xref: /linux-6.15/include/linux/radix-tree.h (revision aff985fd)
1 /*
2  * Copyright (C) 2001 Momchil Velikov
3  * Portions Copyright (C) 2001 Christoph Hellwig
4  * Copyright (C) 2006 Nick Piggin
5  * Copyright (C) 2012 Konstantin Khlebnikov
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as
9  * published by the Free Software Foundation; either version 2, or (at
10  * your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 #ifndef _LINUX_RADIX_TREE_H
22 #define _LINUX_RADIX_TREE_H
23 
24 #include <linux/bitops.h>
25 #include <linux/preempt.h>
26 #include <linux/types.h>
27 #include <linux/bug.h>
28 #include <linux/kernel.h>
29 #include <linux/rcupdate.h>
30 
31 /*
32  * The bottom two bits of the slot determine how the remaining bits in the
33  * slot are interpreted:
34  *
35  * 00 - data pointer
36  * 01 - internal entry
37  * 10 - exceptional entry
38  * 11 - this bit combination is currently unused/reserved
39  *
40  * The internal entry may be a pointer to the next level in the tree, a
41  * sibling entry, or an indicator that the entry in this slot has been moved
42  * to another location in the tree and the lookup should be restarted.  While
43  * NULL fits the 'data pointer' pattern, it means that there is no entry in
44  * the tree for this index (no matter what level of the tree it is found at).
45  * This means that you cannot store NULL in the tree as a value for the index.
46  */
47 #define RADIX_TREE_ENTRY_MASK		3UL
48 #define RADIX_TREE_INTERNAL_NODE	1UL
49 
50 /*
51  * Most users of the radix tree store pointers but shmem/tmpfs stores swap
52  * entries in the same tree.  They are marked as exceptional entries to
53  * distinguish them from pointers to struct page.
54  * EXCEPTIONAL_ENTRY tests the bit, EXCEPTIONAL_SHIFT shifts content past it.
55  */
56 #define RADIX_TREE_EXCEPTIONAL_ENTRY	2
57 #define RADIX_TREE_EXCEPTIONAL_SHIFT	2
58 
59 static inline bool radix_tree_is_internal_node(void *ptr)
60 {
61 	return ((unsigned long)ptr & RADIX_TREE_ENTRY_MASK) ==
62 				RADIX_TREE_INTERNAL_NODE;
63 }
64 
65 /*** radix-tree API starts here ***/
66 
67 #define RADIX_TREE_MAX_TAGS 3
68 
69 #ifndef RADIX_TREE_MAP_SHIFT
70 #define RADIX_TREE_MAP_SHIFT	(CONFIG_BASE_SMALL ? 4 : 6)
71 #endif
72 
73 #define RADIX_TREE_MAP_SIZE	(1UL << RADIX_TREE_MAP_SHIFT)
74 #define RADIX_TREE_MAP_MASK	(RADIX_TREE_MAP_SIZE-1)
75 
76 #define RADIX_TREE_TAG_LONGS	\
77 	((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
78 
79 #define RADIX_TREE_INDEX_BITS  (8 /* CHAR_BIT */ * sizeof(unsigned long))
80 #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
81 					  RADIX_TREE_MAP_SHIFT))
82 
83 /*
84  * @count is the count of every non-NULL element in the ->slots array
85  * whether that is an exceptional entry, a retry entry, a user pointer,
86  * a sibling entry or a pointer to the next level of the tree.
87  * @exceptional is the count of every element in ->slots which is
88  * either radix_tree_exceptional_entry() or is a sibling entry for an
89  * exceptional entry.
90  */
91 struct radix_tree_node {
92 	unsigned char	shift;		/* Bits remaining in each slot */
93 	unsigned char	offset;		/* Slot offset in parent */
94 	unsigned char	count;		/* Total entry count */
95 	unsigned char	exceptional;	/* Exceptional entry count */
96 	struct radix_tree_node *parent;		/* Used when ascending tree */
97 	void *private_data;			/* For tree user */
98 	union {
99 		struct list_head private_list;	/* For tree user */
100 		struct rcu_head	rcu_head;	/* Used when freeing node */
101 	};
102 	void __rcu	*slots[RADIX_TREE_MAP_SIZE];
103 	unsigned long	tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
104 };
105 
106 /* root tags are stored in gfp_mask, shifted by __GFP_BITS_SHIFT */
107 struct radix_tree_root {
108 	gfp_t			gfp_mask;
109 	struct radix_tree_node	__rcu *rnode;
110 };
111 
112 #define RADIX_TREE_INIT(mask)	{					\
113 	.gfp_mask = (mask),						\
114 	.rnode = NULL,							\
115 }
116 
117 #define RADIX_TREE(name, mask) \
118 	struct radix_tree_root name = RADIX_TREE_INIT(mask)
119 
120 #define INIT_RADIX_TREE(root, mask)					\
121 do {									\
122 	(root)->gfp_mask = (mask);					\
123 	(root)->rnode = NULL;						\
124 } while (0)
125 
126 static inline bool radix_tree_empty(struct radix_tree_root *root)
127 {
128 	return root->rnode == NULL;
129 }
130 
131 /**
132  * struct radix_tree_iter - radix tree iterator state
133  *
134  * @index:	index of current slot
135  * @next_index:	one beyond the last index for this chunk
136  * @tags:	bit-mask for tag-iterating
137  * @node:	node that contains current slot
138  * @shift:	shift for the node that holds our slots
139  *
140  * This radix tree iterator works in terms of "chunks" of slots.  A chunk is a
141  * subinterval of slots contained within one radix tree leaf node.  It is
142  * described by a pointer to its first slot and a struct radix_tree_iter
143  * which holds the chunk's position in the tree and its size.  For tagged
144  * iteration radix_tree_iter also holds the slots' bit-mask for one chosen
145  * radix tree tag.
146  */
147 struct radix_tree_iter {
148 	unsigned long	index;
149 	unsigned long	next_index;
150 	unsigned long	tags;
151 	struct radix_tree_node *node;
152 #ifdef CONFIG_RADIX_TREE_MULTIORDER
153 	unsigned int	shift;
154 #endif
155 };
156 
157 static inline unsigned int iter_shift(const struct radix_tree_iter *iter)
158 {
159 #ifdef CONFIG_RADIX_TREE_MULTIORDER
160 	return iter->shift;
161 #else
162 	return 0;
163 #endif
164 }
165 
166 /**
167  * Radix-tree synchronization
168  *
169  * The radix-tree API requires that users provide all synchronisation (with
170  * specific exceptions, noted below).
171  *
172  * Synchronization of access to the data items being stored in the tree, and
173  * management of their lifetimes must be completely managed by API users.
174  *
175  * For API usage, in general,
176  * - any function _modifying_ the tree or tags (inserting or deleting
177  *   items, setting or clearing tags) must exclude other modifications, and
178  *   exclude any functions reading the tree.
179  * - any function _reading_ the tree or tags (looking up items or tags,
180  *   gang lookups) must exclude modifications to the tree, but may occur
181  *   concurrently with other readers.
182  *
183  * The notable exceptions to this rule are the following functions:
184  * __radix_tree_lookup
185  * radix_tree_lookup
186  * radix_tree_lookup_slot
187  * radix_tree_tag_get
188  * radix_tree_gang_lookup
189  * radix_tree_gang_lookup_slot
190  * radix_tree_gang_lookup_tag
191  * radix_tree_gang_lookup_tag_slot
192  * radix_tree_tagged
193  *
194  * The first 8 functions are able to be called locklessly, using RCU. The
195  * caller must ensure calls to these functions are made within rcu_read_lock()
196  * regions. Other readers (lock-free or otherwise) and modifications may be
197  * running concurrently.
198  *
199  * It is still required that the caller manage the synchronization and lifetimes
200  * of the items. So if RCU lock-free lookups are used, typically this would mean
201  * that the items have their own locks, or are amenable to lock-free access; and
202  * that the items are freed by RCU (or only freed after having been deleted from
203  * the radix tree *and* a synchronize_rcu() grace period).
204  *
205  * (Note, rcu_assign_pointer and rcu_dereference are not needed to control
206  * access to data items when inserting into or looking up from the radix tree)
207  *
208  * Note that the value returned by radix_tree_tag_get() may not be relied upon
209  * if only the RCU read lock is held.  Functions to set/clear tags and to
210  * delete nodes running concurrently with it may affect its result such that
211  * two consecutive reads in the same locked section may return different
212  * values.  If reliability is required, modification functions must also be
213  * excluded from concurrency.
214  *
215  * radix_tree_tagged is able to be called without locking or RCU.
216  */
217 
218 /**
219  * radix_tree_deref_slot	- dereference a slot
220  * @pslot:	pointer to slot, returned by radix_tree_lookup_slot
221  * Returns:	item that was stored in that slot with any direct pointer flag
222  *		removed.
223  *
224  * For use with radix_tree_lookup_slot().  Caller must hold tree at least read
225  * locked across slot lookup and dereference. Not required if write lock is
226  * held (ie. items cannot be concurrently inserted).
227  *
228  * radix_tree_deref_retry must be used to confirm validity of the pointer if
229  * only the read lock is held.
230  */
231 static inline void *radix_tree_deref_slot(void **pslot)
232 {
233 	return rcu_dereference(*pslot);
234 }
235 
236 /**
237  * radix_tree_deref_slot_protected	- dereference a slot without RCU lock but with tree lock held
238  * @pslot:	pointer to slot, returned by radix_tree_lookup_slot
239  * Returns:	item that was stored in that slot with any direct pointer flag
240  *		removed.
241  *
242  * Similar to radix_tree_deref_slot but only used during migration when a pages
243  * mapping is being moved. The caller does not hold the RCU read lock but it
244  * must hold the tree lock to prevent parallel updates.
245  */
246 static inline void *radix_tree_deref_slot_protected(void **pslot,
247 							spinlock_t *treelock)
248 {
249 	return rcu_dereference_protected(*pslot, lockdep_is_held(treelock));
250 }
251 
252 /**
253  * radix_tree_deref_retry	- check radix_tree_deref_slot
254  * @arg:	pointer returned by radix_tree_deref_slot
255  * Returns:	0 if retry is not required, otherwise retry is required
256  *
257  * radix_tree_deref_retry must be used with radix_tree_deref_slot.
258  */
259 static inline int radix_tree_deref_retry(void *arg)
260 {
261 	return unlikely(radix_tree_is_internal_node(arg));
262 }
263 
264 /**
265  * radix_tree_exceptional_entry	- radix_tree_deref_slot gave exceptional entry?
266  * @arg:	value returned by radix_tree_deref_slot
267  * Returns:	0 if well-aligned pointer, non-0 if exceptional entry.
268  */
269 static inline int radix_tree_exceptional_entry(void *arg)
270 {
271 	/* Not unlikely because radix_tree_exception often tested first */
272 	return (unsigned long)arg & RADIX_TREE_EXCEPTIONAL_ENTRY;
273 }
274 
275 /**
276  * radix_tree_exception	- radix_tree_deref_slot returned either exception?
277  * @arg:	value returned by radix_tree_deref_slot
278  * Returns:	0 if well-aligned pointer, non-0 if either kind of exception.
279  */
280 static inline int radix_tree_exception(void *arg)
281 {
282 	return unlikely((unsigned long)arg & RADIX_TREE_ENTRY_MASK);
283 }
284 
285 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
286 			unsigned order, struct radix_tree_node **nodep,
287 			void ***slotp);
288 int __radix_tree_insert(struct radix_tree_root *, unsigned long index,
289 			unsigned order, void *);
290 static inline int radix_tree_insert(struct radix_tree_root *root,
291 			unsigned long index, void *entry)
292 {
293 	return __radix_tree_insert(root, index, 0, entry);
294 }
295 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
296 			  struct radix_tree_node **nodep, void ***slotp);
297 void *radix_tree_lookup(struct radix_tree_root *, unsigned long);
298 void **radix_tree_lookup_slot(struct radix_tree_root *, unsigned long);
299 typedef void (*radix_tree_update_node_t)(struct radix_tree_node *, void *);
300 void __radix_tree_replace(struct radix_tree_root *root,
301 			  struct radix_tree_node *node,
302 			  void **slot, void *item,
303 			  radix_tree_update_node_t update_node, void *private);
304 void radix_tree_iter_replace(struct radix_tree_root *,
305 		const struct radix_tree_iter *, void **slot, void *item);
306 void radix_tree_replace_slot(struct radix_tree_root *root,
307 			     void **slot, void *item);
308 void __radix_tree_delete_node(struct radix_tree_root *root,
309 			      struct radix_tree_node *node);
310 void *radix_tree_delete_item(struct radix_tree_root *, unsigned long, void *);
311 void *radix_tree_delete(struct radix_tree_root *, unsigned long);
312 void radix_tree_clear_tags(struct radix_tree_root *root,
313 			   struct radix_tree_node *node,
314 			   void **slot);
315 unsigned int radix_tree_gang_lookup(struct radix_tree_root *root,
316 			void **results, unsigned long first_index,
317 			unsigned int max_items);
318 unsigned int radix_tree_gang_lookup_slot(struct radix_tree_root *root,
319 			void ***results, unsigned long *indices,
320 			unsigned long first_index, unsigned int max_items);
321 int radix_tree_preload(gfp_t gfp_mask);
322 int radix_tree_maybe_preload(gfp_t gfp_mask);
323 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order);
324 void radix_tree_init(void);
325 void *radix_tree_tag_set(struct radix_tree_root *root,
326 			unsigned long index, unsigned int tag);
327 void *radix_tree_tag_clear(struct radix_tree_root *root,
328 			unsigned long index, unsigned int tag);
329 int radix_tree_tag_get(struct radix_tree_root *root,
330 			unsigned long index, unsigned int tag);
331 void radix_tree_iter_tag_set(struct radix_tree_root *root,
332 		const struct radix_tree_iter *iter, unsigned int tag);
333 unsigned int
334 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
335 		unsigned long first_index, unsigned int max_items,
336 		unsigned int tag);
337 unsigned int
338 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
339 		unsigned long first_index, unsigned int max_items,
340 		unsigned int tag);
341 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag);
342 
343 static inline void radix_tree_preload_end(void)
344 {
345 	preempt_enable();
346 }
347 
348 int radix_tree_split_preload(unsigned old_order, unsigned new_order, gfp_t);
349 int radix_tree_split(struct radix_tree_root *, unsigned long index,
350 			unsigned new_order);
351 int radix_tree_join(struct radix_tree_root *, unsigned long index,
352 			unsigned new_order, void *);
353 
354 #define RADIX_TREE_ITER_TAG_MASK	0x00FF	/* tag index in lower byte */
355 #define RADIX_TREE_ITER_TAGGED		0x0100	/* lookup tagged slots */
356 #define RADIX_TREE_ITER_CONTIG		0x0200	/* stop at first hole */
357 
358 /**
359  * radix_tree_iter_init - initialize radix tree iterator
360  *
361  * @iter:	pointer to iterator state
362  * @start:	iteration starting index
363  * Returns:	NULL
364  */
365 static __always_inline void **
366 radix_tree_iter_init(struct radix_tree_iter *iter, unsigned long start)
367 {
368 	/*
369 	 * Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it
370 	 * in the case of a successful tagged chunk lookup.  If the lookup was
371 	 * unsuccessful or non-tagged then nobody cares about ->tags.
372 	 *
373 	 * Set index to zero to bypass next_index overflow protection.
374 	 * See the comment in radix_tree_next_chunk() for details.
375 	 */
376 	iter->index = 0;
377 	iter->next_index = start;
378 	return NULL;
379 }
380 
381 /**
382  * radix_tree_next_chunk - find next chunk of slots for iteration
383  *
384  * @root:	radix tree root
385  * @iter:	iterator state
386  * @flags:	RADIX_TREE_ITER_* flags and tag index
387  * Returns:	pointer to chunk first slot, or NULL if there no more left
388  *
389  * This function looks up the next chunk in the radix tree starting from
390  * @iter->next_index.  It returns a pointer to the chunk's first slot.
391  * Also it fills @iter with data about chunk: position in the tree (index),
392  * its end (next_index), and constructs a bit mask for tagged iterating (tags).
393  */
394 void **radix_tree_next_chunk(struct radix_tree_root *root,
395 			     struct radix_tree_iter *iter, unsigned flags);
396 
397 /**
398  * radix_tree_iter_retry - retry this chunk of the iteration
399  * @iter:	iterator state
400  *
401  * If we iterate over a tree protected only by the RCU lock, a race
402  * against deletion or creation may result in seeing a slot for which
403  * radix_tree_deref_retry() returns true.  If so, call this function
404  * and continue the iteration.
405  */
406 static inline __must_check
407 void **radix_tree_iter_retry(struct radix_tree_iter *iter)
408 {
409 	iter->next_index = iter->index;
410 	iter->tags = 0;
411 	return NULL;
412 }
413 
414 static inline unsigned long
415 __radix_tree_iter_add(struct radix_tree_iter *iter, unsigned long slots)
416 {
417 	return iter->index + (slots << iter_shift(iter));
418 }
419 
420 /**
421  * radix_tree_iter_resume - resume iterating when the chunk may be invalid
422  * @slot: pointer to current slot
423  * @iter: iterator state
424  * Returns: New slot pointer
425  *
426  * If the iterator needs to release then reacquire a lock, the chunk may
427  * have been invalidated by an insertion or deletion.  Call this function
428  * before releasing the lock to continue the iteration from the next index.
429  */
430 void **__must_check radix_tree_iter_resume(void **slot,
431 					struct radix_tree_iter *iter);
432 
433 /**
434  * radix_tree_chunk_size - get current chunk size
435  *
436  * @iter:	pointer to radix tree iterator
437  * Returns:	current chunk size
438  */
439 static __always_inline long
440 radix_tree_chunk_size(struct radix_tree_iter *iter)
441 {
442 	return (iter->next_index - iter->index) >> iter_shift(iter);
443 }
444 
445 #ifdef CONFIG_RADIX_TREE_MULTIORDER
446 void ** __radix_tree_next_slot(void **slot, struct radix_tree_iter *iter,
447 				unsigned flags);
448 #else
449 /* Can't happen without sibling entries, but the compiler can't tell that */
450 static inline void ** __radix_tree_next_slot(void **slot,
451 				struct radix_tree_iter *iter, unsigned flags)
452 {
453 	return slot;
454 }
455 #endif
456 
457 /**
458  * radix_tree_next_slot - find next slot in chunk
459  *
460  * @slot:	pointer to current slot
461  * @iter:	pointer to interator state
462  * @flags:	RADIX_TREE_ITER_*, should be constant
463  * Returns:	pointer to next slot, or NULL if there no more left
464  *
465  * This function updates @iter->index in the case of a successful lookup.
466  * For tagged lookup it also eats @iter->tags.
467  *
468  * There are several cases where 'slot' can be passed in as NULL to this
469  * function.  These cases result from the use of radix_tree_iter_resume() or
470  * radix_tree_iter_retry().  In these cases we don't end up dereferencing
471  * 'slot' because either:
472  * a) we are doing tagged iteration and iter->tags has been set to 0, or
473  * b) we are doing non-tagged iteration, and iter->index and iter->next_index
474  *    have been set up so that radix_tree_chunk_size() returns 1 or 0.
475  */
476 static __always_inline void **
477 radix_tree_next_slot(void **slot, struct radix_tree_iter *iter, unsigned flags)
478 {
479 	if (flags & RADIX_TREE_ITER_TAGGED) {
480 		iter->tags >>= 1;
481 		if (unlikely(!iter->tags))
482 			return NULL;
483 		if (likely(iter->tags & 1ul)) {
484 			iter->index = __radix_tree_iter_add(iter, 1);
485 			slot++;
486 			goto found;
487 		}
488 		if (!(flags & RADIX_TREE_ITER_CONTIG)) {
489 			unsigned offset = __ffs(iter->tags);
490 
491 			iter->tags >>= offset++;
492 			iter->index = __radix_tree_iter_add(iter, offset);
493 			slot += offset;
494 			goto found;
495 		}
496 	} else {
497 		long count = radix_tree_chunk_size(iter);
498 
499 		while (--count > 0) {
500 			slot++;
501 			iter->index = __radix_tree_iter_add(iter, 1);
502 
503 			if (likely(*slot))
504 				goto found;
505 			if (flags & RADIX_TREE_ITER_CONTIG) {
506 				/* forbid switching to the next chunk */
507 				iter->next_index = 0;
508 				break;
509 			}
510 		}
511 	}
512 	return NULL;
513 
514  found:
515 	if (unlikely(radix_tree_is_internal_node(*slot)))
516 		return __radix_tree_next_slot(slot, iter, flags);
517 	return slot;
518 }
519 
520 /**
521  * radix_tree_for_each_slot - iterate over non-empty slots
522  *
523  * @slot:	the void** variable for pointer to slot
524  * @root:	the struct radix_tree_root pointer
525  * @iter:	the struct radix_tree_iter pointer
526  * @start:	iteration starting index
527  *
528  * @slot points to radix tree slot, @iter->index contains its index.
529  */
530 #define radix_tree_for_each_slot(slot, root, iter, start)		\
531 	for (slot = radix_tree_iter_init(iter, start) ;			\
532 	     slot || (slot = radix_tree_next_chunk(root, iter, 0)) ;	\
533 	     slot = radix_tree_next_slot(slot, iter, 0))
534 
535 /**
536  * radix_tree_for_each_contig - iterate over contiguous slots
537  *
538  * @slot:	the void** variable for pointer to slot
539  * @root:	the struct radix_tree_root pointer
540  * @iter:	the struct radix_tree_iter pointer
541  * @start:	iteration starting index
542  *
543  * @slot points to radix tree slot, @iter->index contains its index.
544  */
545 #define radix_tree_for_each_contig(slot, root, iter, start)		\
546 	for (slot = radix_tree_iter_init(iter, start) ;			\
547 	     slot || (slot = radix_tree_next_chunk(root, iter,		\
548 				RADIX_TREE_ITER_CONTIG)) ;		\
549 	     slot = radix_tree_next_slot(slot, iter,			\
550 				RADIX_TREE_ITER_CONTIG))
551 
552 /**
553  * radix_tree_for_each_tagged - iterate over tagged slots
554  *
555  * @slot:	the void** variable for pointer to slot
556  * @root:	the struct radix_tree_root pointer
557  * @iter:	the struct radix_tree_iter pointer
558  * @start:	iteration starting index
559  * @tag:	tag index
560  *
561  * @slot points to radix tree slot, @iter->index contains its index.
562  */
563 #define radix_tree_for_each_tagged(slot, root, iter, start, tag)	\
564 	for (slot = radix_tree_iter_init(iter, start) ;			\
565 	     slot || (slot = radix_tree_next_chunk(root, iter,		\
566 			      RADIX_TREE_ITER_TAGGED | tag)) ;		\
567 	     slot = radix_tree_next_slot(slot, iter,			\
568 				RADIX_TREE_ITER_TAGGED | tag))
569 
570 #endif /* _LINUX_RADIX_TREE_H */
571