1 /* 2 * Copyright (C) 2001 Momchil Velikov 3 * Portions Copyright (C) 2001 Christoph Hellwig 4 * Copyright (C) 2006 Nick Piggin 5 * Copyright (C) 2012 Konstantin Khlebnikov 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License as 9 * published by the Free Software Foundation; either version 2, or (at 10 * your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, but 13 * WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 */ 21 #ifndef _LINUX_RADIX_TREE_H 22 #define _LINUX_RADIX_TREE_H 23 24 #include <linux/bitops.h> 25 #include <linux/bug.h> 26 #include <linux/kernel.h> 27 #include <linux/list.h> 28 #include <linux/preempt.h> 29 #include <linux/rcupdate.h> 30 #include <linux/spinlock.h> 31 #include <linux/types.h> 32 33 /* 34 * The bottom two bits of the slot determine how the remaining bits in the 35 * slot are interpreted: 36 * 37 * 00 - data pointer 38 * 01 - internal entry 39 * 10 - exceptional entry 40 * 11 - this bit combination is currently unused/reserved 41 * 42 * The internal entry may be a pointer to the next level in the tree, a 43 * sibling entry, or an indicator that the entry in this slot has been moved 44 * to another location in the tree and the lookup should be restarted. While 45 * NULL fits the 'data pointer' pattern, it means that there is no entry in 46 * the tree for this index (no matter what level of the tree it is found at). 47 * This means that you cannot store NULL in the tree as a value for the index. 48 */ 49 #define RADIX_TREE_ENTRY_MASK 3UL 50 #define RADIX_TREE_INTERNAL_NODE 1UL 51 52 /* 53 * Most users of the radix tree store pointers but shmem/tmpfs stores swap 54 * entries in the same tree. They are marked as exceptional entries to 55 * distinguish them from pointers to struct page. 56 * EXCEPTIONAL_ENTRY tests the bit, EXCEPTIONAL_SHIFT shifts content past it. 57 */ 58 #define RADIX_TREE_EXCEPTIONAL_ENTRY 2 59 #define RADIX_TREE_EXCEPTIONAL_SHIFT 2 60 61 static inline bool radix_tree_is_internal_node(void *ptr) 62 { 63 return ((unsigned long)ptr & RADIX_TREE_ENTRY_MASK) == 64 RADIX_TREE_INTERNAL_NODE; 65 } 66 67 /*** radix-tree API starts here ***/ 68 69 #define RADIX_TREE_MAX_TAGS 3 70 71 #ifndef RADIX_TREE_MAP_SHIFT 72 #define RADIX_TREE_MAP_SHIFT (CONFIG_BASE_SMALL ? 4 : 6) 73 #endif 74 75 #define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT) 76 #define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1) 77 78 #define RADIX_TREE_TAG_LONGS \ 79 ((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG) 80 81 #define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long)) 82 #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \ 83 RADIX_TREE_MAP_SHIFT)) 84 85 /* 86 * @count is the count of every non-NULL element in the ->slots array 87 * whether that is an exceptional entry, a retry entry, a user pointer, 88 * a sibling entry or a pointer to the next level of the tree. 89 * @exceptional is the count of every element in ->slots which is 90 * either radix_tree_exceptional_entry() or is a sibling entry for an 91 * exceptional entry. 92 */ 93 struct radix_tree_node { 94 unsigned char shift; /* Bits remaining in each slot */ 95 unsigned char offset; /* Slot offset in parent */ 96 unsigned char count; /* Total entry count */ 97 unsigned char exceptional; /* Exceptional entry count */ 98 struct radix_tree_node *parent; /* Used when ascending tree */ 99 struct radix_tree_root *root; /* The tree we belong to */ 100 union { 101 struct list_head private_list; /* For tree user */ 102 struct rcu_head rcu_head; /* Used when freeing node */ 103 }; 104 void __rcu *slots[RADIX_TREE_MAP_SIZE]; 105 unsigned long tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS]; 106 }; 107 108 /* The top bits of gfp_mask are used to store the root tags and the IDR flag */ 109 #define ROOT_IS_IDR ((__force gfp_t)(1 << __GFP_BITS_SHIFT)) 110 #define ROOT_TAG_SHIFT (__GFP_BITS_SHIFT + 1) 111 112 struct radix_tree_root { 113 gfp_t gfp_mask; 114 struct radix_tree_node __rcu *rnode; 115 }; 116 117 #define RADIX_TREE_INIT(mask) { \ 118 .gfp_mask = (mask), \ 119 .rnode = NULL, \ 120 } 121 122 #define RADIX_TREE(name, mask) \ 123 struct radix_tree_root name = RADIX_TREE_INIT(mask) 124 125 #define INIT_RADIX_TREE(root, mask) \ 126 do { \ 127 (root)->gfp_mask = (mask); \ 128 (root)->rnode = NULL; \ 129 } while (0) 130 131 static inline bool radix_tree_empty(const struct radix_tree_root *root) 132 { 133 return root->rnode == NULL; 134 } 135 136 /** 137 * struct radix_tree_iter - radix tree iterator state 138 * 139 * @index: index of current slot 140 * @next_index: one beyond the last index for this chunk 141 * @tags: bit-mask for tag-iterating 142 * @node: node that contains current slot 143 * @shift: shift for the node that holds our slots 144 * 145 * This radix tree iterator works in terms of "chunks" of slots. A chunk is a 146 * subinterval of slots contained within one radix tree leaf node. It is 147 * described by a pointer to its first slot and a struct radix_tree_iter 148 * which holds the chunk's position in the tree and its size. For tagged 149 * iteration radix_tree_iter also holds the slots' bit-mask for one chosen 150 * radix tree tag. 151 */ 152 struct radix_tree_iter { 153 unsigned long index; 154 unsigned long next_index; 155 unsigned long tags; 156 struct radix_tree_node *node; 157 #ifdef CONFIG_RADIX_TREE_MULTIORDER 158 unsigned int shift; 159 #endif 160 }; 161 162 static inline unsigned int iter_shift(const struct radix_tree_iter *iter) 163 { 164 #ifdef CONFIG_RADIX_TREE_MULTIORDER 165 return iter->shift; 166 #else 167 return 0; 168 #endif 169 } 170 171 /** 172 * Radix-tree synchronization 173 * 174 * The radix-tree API requires that users provide all synchronisation (with 175 * specific exceptions, noted below). 176 * 177 * Synchronization of access to the data items being stored in the tree, and 178 * management of their lifetimes must be completely managed by API users. 179 * 180 * For API usage, in general, 181 * - any function _modifying_ the tree or tags (inserting or deleting 182 * items, setting or clearing tags) must exclude other modifications, and 183 * exclude any functions reading the tree. 184 * - any function _reading_ the tree or tags (looking up items or tags, 185 * gang lookups) must exclude modifications to the tree, but may occur 186 * concurrently with other readers. 187 * 188 * The notable exceptions to this rule are the following functions: 189 * __radix_tree_lookup 190 * radix_tree_lookup 191 * radix_tree_lookup_slot 192 * radix_tree_tag_get 193 * radix_tree_gang_lookup 194 * radix_tree_gang_lookup_slot 195 * radix_tree_gang_lookup_tag 196 * radix_tree_gang_lookup_tag_slot 197 * radix_tree_tagged 198 * 199 * The first 8 functions are able to be called locklessly, using RCU. The 200 * caller must ensure calls to these functions are made within rcu_read_lock() 201 * regions. Other readers (lock-free or otherwise) and modifications may be 202 * running concurrently. 203 * 204 * It is still required that the caller manage the synchronization and lifetimes 205 * of the items. So if RCU lock-free lookups are used, typically this would mean 206 * that the items have their own locks, or are amenable to lock-free access; and 207 * that the items are freed by RCU (or only freed after having been deleted from 208 * the radix tree *and* a synchronize_rcu() grace period). 209 * 210 * (Note, rcu_assign_pointer and rcu_dereference are not needed to control 211 * access to data items when inserting into or looking up from the radix tree) 212 * 213 * Note that the value returned by radix_tree_tag_get() may not be relied upon 214 * if only the RCU read lock is held. Functions to set/clear tags and to 215 * delete nodes running concurrently with it may affect its result such that 216 * two consecutive reads in the same locked section may return different 217 * values. If reliability is required, modification functions must also be 218 * excluded from concurrency. 219 * 220 * radix_tree_tagged is able to be called without locking or RCU. 221 */ 222 223 /** 224 * radix_tree_deref_slot - dereference a slot 225 * @slot: slot pointer, returned by radix_tree_lookup_slot 226 * 227 * For use with radix_tree_lookup_slot(). Caller must hold tree at least read 228 * locked across slot lookup and dereference. Not required if write lock is 229 * held (ie. items cannot be concurrently inserted). 230 * 231 * radix_tree_deref_retry must be used to confirm validity of the pointer if 232 * only the read lock is held. 233 * 234 * Return: entry stored in that slot. 235 */ 236 static inline void *radix_tree_deref_slot(void __rcu **slot) 237 { 238 return rcu_dereference(*slot); 239 } 240 241 /** 242 * radix_tree_deref_slot_protected - dereference a slot with tree lock held 243 * @slot: slot pointer, returned by radix_tree_lookup_slot 244 * 245 * Similar to radix_tree_deref_slot. The caller does not hold the RCU read 246 * lock but it must hold the tree lock to prevent parallel updates. 247 * 248 * Return: entry stored in that slot. 249 */ 250 static inline void *radix_tree_deref_slot_protected(void __rcu **slot, 251 spinlock_t *treelock) 252 { 253 return rcu_dereference_protected(*slot, lockdep_is_held(treelock)); 254 } 255 256 /** 257 * radix_tree_deref_retry - check radix_tree_deref_slot 258 * @arg: pointer returned by radix_tree_deref_slot 259 * Returns: 0 if retry is not required, otherwise retry is required 260 * 261 * radix_tree_deref_retry must be used with radix_tree_deref_slot. 262 */ 263 static inline int radix_tree_deref_retry(void *arg) 264 { 265 return unlikely(radix_tree_is_internal_node(arg)); 266 } 267 268 /** 269 * radix_tree_exceptional_entry - radix_tree_deref_slot gave exceptional entry? 270 * @arg: value returned by radix_tree_deref_slot 271 * Returns: 0 if well-aligned pointer, non-0 if exceptional entry. 272 */ 273 static inline int radix_tree_exceptional_entry(void *arg) 274 { 275 /* Not unlikely because radix_tree_exception often tested first */ 276 return (unsigned long)arg & RADIX_TREE_EXCEPTIONAL_ENTRY; 277 } 278 279 /** 280 * radix_tree_exception - radix_tree_deref_slot returned either exception? 281 * @arg: value returned by radix_tree_deref_slot 282 * Returns: 0 if well-aligned pointer, non-0 if either kind of exception. 283 */ 284 static inline int radix_tree_exception(void *arg) 285 { 286 return unlikely((unsigned long)arg & RADIX_TREE_ENTRY_MASK); 287 } 288 289 int __radix_tree_create(struct radix_tree_root *, unsigned long index, 290 unsigned order, struct radix_tree_node **nodep, 291 void __rcu ***slotp); 292 int __radix_tree_insert(struct radix_tree_root *, unsigned long index, 293 unsigned order, void *); 294 static inline int radix_tree_insert(struct radix_tree_root *root, 295 unsigned long index, void *entry) 296 { 297 return __radix_tree_insert(root, index, 0, entry); 298 } 299 void *__radix_tree_lookup(const struct radix_tree_root *, unsigned long index, 300 struct radix_tree_node **nodep, void __rcu ***slotp); 301 void *radix_tree_lookup(const struct radix_tree_root *, unsigned long); 302 void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *, 303 unsigned long index); 304 typedef void (*radix_tree_update_node_t)(struct radix_tree_node *, void *); 305 void __radix_tree_replace(struct radix_tree_root *, struct radix_tree_node *, 306 void __rcu **slot, void *entry, 307 radix_tree_update_node_t update_node, void *private); 308 void radix_tree_iter_replace(struct radix_tree_root *, 309 const struct radix_tree_iter *, void __rcu **slot, void *entry); 310 void radix_tree_replace_slot(struct radix_tree_root *, 311 void __rcu **slot, void *entry); 312 void __radix_tree_delete_node(struct radix_tree_root *, 313 struct radix_tree_node *, 314 radix_tree_update_node_t update_node, 315 void *private); 316 void radix_tree_iter_delete(struct radix_tree_root *, 317 struct radix_tree_iter *iter, void __rcu **slot); 318 void *radix_tree_delete_item(struct radix_tree_root *, unsigned long, void *); 319 void *radix_tree_delete(struct radix_tree_root *, unsigned long); 320 void radix_tree_clear_tags(struct radix_tree_root *, struct radix_tree_node *, 321 void __rcu **slot); 322 unsigned int radix_tree_gang_lookup(const struct radix_tree_root *, 323 void **results, unsigned long first_index, 324 unsigned int max_items); 325 unsigned int radix_tree_gang_lookup_slot(const struct radix_tree_root *, 326 void __rcu ***results, unsigned long *indices, 327 unsigned long first_index, unsigned int max_items); 328 int radix_tree_preload(gfp_t gfp_mask); 329 int radix_tree_maybe_preload(gfp_t gfp_mask); 330 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order); 331 void radix_tree_init(void); 332 void *radix_tree_tag_set(struct radix_tree_root *, 333 unsigned long index, unsigned int tag); 334 void *radix_tree_tag_clear(struct radix_tree_root *, 335 unsigned long index, unsigned int tag); 336 int radix_tree_tag_get(const struct radix_tree_root *, 337 unsigned long index, unsigned int tag); 338 void radix_tree_iter_tag_set(struct radix_tree_root *, 339 const struct radix_tree_iter *iter, unsigned int tag); 340 void radix_tree_iter_tag_clear(struct radix_tree_root *, 341 const struct radix_tree_iter *iter, unsigned int tag); 342 unsigned int radix_tree_gang_lookup_tag(const struct radix_tree_root *, 343 void **results, unsigned long first_index, 344 unsigned int max_items, unsigned int tag); 345 unsigned int radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *, 346 void __rcu ***results, unsigned long first_index, 347 unsigned int max_items, unsigned int tag); 348 int radix_tree_tagged(const struct radix_tree_root *, unsigned int tag); 349 350 static inline void radix_tree_preload_end(void) 351 { 352 preempt_enable(); 353 } 354 355 int radix_tree_split_preload(unsigned old_order, unsigned new_order, gfp_t); 356 int radix_tree_split(struct radix_tree_root *, unsigned long index, 357 unsigned new_order); 358 int radix_tree_join(struct radix_tree_root *, unsigned long index, 359 unsigned new_order, void *); 360 361 void __rcu **idr_get_free_cmn(struct radix_tree_root *root, 362 struct radix_tree_iter *iter, gfp_t gfp, 363 unsigned long max); 364 static inline void __rcu **idr_get_free(struct radix_tree_root *root, 365 struct radix_tree_iter *iter, 366 gfp_t gfp, 367 int end) 368 { 369 return idr_get_free_cmn(root, iter, gfp, end > 0 ? end - 1 : INT_MAX); 370 } 371 372 static inline void __rcu **idr_get_free_ext(struct radix_tree_root *root, 373 struct radix_tree_iter *iter, 374 gfp_t gfp, 375 unsigned long end) 376 { 377 return idr_get_free_cmn(root, iter, gfp, end - 1); 378 } 379 380 enum { 381 RADIX_TREE_ITER_TAG_MASK = 0x0f, /* tag index in lower nybble */ 382 RADIX_TREE_ITER_TAGGED = 0x10, /* lookup tagged slots */ 383 RADIX_TREE_ITER_CONTIG = 0x20, /* stop at first hole */ 384 }; 385 386 /** 387 * radix_tree_iter_init - initialize radix tree iterator 388 * 389 * @iter: pointer to iterator state 390 * @start: iteration starting index 391 * Returns: NULL 392 */ 393 static __always_inline void __rcu ** 394 radix_tree_iter_init(struct radix_tree_iter *iter, unsigned long start) 395 { 396 /* 397 * Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it 398 * in the case of a successful tagged chunk lookup. If the lookup was 399 * unsuccessful or non-tagged then nobody cares about ->tags. 400 * 401 * Set index to zero to bypass next_index overflow protection. 402 * See the comment in radix_tree_next_chunk() for details. 403 */ 404 iter->index = 0; 405 iter->next_index = start; 406 return NULL; 407 } 408 409 /** 410 * radix_tree_next_chunk - find next chunk of slots for iteration 411 * 412 * @root: radix tree root 413 * @iter: iterator state 414 * @flags: RADIX_TREE_ITER_* flags and tag index 415 * Returns: pointer to chunk first slot, or NULL if there no more left 416 * 417 * This function looks up the next chunk in the radix tree starting from 418 * @iter->next_index. It returns a pointer to the chunk's first slot. 419 * Also it fills @iter with data about chunk: position in the tree (index), 420 * its end (next_index), and constructs a bit mask for tagged iterating (tags). 421 */ 422 void __rcu **radix_tree_next_chunk(const struct radix_tree_root *, 423 struct radix_tree_iter *iter, unsigned flags); 424 425 /** 426 * radix_tree_iter_lookup - look up an index in the radix tree 427 * @root: radix tree root 428 * @iter: iterator state 429 * @index: key to look up 430 * 431 * If @index is present in the radix tree, this function returns the slot 432 * containing it and updates @iter to describe the entry. If @index is not 433 * present, it returns NULL. 434 */ 435 static inline void __rcu ** 436 radix_tree_iter_lookup(const struct radix_tree_root *root, 437 struct radix_tree_iter *iter, unsigned long index) 438 { 439 radix_tree_iter_init(iter, index); 440 return radix_tree_next_chunk(root, iter, RADIX_TREE_ITER_CONTIG); 441 } 442 443 /** 444 * radix_tree_iter_find - find a present entry 445 * @root: radix tree root 446 * @iter: iterator state 447 * @index: start location 448 * 449 * This function returns the slot containing the entry with the lowest index 450 * which is at least @index. If @index is larger than any present entry, this 451 * function returns NULL. The @iter is updated to describe the entry found. 452 */ 453 static inline void __rcu ** 454 radix_tree_iter_find(const struct radix_tree_root *root, 455 struct radix_tree_iter *iter, unsigned long index) 456 { 457 radix_tree_iter_init(iter, index); 458 return radix_tree_next_chunk(root, iter, 0); 459 } 460 461 /** 462 * radix_tree_iter_retry - retry this chunk of the iteration 463 * @iter: iterator state 464 * 465 * If we iterate over a tree protected only by the RCU lock, a race 466 * against deletion or creation may result in seeing a slot for which 467 * radix_tree_deref_retry() returns true. If so, call this function 468 * and continue the iteration. 469 */ 470 static inline __must_check 471 void __rcu **radix_tree_iter_retry(struct radix_tree_iter *iter) 472 { 473 iter->next_index = iter->index; 474 iter->tags = 0; 475 return NULL; 476 } 477 478 static inline unsigned long 479 __radix_tree_iter_add(struct radix_tree_iter *iter, unsigned long slots) 480 { 481 return iter->index + (slots << iter_shift(iter)); 482 } 483 484 /** 485 * radix_tree_iter_resume - resume iterating when the chunk may be invalid 486 * @slot: pointer to current slot 487 * @iter: iterator state 488 * Returns: New slot pointer 489 * 490 * If the iterator needs to release then reacquire a lock, the chunk may 491 * have been invalidated by an insertion or deletion. Call this function 492 * before releasing the lock to continue the iteration from the next index. 493 */ 494 void __rcu **__must_check radix_tree_iter_resume(void __rcu **slot, 495 struct radix_tree_iter *iter); 496 497 /** 498 * radix_tree_chunk_size - get current chunk size 499 * 500 * @iter: pointer to radix tree iterator 501 * Returns: current chunk size 502 */ 503 static __always_inline long 504 radix_tree_chunk_size(struct radix_tree_iter *iter) 505 { 506 return (iter->next_index - iter->index) >> iter_shift(iter); 507 } 508 509 #ifdef CONFIG_RADIX_TREE_MULTIORDER 510 void __rcu **__radix_tree_next_slot(void __rcu **slot, 511 struct radix_tree_iter *iter, unsigned flags); 512 #else 513 /* Can't happen without sibling entries, but the compiler can't tell that */ 514 static inline void __rcu **__radix_tree_next_slot(void __rcu **slot, 515 struct radix_tree_iter *iter, unsigned flags) 516 { 517 return slot; 518 } 519 #endif 520 521 /** 522 * radix_tree_next_slot - find next slot in chunk 523 * 524 * @slot: pointer to current slot 525 * @iter: pointer to interator state 526 * @flags: RADIX_TREE_ITER_*, should be constant 527 * Returns: pointer to next slot, or NULL if there no more left 528 * 529 * This function updates @iter->index in the case of a successful lookup. 530 * For tagged lookup it also eats @iter->tags. 531 * 532 * There are several cases where 'slot' can be passed in as NULL to this 533 * function. These cases result from the use of radix_tree_iter_resume() or 534 * radix_tree_iter_retry(). In these cases we don't end up dereferencing 535 * 'slot' because either: 536 * a) we are doing tagged iteration and iter->tags has been set to 0, or 537 * b) we are doing non-tagged iteration, and iter->index and iter->next_index 538 * have been set up so that radix_tree_chunk_size() returns 1 or 0. 539 */ 540 static __always_inline void __rcu **radix_tree_next_slot(void __rcu **slot, 541 struct radix_tree_iter *iter, unsigned flags) 542 { 543 if (flags & RADIX_TREE_ITER_TAGGED) { 544 iter->tags >>= 1; 545 if (unlikely(!iter->tags)) 546 return NULL; 547 if (likely(iter->tags & 1ul)) { 548 iter->index = __radix_tree_iter_add(iter, 1); 549 slot++; 550 goto found; 551 } 552 if (!(flags & RADIX_TREE_ITER_CONTIG)) { 553 unsigned offset = __ffs(iter->tags); 554 555 iter->tags >>= offset++; 556 iter->index = __radix_tree_iter_add(iter, offset); 557 slot += offset; 558 goto found; 559 } 560 } else { 561 long count = radix_tree_chunk_size(iter); 562 563 while (--count > 0) { 564 slot++; 565 iter->index = __radix_tree_iter_add(iter, 1); 566 567 if (likely(*slot)) 568 goto found; 569 if (flags & RADIX_TREE_ITER_CONTIG) { 570 /* forbid switching to the next chunk */ 571 iter->next_index = 0; 572 break; 573 } 574 } 575 } 576 return NULL; 577 578 found: 579 if (unlikely(radix_tree_is_internal_node(rcu_dereference_raw(*slot)))) 580 return __radix_tree_next_slot(slot, iter, flags); 581 return slot; 582 } 583 584 /** 585 * radix_tree_for_each_slot - iterate over non-empty slots 586 * 587 * @slot: the void** variable for pointer to slot 588 * @root: the struct radix_tree_root pointer 589 * @iter: the struct radix_tree_iter pointer 590 * @start: iteration starting index 591 * 592 * @slot points to radix tree slot, @iter->index contains its index. 593 */ 594 #define radix_tree_for_each_slot(slot, root, iter, start) \ 595 for (slot = radix_tree_iter_init(iter, start) ; \ 596 slot || (slot = radix_tree_next_chunk(root, iter, 0)) ; \ 597 slot = radix_tree_next_slot(slot, iter, 0)) 598 599 /** 600 * radix_tree_for_each_contig - iterate over contiguous slots 601 * 602 * @slot: the void** variable for pointer to slot 603 * @root: the struct radix_tree_root pointer 604 * @iter: the struct radix_tree_iter pointer 605 * @start: iteration starting index 606 * 607 * @slot points to radix tree slot, @iter->index contains its index. 608 */ 609 #define radix_tree_for_each_contig(slot, root, iter, start) \ 610 for (slot = radix_tree_iter_init(iter, start) ; \ 611 slot || (slot = radix_tree_next_chunk(root, iter, \ 612 RADIX_TREE_ITER_CONTIG)) ; \ 613 slot = radix_tree_next_slot(slot, iter, \ 614 RADIX_TREE_ITER_CONTIG)) 615 616 /** 617 * radix_tree_for_each_tagged - iterate over tagged slots 618 * 619 * @slot: the void** variable for pointer to slot 620 * @root: the struct radix_tree_root pointer 621 * @iter: the struct radix_tree_iter pointer 622 * @start: iteration starting index 623 * @tag: tag index 624 * 625 * @slot points to radix tree slot, @iter->index contains its index. 626 */ 627 #define radix_tree_for_each_tagged(slot, root, iter, start, tag) \ 628 for (slot = radix_tree_iter_init(iter, start) ; \ 629 slot || (slot = radix_tree_next_chunk(root, iter, \ 630 RADIX_TREE_ITER_TAGGED | tag)) ; \ 631 slot = radix_tree_next_slot(slot, iter, \ 632 RADIX_TREE_ITER_TAGGED | tag)) 633 634 #endif /* _LINUX_RADIX_TREE_H */ 635