed in non-reader section!");	\
65 	})
66 #else
67 #define __list_check_rcu(dummy, cond, extra...)				\
68 	({ check_arg_count_one(extra); })
69 #endif
70 
71 /*
72  * Insert a new entry between two known consecutive entries.
73  *
74  * This is only for internal list manipulation where we know
75  * the prev/next entries already!
76  */
77 static inline void __list_add_rcu(struct list_head *new,
78 		struct list_head *prev, struct list_head *next)
79 {
80 	if (!__list_add_valid(new, prev, next))
81 		return;
82 
83 	new->next = next;
84 	new->prev = prev;
85 	rcu_assign_pointer(list_next_rcu(prev), new);
86 	next->prev = new;
87 }
88 
89 /**
90  * list_add_rcu - add a new entry to rcu-protected list
91  * @new: new entry to be added
92  * @head: list head to add it after
93  *
94  * Insert a new entry after the specified head.
95  * This is good for implementing stacks.
96  *
97  * The caller must take whatever precautions are necessary
98  * (such as holding appropriate locks) to avoid racing
99  * with another list-mutation primitive, such as list_add_rcu()
100  * or list_del_rcu(), running on this same list.
101  * However, it is perfectly legal to run concurrently with
102  * the _rcu list-traversal primitives, such as
103  * list_for_each_entry_rcu().
104  */
105 static inline void list_add_rcu(struct list_head *new, struct list_head *head)
106 {
107 	__list_add_rcu(new, head, head->next);
108 }
109 
110 /**
111  * list_add_tail_rcu - add a new entry to rcu-protected list
112  * @new: new entry to be added
113  * @head: list head to add it before
114  *
115  * Insert a new entry before the specified head.
116  * This is useful for implementing queues.
117  *
118  * The caller must take whatever precautions are necessary
119  * (such as holding appropriate locks) to avoid racing
120  * with another list-mutation primitive, such as list_add_tail_rcu()
121  * or list_del_rcu(), running on this same list.
122  * However, it is perfectly legal to run concurrently with
123  * the _rcu list-traversal primitives, such as
124  * list_for_each_entry_rcu().
125  */
126 static inline void list_add_tail_rcu(struct list_head *new,
127 					struct list_head *head)
128 {
129 	__list_add_rcu(new, head->prev, head);
130 }
131 
132 /**
133  * list_del_rcu - deletes entry from list without re-initialization
134  * @entry: the element to delete from the list.
135  *
136  * Note: list_empty() on entry does not return true after this,
137  * the entry is in an undefined state. It is useful for RCU based
138  * lockfree traversal.
139  *
140  * In particular, it means that we can not poison the forward
141  * pointers that may still be used for walking the list.
142  *
143  * The caller must take whatever precautions are necessary
144  * (such as holding appropriate locks) to avoid racing
145  * with another list-mutation primitive, such as list_del_rcu()
146  * or list_add_rcu(), running on this same list.
147  * However, it is perfectly legal to run concurrently with
148  * the _rcu list-traversal primitives, such as
149  * list_for_each_entry_rcu().
150  *
151  * Note that the caller is not permitted to immediately free
152  * the newly deleted entry.  Instead, either synchronize_rcu()
153  * or call_rcu() must be used to defer freeing until an RCU
154  * grace period has elapsed.
155  */
156 static inline void list_del_rcu(struct list_head *entry)
157 {
158 	__list_del_entry(entry);
159 	entry->prev = LIST_POISON2;
160 }
161 
162 /**
163  * hlist_del_init_rcu - deletes entry from hash list with re-initialization
164  * @n: the element to delete from the hash list.
165  *
166  * Note: list_unhashed() on the node return true after this. It is
167  * useful for RCU based read lockfree traversal if the writer side
168  * must know if the list entry is still hashed or already unhashed.
169  *
170  * In particular, it means that we can not poison the forward pointers
171  * that may still be used for walking the hash list and we can only
172  * zero the pprev pointer so list_unhashed() will return true after
173  * this.
174  *
175  * The caller must take whatever precautions are necessary (such as
176  * holding appropriate locks) to avoid racing with another
177  * list-mutation primitive, such as hlist_add_head_rcu() or
178  * hlist_del_rcu(), running on this same list.  However, it is
179  * perfectly legal to run concurrently with the _rcu list-traversal
180  * primitives, such as hlist_for_each_entry_rcu().
181  */
182 static inline void hlist_del_init_rcu(struct hlist_node *n)
183 {
184 	if (!hlist_unhashed(n)) {
185 		__hlist_del(n);
186 		WRITE_ONCE(n->pprev, NULL);
187 	}
188 }
189 
190 /**
191  * list_replace_rcu - replace old entry by new one
192  * @old : the element to be replaced
193  * @new : the new element to insert
194  *
195  * The @old entry will be replaced with the @new entry atomically.
196  * Note: @old should not be empty.
197  */
198 static inline void list_replace_rcu(struct list_head *old,
199 				struct list_head *new)
200 {
201 	new->next = old->next;
202 	new->prev = old->prev;
203 	rcu_assign_pointer(list_next_rcu(new->prev), new);
204 	new->next->prev = new;
205 	old->prev = LIST_POISON2;
206 }
207 
208 /**
209  * __list_splice_init_rcu - join an RCU-protected list into an existing list.
210  * @list:	the RCU-protected list to splice
211  * @prev:	points to the last element of the existing list
212  * @next:	points to the first element of the existing list
213  * @sync:	synchronize_rcu, synchronize_rcu_expedited, ...
214  *
215  * The list pointed to by @prev and @next can be RCU-read traversed
216  * concurrently with this function.
217  *
218  * Note that this function blocks.
219  *
220  * Important note: the caller must take whatever action is necessary to prevent
221  * any other updates to the existing list.  In principle, it is possible to
222  * modify the list as soon as sync() begins execution. If this sort of thing
223  * becomes necessary, an alternative version based on call_rcu() could be
224  * created.  But only if -really- needed -- there is no shortage of RCU API
225  * members.
226  */
227 static inline void __list_splice_init_rcu(struct list_head *list,
228 					  struct list_head *prev,
229 					  struct list_head *next,
230 					  void (*sync)(void))
231 {
232 	struct list_head *first = list->next;
233 	struct list_head *last = list->prev;
234 
235 	/*
236 	 * "first" and "last" tracking list, so initialize it.  RCU readers
237 	 * have access to this list, so we must use INIT_LIST_HEAD_RCU()
238 	 * instead of INIT_LIST_HEAD().
239 	 */
240 
241 	INIT_LIST_HEAD_RCU(list);
242 
243 	/*
244 	 * At this point, the list body still points to the source list.
245 	 * Wait for any readers to finish using the list before splicing
246 	 * the list body into the new list.  Any new readers will see
247 	 * an empty list.
248 	 */
249 
250 	sync();
251 
252 	/*
253 	 * Readers are finished with the source list, so perform splice.
254 	 * The order is important if the new list is global and accessible
255 	 * to concurrent RCU readers.  Note that RCU readers are not
256 	 * permitted to traverse the prev pointers without excluding
257 	 * this function.
258 	 */
259 
260 	last->next = next;
261 	rcu_assign_pointer(list_next_rcu(prev), first);
262 	first->prev = prev;
263 	next->prev = last;
264 }
265 
266 /**
267  * list_splice_init_rcu - splice an RCU-protected list into an existing list,
268  *                        designed for stacks.
269  * @list:	the RCU-protected list to splice
270  * @head:	the place in the existing list to splice the first list into
271  * @sync:	synchronize_rcu, synchronize_rcu_expedited, ...
272  */
273 static inline void list_splice_init_rcu(struct list_head *list,
274 					struct list_head *head,
275 					void (*sync)(void))
276 {
277 	if (!list_empty(list))
278 		__list_splice_init_rcu(list, head, head->next, sync);
279 }
280 
281 /**
282  * list_splice_tail_init_rcu - splice an RCU-protected list into an existing
283  *                             list, designed for queues.
284  * @list:	the RCU-protected list to splice
285  * @head:	the place in the existing list to splice the first list into
286  * @sync:	synchronize_rcu, synchronize_rcu_expedited, ...
287  */
288 static inline void list_splice_tail_init_rcu(struct list_head *list,
289 					     struct list_head *head,
290 					     void (*sync)(void))
291 {
292 	if (!list_empty(list))
293 		__list_splice_init_rcu(list, head->prev, head, sync);
294 }
295 
296 /**
297  * list_entry_rcu - get the struct for this entry
298  * @ptr:        the &struct list_head pointer.
299  * @type:       the type of the struct this is embedded in.
300  * @member:     the name of the list_head within the struct.
301  *
302  * This primitive may safely run concurrently with the _rcu list-mutation
303  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
304  */
305 #define list_entry_rcu(ptr, type, member) \
306 	container_of(READ_ONCE(ptr), type, member)
307 
308 /*
309  * Where are list_empty_rcu() and list_first_entry_rcu()?
310  *
311  * Implementing those functions following their counterparts list_empty() and
312  * list_first_entry() is not advisable because they lead to subtle race
313  * conditions as the following snippet shows:
314  *
315  * if (!list_empty_rcu(mylist)) {
316  *	struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member);
317  *	do_something(bar);
318  * }
319  *
320  * The list may not be empty when list_empty_rcu checks it, but it may be when
321  * list_first_entry_rcu rereads the ->next pointer.
322  *
323  * Rereading the ->next pointer is not a problem for list_empty() and
324  * list_first_entry() because they would be protected by a lock that blocks
325  * writers.
326  *
327  * See list_first_or_null_rcu for an alternative.
328  */
329 
330 /**
331  * list_first_or_null_rcu - get the first element from a list
332  * @ptr:        the list head to take the element from.
333  * @type:       the type of the struct this is embedded in.
334  * @member:     the name of the list_head within the struct.
335  *
336  * Note that if the list is empty, it returns NULL.
337  *
338  * This primitive may safely run concurrently with the _rcu list-mutation
339  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
340  */
341 #define list_first_or_null_rcu(ptr, type, member) \
342 ({ \
343 	struct list_head *__ptr = (ptr); \
344 	struct list_head *__next = READ_ONCE(__ptr->next); \
345 	likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \
346 })
347 
348 /**
349  * list_next_or_null_rcu - get the first element from a list
350  * @head:	the head for the list.
351  * @ptr:        the list head to take the next element from.
352  * @type:       the type of the struct this is embedded in.
353  * @member:     the name of the list_head within the struct.
354  *
355  * Note that if the ptr is at the end of the list, NULL is returned.
356  *
357  * This primitive may safely run concurrently with the _rcu list-mutation
358  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
359  */
360 #define list_next_or_null_rcu(head, ptr, type, member) \
361 ({ \
362 	struct list_head *__head = (head); \
363 	struct list_head *__ptr = (ptr); \
364 	struct list_head *__next = READ_ONCE(__ptr->next); \
365 	likely(__next != __head) ? list_entry_rcu(__next, type, \
366 						  member) : NULL; \
367 })
368 
369 /**
370  * list_for_each_entry_rcu	-	iterate over rcu list of given type
371  * @pos:	the type * to use as a loop cursor.
372  * @head:	the head for your list.
373  * @member:	the name of the list_head within the struct.
374  * @cond...:	optional lockdep expression if called from non-RCU protection.
375  *
376  * This list-traversal primitive may safely run concurrently with
377  * the _rcu list-mutation primitives such as list_add_rcu()
378  * as long as the traversal is guarded by rcu_read_lock().
379  */
380 #define list_for_each_entry_rcu(pos, head, member, cond...)		\
381 	for (__list_check_rcu(dummy, ## cond, 0),			\
382 	     pos = list_entry_rcu((head)->next, typeof(*pos), member);	\
383 		&pos->member != (head);					\
384 		pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
385 
386 /**
387  * list_entry_lockless - get the struct for this entry
388  * @ptr:        the &struct list_head pointer.
389  * @type:       the type of the struct this is embedded in.
390  * @member:     the name of the list_head within the struct.
391  *
392  * This primitive may safely run concurrently with the _rcu
393  * list-mutation primitives such as list_add_rcu(), but requires some
394  * implicit RCU read-side guarding.  One example is running within a special
395  * exception-time environment where preemption is disabled and where lockdep
396  * cannot be invoked.  Another example is when items are added to the list,
397  * but never deleted.
398  */
399 #define list_entry_lockless(ptr, type, member) \
400 	container_of((typeof(ptr))READ_ONCE(ptr), type, member)
401 
402 /**
403  * list_for_each_entry_lockless - iterate over rcu list of given type
404  * @pos:	the type * to use as a loop cursor.
405  * @head:	the head for your list.
406  * @member:	the name of the list_struct within the struct.
407  *
408  * This primitive may safely run concurrently with the _rcu
409  * list-mutation primitives such as list_add_rcu(), but requires some
410  * implicit RCU read-side guarding.  One example is running within a special
411  * exception-time environment where preemption is disabled and where lockdep
412  * cannot be invoked.  Another example is when items are added to the list,
413  * but never deleted.
414  */
415 #define list_for_each_entry_lockless(pos, head, member) \
416 	for (pos = list_entry_lockless((head)->next, typeof(*pos), member); \
417 	     &pos->member != (head); \
418 	     pos = list_entry_lockless(pos->member.next, typeof(*pos), member))
419 
420 /**
421  * list_for_each_entry_continue_rcu - continue iteration over list of given type
422  * @pos:	the type * to use as a loop cursor.
423  * @head:	the head for your list.
424  * @member:	the name of the list_head within the struct.
425  *
426  * Continue to iterate over list of given type, continuing after
427  * the current position which must have been in the list when the RCU read
428  * lock was taken.
429  * This would typically require either that you obtained the node from a
430  * previous walk of the list in the same RCU read-side critical section, or
431  * that you held some sort of non-RCU reference (such as a reference count)
432  * to keep the node alive *and* in the list.
433  *
434  * This iterator is similar to list_for_each_entry_from_rcu() except
435  * this starts after the given position and that one starts at the given
436  * position.
437  */
438 #define list_for_each_entry_continue_rcu(pos, head, member) 		\
439 	for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \
440 	     &pos->member != (head);	\
441 	     pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
442 
443 /**
444  * list_for_each_entry_from_rcu - iterate over a list from current point
445  * @pos:	the type * to use as a loop cursor.
446  * @head:	the head for your list.
447  * @member:	the name of the list_node within the struct.
448  *
449  * Iterate over the tail of a list starting from a given position,
450  * which must have been in the list when the RCU read lock was taken.
451  * This would typically require either that you obtained the node from a
452  * previous walk of the list in the same RCU read-side critical section, or
453  * that you held some sort of non-RCU reference (such as a reference count)
454  * to keep the node alive *and* in the list.
455  *
456  * This iterator is similar to list_for_each_entry_continue_rcu() except
457  * this starts from the given position and that one starts from the position
458  * after the given position.
459  */
460 #define list_for_each_entry_from_rcu(pos, head, member)			\
461 	for (; &(pos)->member != (head);					\
462 		pos = list_entry_rcu(pos->member.next, typeof(*(pos)), member))
463 
464 /**
465  * hlist_del_rcu - deletes entry from hash list without re-initialization
466  * @n: the element to delete from the hash list.
467  *
468  * Note: list_unhashed() on entry does not return true after this,
469  * the entry is in an undefined state. It is useful for RCU based
470  * lockfree traversal.
471  *
472  * In particular, it means that we can not poison the forward
473  * pointers that may still be used for walking the hash list.
474  *
475  * The caller must take whatever precautions are necessary
476  * (such as holding appropriate locks) to avoid racing
477  * with another list-mutation primitive, such as hlist_add_head_rcu()
478  * or hlist_del_rcu(), running on this same list.
479  * However, it is perfectly legal to run concurrently with
480  * the _rcu list-traversal primitives, such as
481  * hlist_for_each_entry().
482  */
483 static inline void hlist_del_rcu(struct hlist_node *n)
484 {
485 	__hlist_del(n);
486 	WRITE_ONCE(n->pprev, LIST_POISON2);
487 }
488 
489 /**
490  * hlist_replace_rcu - replace old entry by new one
491  * @old : the element to be replaced
492  * @new : the new element to insert
493  *
494  * The @old entry will be replaced with the @new entry atomically.
495  */
496 static inline void hlist_replace_rcu(struct hlist_node *old,
497 					struct hlist_node *new)
498 {
499 	struct hlist_node *next = old->next;
500 
501 	new->next = next;
502 	WRITE_ONCE(new->pprev, old->pprev);
503 	rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new);
504 	if (next)
505 		WRITE_ONCE(new->next->pprev, &new->next);
506 	WRITE_ONCE(old->pprev, LIST_POISON2);
507 }
508 
509 /*
510  * return the first or the next element in an RCU protected hlist
511  */
512 #define hlist_first_rcu(head)	(*((struct hlist_node __rcu **)(&(head)->first)))
513 #define hlist_next_rcu(node)	(*((struct hlist_node __rcu **)(&(node)->next)))
514 #define hlist_pprev_rcu(node)	(*((struct hlist_node __rcu **)((node)->pprev)))
515 
516 /**
517  * hlist_add_head_rcu
518  * @n: the element to add to the hash list.
519  * @h: the list to add to.
520  *
521  * Description:
522  * Adds the specified element to the specified hlist,
523  * while permitting racing traversals.
524  *
525  * The caller must take whatever precautions are necessary
526  * (such as holding appropriate locks) to avoid racing
527  * with another list-mutation primitive, such as hlist_add_head_rcu()
528  * or hlist_del_rcu(), running on this same list.
529  * However, it is perfectly legal to run concurrently with
530  * the _rcu list-traversal primitives, such as
531  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
532  * problems on Alpha CPUs.  Regardless of the type of CPU, the
533  * list-traversal primitive must be guarded by rcu_read_lock().
534  */
535 static inline void hlist_add_head_rcu(struct hlist_node *n,
536 					struct hlist_head *h)
537 {
538 	struct hlist_node *first = h->first;
539 
540 	n->next = first;
541 	WRITE_ONCE(n->pprev, &h->first);
542 	rcu_assign_pointer(hlist_first_rcu(h), n);
543 	if (first)
544 		WRITE_ONCE(first->pprev, &n->next);
545 }
546 
547 /**
548  * hlist_add_tail_rcu
549  * @n: the element to add to the hash list.
550  * @h: the list to add to.
551  *
552  * Description:
553  * Adds the specified element to the specified hlist,
554  * while permitting racing traversals.
555  *
556  * The caller must take whatever precautions are necessary
557  * (such as holding appropriate locks) to avoid racing
558  * with another list-mutation primitive, such as hlist_add_head_rcu()
559  * or hlist_del_rcu(), running on this same list.
560  * However, it is perfectly legal to run concurrently with
561  * the _rcu list-traversal primitives, such as
562  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
563  * problems on Alpha CPUs.  Regardless of the type of CPU, the
564  * list-traversal primitive must be guarded by rcu_read_lock().
565  */
566 static inline void hlist_add_tail_rcu(struct hlist_node *n,
567 				      struct hlist_head *h)
568 {
569 	struct hlist_node *i, *last = NULL;
570 
571 	/* Note: write side code, so rcu accessors are not needed. */
572 	for (i = h->first; i; i = i->next)
573 		last = i;
574 
575 	if (last) {
576 		n->next = last->next;
577 		WRITE_ONCE(n->pprev, &last->next);
578 		rcu_assign_pointer(hlist_next_rcu(last), n);
579 	} else {
580 		hlist_add_head_rcu(n, h);
581 	}
582 }
583 
584 /**
585  * hlist_add_before_rcu
586  * @n: the new element to add to the hash list.
587  * @next: the existing element to add the new element before.
588  *
589  * Description:
590  * Adds the specified element to the specified hlist
591  * before the specified node while permitting racing traversals.
592  *
593  * The caller must take whatever precautions are necessary
594  * (such as holding appropriate locks) to avoid racing
595  * with another list-mutation primitive, such as hlist_add_head_rcu()
596  * or hlist_del_rcu(), running on this same list.
597  * However, it is perfectly legal to run concurrently with
598  * the _rcu list-traversal primitives, such as
599  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
600  * problems on Alpha CPUs.
601  */
602 static inline void hlist_add_before_rcu(struct hlist_node *n,
603 					struct hlist_node *next)
604 {
605 	WRITE_ONCE(n->pprev, next->pprev);
606 	n->next = next;
607 	rcu_assign_pointer(hlist_pprev_rcu(n), n);
608 	WRITE_ONCE(next->pprev, &n->next);
609 }
610 
611 /**
612  * hlist_add_behind_rcu
613  * @n: the new element to add to the hash list.
614  * @prev: the existing element to add the new element after.
615  *
616  * Description:
617  * Adds the specified element to the specified hlist
618  * after the specified node while permitting racing traversals.
619  *
620  * The caller must take whatever precautions are necessary
621  * (such as holding appropriate locks) to avoid racing
622  * with another list-mutation primitive, such as hlist_add_head_rcu()
623  * or hlist_del_rcu(), running on this same list.
624  * However, it is perfectly legal to run concurrently with
625  * the _rcu list-traversal primitives, such as
626  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
627  * problems on Alpha CPUs.
628  */
629 static inline void hlist_add_behind_rcu(struct hlist_node *n,
630 					struct hlist_node *prev)
631 {
632 	n->next = prev->next;
633 	WRITE_ONCE(n->pprev, &prev->next);
634 	rcu_assign_pointer(hlist_next_rcu(prev), n);
635 	if (n->next)
636 		WRITE_ONCE(n->next->pprev, &n->next);
637 }
638 
639 #define __hlist_for_each_rcu(pos, head)				\
640 	for (pos = rcu_dereference(hlist_first_rcu(head));	\
641 	     pos;						\
642 	     pos = rcu_dereference(hlist_next_rcu(pos)))
643 
644 /**
645  * hlist_for_each_entry_rcu - iterate over rcu list of given type
646  * @pos:	the type * to use as a loop cursor.
647  * @head:	the head for your list.
648  * @member:	the name of the hlist_node within the struct.
649  * @cond...:	optional lockdep expression if called from non-RCU protection.
650  *
651  * This list-traversal primitive may safely run concurrently with
652  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
653  * as long as the traversal is guarded by rcu_read_lock().
654  */
655 #define hlist_for_each_entry_rcu(pos, head, member, cond...)		\
656 	for (__list_check_rcu(dummy, ## cond, 0),			\
657 	     pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\
658 			typeof(*(pos)), member);			\
659 		pos;							\
660 		pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
661 			&(pos)->member)), typeof(*(pos)), member))
662 
663 /**
664  * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing)
665  * @pos:	the type * to use as a loop cursor.
666  * @head:	the head for your list.
667  * @member:	the name of the hlist_node within the struct.
668  *
669  * This list-traversal primitive may safely run concurrently with
670  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
671  * as long as the traversal is guarded by rcu_read_lock().
672  *
673  * This is the same as hlist_for_each_entry_rcu() except that it does
674  * not do any RCU debugging or tracing.
675  */
676 #define hlist_for_each_entry_rcu_notrace(pos, head, member)			\
677 	for (pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_first_rcu(head)),\
678 			typeof(*(pos)), member);			\
679 		pos;							\
680 		pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_next_rcu(\
681 			&(pos)->member)), typeof(*(pos)), member))
682 
683 /**
684  * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type
685  * @pos:	the type * to use as a loop cursor.
686  * @head:	the head for your list.
687  * @member:	the name of the hlist_node within the struct.
688  *
689  * This list-traversal primitive may safely run concurrently with
690  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
691  * as long as the traversal is guarded by rcu_read_lock().
692  */
693 #define hlist_for_each_entry_rcu_bh(pos, head, member)			\
694 	for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\
695 			typeof(*(pos)), member);			\
696 		pos;							\
697 		pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\
698 			&(pos)->member)), typeof(*(pos)), member))
699 
700 /**
701  * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point
702  * @pos:	the type * to use as a loop cursor.
703  * @member:	the name of the hlist_node within the struct.
704  */
705 #define hlist_for_each_entry_continue_rcu(pos, member)			\
706 	for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
707 			&(pos)->member)), typeof(*(pos)), member);	\
708 	     pos;							\
709 	     pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(	\
710 			&(pos)->member)), typeof(*(pos)), member))
711 
712 /**
713  * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point
714  * @pos:	the type * to use as a loop cursor.
715  * @member:	the name of the hlist_node within the struct.
716  */
717 #define hlist_for_each_entry_continue_rcu_bh(pos, member)		\
718 	for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(  \
719 			&(pos)->member)), typeof(*(pos)), member);	\
720 	     pos;							\
721 	     pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(	\
722 			&(pos)->member)), typeof(*(pos)), member))
723 
724 /**
725  * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point
726  * @pos:	the type * to use as a loop cursor.
727  * @member:	the name of the hlist_node within the struct.
728  */
729 #define hlist_for_each_entry_from_rcu(pos, member)			\
730 	for (; pos;							\
731 	     pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(	\
732 			&(pos)->member)), typeof(*(pos)), member))
733 
734 #endif	/* __KERNEL__ */
735 #endif
736