1 /* 2 * Copyright (C) 2001 Momchil Velikov 3 * Portions Copyright (C) 2001 Christoph Hellwig 4 * Copyright (C) 2006 Nick Piggin 5 * Copyright (C) 2012 Konstantin Khlebnikov 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License as 9 * published by the Free Software Foundation; either version 2, or (at 10 * your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, but 13 * WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 */ 21 #ifndef _LINUX_RADIX_TREE_H 22 #define _LINUX_RADIX_TREE_H 23 24 #include <linux/bitops.h> 25 #include <linux/preempt.h> 26 #include <linux/types.h> 27 #include <linux/bug.h> 28 #include <linux/kernel.h> 29 #include <linux/rcupdate.h> 30 31 /* 32 * The bottom two bits of the slot determine how the remaining bits in the 33 * slot are interpreted: 34 * 35 * 00 - data pointer 36 * 01 - internal entry 37 * 10 - exceptional entry 38 * 11 - this bit combination is currently unused/reserved 39 * 40 * The internal entry may be a pointer to the next level in the tree, a 41 * sibling entry, or an indicator that the entry in this slot has been moved 42 * to another location in the tree and the lookup should be restarted. While 43 * NULL fits the 'data pointer' pattern, it means that there is no entry in 44 * the tree for this index (no matter what level of the tree it is found at). 45 * This means that you cannot store NULL in the tree as a value for the index. 46 */ 47 #define RADIX_TREE_ENTRY_MASK 3UL 48 #define RADIX_TREE_INTERNAL_NODE 1UL 49 50 /* 51 * Most users of the radix tree store pointers but shmem/tmpfs stores swap 52 * entries in the same tree. They are marked as exceptional entries to 53 * distinguish them from pointers to struct page. 54 * EXCEPTIONAL_ENTRY tests the bit, EXCEPTIONAL_SHIFT shifts content past it. 55 */ 56 #define RADIX_TREE_EXCEPTIONAL_ENTRY 2 57 #define RADIX_TREE_EXCEPTIONAL_SHIFT 2 58 59 static inline bool radix_tree_is_internal_node(void *ptr) 60 { 61 return ((unsigned long)ptr & RADIX_TREE_ENTRY_MASK) == 62 RADIX_TREE_INTERNAL_NODE; 63 } 64 65 /*** radix-tree API starts here ***/ 66 67 #define RADIX_TREE_MAX_TAGS 3 68 69 #ifndef RADIX_TREE_MAP_SHIFT 70 #define RADIX_TREE_MAP_SHIFT (CONFIG_BASE_SMALL ? 4 : 6) 71 #endif 72 73 #define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT) 74 #define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1) 75 76 #define RADIX_TREE_TAG_LONGS \ 77 ((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG) 78 79 #define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long)) 80 #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \ 81 RADIX_TREE_MAP_SHIFT)) 82 83 /* 84 * @count is the count of every non-NULL element in the ->slots array 85 * whether that is an exceptional entry, a retry entry, a user pointer, 86 * a sibling entry or a pointer to the next level of the tree. 87 * @exceptional is the count of every element in ->slots which is 88 * either radix_tree_exceptional_entry() or is a sibling entry for an 89 * exceptional entry. 90 */ 91 struct radix_tree_node { 92 unsigned char shift; /* Bits remaining in each slot */ 93 unsigned char offset; /* Slot offset in parent */ 94 unsigned char count; /* Total entry count */ 95 unsigned char exceptional; /* Exceptional entry count */ 96 struct radix_tree_node *parent; /* Used when ascending tree */ 97 void *private_data; /* For tree user */ 98 union { 99 struct list_head private_list; /* For tree user */ 100 struct rcu_head rcu_head; /* Used when freeing node */ 101 }; 102 void __rcu *slots[RADIX_TREE_MAP_SIZE]; 103 unsigned long tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS]; 104 }; 105 106 /* root tags are stored in gfp_mask, shifted by __GFP_BITS_SHIFT */ 107 struct radix_tree_root { 108 gfp_t gfp_mask; 109 struct radix_tree_node __rcu *rnode; 110 }; 111 112 #define RADIX_TREE_INIT(mask) { \ 113 .gfp_mask = (mask), \ 114 .rnode = NULL, \ 115 } 116 117 #define RADIX_TREE(name, mask) \ 118 struct radix_tree_root name = RADIX_TREE_INIT(mask) 119 120 #define INIT_RADIX_TREE(root, mask) \ 121 do { \ 122 (root)->gfp_mask = (mask); \ 123 (root)->rnode = NULL; \ 124 } while (0) 125 126 static inline bool radix_tree_empty(struct radix_tree_root *root) 127 { 128 return root->rnode == NULL; 129 } 130 131 /** 132 * struct radix_tree_iter - radix tree iterator state 133 * 134 * @index: index of current slot 135 * @next_index: one beyond the last index for this chunk 136 * @tags: bit-mask for tag-iterating 137 * @node: node that contains current slot 138 * @shift: shift for the node that holds our slots 139 * 140 * This radix tree iterator works in terms of "chunks" of slots. A chunk is a 141 * subinterval of slots contained within one radix tree leaf node. It is 142 * described by a pointer to its first slot and a struct radix_tree_iter 143 * which holds the chunk's position in the tree and its size. For tagged 144 * iteration radix_tree_iter also holds the slots' bit-mask for one chosen 145 * radix tree tag. 146 */ 147 struct radix_tree_iter { 148 unsigned long index; 149 unsigned long next_index; 150 unsigned long tags; 151 struct radix_tree_node *node; 152 #ifdef CONFIG_RADIX_TREE_MULTIORDER 153 unsigned int shift; 154 #endif 155 }; 156 157 static inline unsigned int iter_shift(const struct radix_tree_iter *iter) 158 { 159 #ifdef CONFIG_RADIX_TREE_MULTIORDER 160 return iter->shift; 161 #else 162 return 0; 163 #endif 164 } 165 166 /** 167 * Radix-tree synchronization 168 * 169 * The radix-tree API requires that users provide all synchronisation (with 170 * specific exceptions, noted below). 171 * 172 * Synchronization of access to the data items being stored in the tree, and 173 * management of their lifetimes must be completely managed by API users. 174 * 175 * For API usage, in general, 176 * - any function _modifying_ the tree or tags (inserting or deleting 177 * items, setting or clearing tags) must exclude other modifications, and 178 * exclude any functions reading the tree. 179 * - any function _reading_ the tree or tags (looking up items or tags, 180 * gang lookups) must exclude modifications to the tree, but may occur 181 * concurrently with other readers. 182 * 183 * The notable exceptions to this rule are the following functions: 184 * __radix_tree_lookup 185 * radix_tree_lookup 186 * radix_tree_lookup_slot 187 * radix_tree_tag_get 188 * radix_tree_gang_lookup 189 * radix_tree_gang_lookup_slot 190 * radix_tree_gang_lookup_tag 191 * radix_tree_gang_lookup_tag_slot 192 * radix_tree_tagged 193 * 194 * The first 8 functions are able to be called locklessly, using RCU. The 195 * caller must ensure calls to these functions are made within rcu_read_lock() 196 * regions. Other readers (lock-free or otherwise) and modifications may be 197 * running concurrently. 198 * 199 * It is still required that the caller manage the synchronization and lifetimes 200 * of the items. So if RCU lock-free lookups are used, typically this would mean 201 * that the items have their own locks, or are amenable to lock-free access; and 202 * that the items are freed by RCU (or only freed after having been deleted from 203 * the radix tree *and* a synchronize_rcu() grace period). 204 * 205 * (Note, rcu_assign_pointer and rcu_dereference are not needed to control 206 * access to data items when inserting into or looking up from the radix tree) 207 * 208 * Note that the value returned by radix_tree_tag_get() may not be relied upon 209 * if only the RCU read lock is held. Functions to set/clear tags and to 210 * delete nodes running concurrently with it may affect its result such that 211 * two consecutive reads in the same locked section may return different 212 * values. If reliability is required, modification functions must also be 213 * excluded from concurrency. 214 * 215 * radix_tree_tagged is able to be called without locking or RCU. 216 */ 217 218 /** 219 * radix_tree_deref_slot - dereference a slot 220 * @pslot: pointer to slot, returned by radix_tree_lookup_slot 221 * Returns: item that was stored in that slot with any direct pointer flag 222 * removed. 223 * 224 * For use with radix_tree_lookup_slot(). Caller must hold tree at least read 225 * locked across slot lookup and dereference. Not required if write lock is 226 * held (ie. items cannot be concurrently inserted). 227 * 228 * radix_tree_deref_retry must be used to confirm validity of the pointer if 229 * only the read lock is held. 230 */ 231 static inline void *radix_tree_deref_slot(void **pslot) 232 { 233 return rcu_dereference(*pslot); 234 } 235 236 /** 237 * radix_tree_deref_slot_protected - dereference a slot without RCU lock but with tree lock held 238 * @pslot: pointer to slot, returned by radix_tree_lookup_slot 239 * Returns: item that was stored in that slot with any direct pointer flag 240 * removed. 241 * 242 * Similar to radix_tree_deref_slot but only used during migration when a pages 243 * mapping is being moved. The caller does not hold the RCU read lock but it 244 * must hold the tree lock to prevent parallel updates. 245 */ 246 static inline void *radix_tree_deref_slot_protected(void **pslot, 247 spinlock_t *treelock) 248 { 249 return rcu_dereference_protected(*pslot, lockdep_is_held(treelock)); 250 } 251 252 /** 253 * radix_tree_deref_retry - check radix_tree_deref_slot 254 * @arg: pointer returned by radix_tree_deref_slot 255 * Returns: 0 if retry is not required, otherwise retry is required 256 * 257 * radix_tree_deref_retry must be used with radix_tree_deref_slot. 258 */ 259 static inline int radix_tree_deref_retry(void *arg) 260 { 261 return unlikely(radix_tree_is_internal_node(arg)); 262 } 263 264 /** 265 * radix_tree_exceptional_entry - radix_tree_deref_slot gave exceptional entry? 266 * @arg: value returned by radix_tree_deref_slot 267 * Returns: 0 if well-aligned pointer, non-0 if exceptional entry. 268 */ 269 static inline int radix_tree_exceptional_entry(void *arg) 270 { 271 /* Not unlikely because radix_tree_exception often tested first */ 272 return (unsigned long)arg & RADIX_TREE_EXCEPTIONAL_ENTRY; 273 } 274 275 /** 276 * radix_tree_exception - radix_tree_deref_slot returned either exception? 277 * @arg: value returned by radix_tree_deref_slot 278 * Returns: 0 if well-aligned pointer, non-0 if either kind of exception. 279 */ 280 static inline int radix_tree_exception(void *arg) 281 { 282 return unlikely((unsigned long)arg & RADIX_TREE_ENTRY_MASK); 283 } 284 285 int __radix_tree_create(struct radix_tree_root *root, unsigned long index, 286 unsigned order, struct radix_tree_node **nodep, 287 void ***slotp); 288 int __radix_tree_insert(struct radix_tree_root *, unsigned long index, 289 unsigned order, void *); 290 static inline int radix_tree_insert(struct radix_tree_root *root, 291 unsigned long index, void *entry) 292 { 293 return __radix_tree_insert(root, index, 0, entry); 294 } 295 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index, 296 struct radix_tree_node **nodep, void ***slotp); 297 void *radix_tree_lookup(struct radix_tree_root *, unsigned long); 298 void **radix_tree_lookup_slot(struct radix_tree_root *, unsigned long); 299 typedef void (*radix_tree_update_node_t)(struct radix_tree_node *, void *); 300 void __radix_tree_replace(struct radix_tree_root *root, 301 struct radix_tree_node *node, 302 void **slot, void *item, 303 radix_tree_update_node_t update_node, void *private); 304 void radix_tree_iter_replace(struct radix_tree_root *, 305 const struct radix_tree_iter *, void **slot, void *item); 306 void radix_tree_replace_slot(struct radix_tree_root *root, 307 void **slot, void *item); 308 void __radix_tree_delete_node(struct radix_tree_root *root, 309 struct radix_tree_node *node); 310 void *radix_tree_delete_item(struct radix_tree_root *, unsigned long, void *); 311 void *radix_tree_delete(struct radix_tree_root *, unsigned long); 312 void radix_tree_clear_tags(struct radix_tree_root *root, 313 struct radix_tree_node *node, 314 void **slot); 315 unsigned int radix_tree_gang_lookup(struct radix_tree_root *root, 316 void **results, unsigned long first_index, 317 unsigned int max_items); 318 unsigned int radix_tree_gang_lookup_slot(struct radix_tree_root *root, 319 void ***results, unsigned long *indices, 320 unsigned long first_index, unsigned int max_items); 321 int radix_tree_preload(gfp_t gfp_mask); 322 int radix_tree_maybe_preload(gfp_t gfp_mask); 323 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order); 324 void radix_tree_init(void); 325 void *radix_tree_tag_set(struct radix_tree_root *root, 326 unsigned long index, unsigned int tag); 327 void *radix_tree_tag_clear(struct radix_tree_root *root, 328 unsigned long index, unsigned int tag); 329 int radix_tree_tag_get(struct radix_tree_root *root, 330 unsigned long index, unsigned int tag); 331 void radix_tree_iter_tag_set(struct radix_tree_root *root, 332 const struct radix_tree_iter *iter, unsigned int tag); 333 unsigned int 334 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results, 335 unsigned long first_index, unsigned int max_items, 336 unsigned int tag); 337 unsigned int 338 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results, 339 unsigned long first_index, unsigned int max_items, 340 unsigned int tag); 341 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag); 342 343 static inline void radix_tree_preload_end(void) 344 { 345 preempt_enable(); 346 } 347 348 int radix_tree_split_preload(unsigned old_order, unsigned new_order, gfp_t); 349 int radix_tree_split(struct radix_tree_root *, unsigned long index, 350 unsigned new_order); 351 int radix_tree_join(struct radix_tree_root *, unsigned long index, 352 unsigned new_order, void *); 353 354 #define RADIX_TREE_ITER_TAG_MASK 0x00FF /* tag index in lower byte */ 355 #define RADIX_TREE_ITER_TAGGED 0x0100 /* lookup tagged slots */ 356 #define RADIX_TREE_ITER_CONTIG 0x0200 /* stop at first hole */ 357 358 /** 359 * radix_tree_iter_init - initialize radix tree iterator 360 * 361 * @iter: pointer to iterator state 362 * @start: iteration starting index 363 * Returns: NULL 364 */ 365 static __always_inline void ** 366 radix_tree_iter_init(struct radix_tree_iter *iter, unsigned long start) 367 { 368 /* 369 * Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it 370 * in the case of a successful tagged chunk lookup. If the lookup was 371 * unsuccessful or non-tagged then nobody cares about ->tags. 372 * 373 * Set index to zero to bypass next_index overflow protection. 374 * See the comment in radix_tree_next_chunk() for details. 375 */ 376 iter->index = 0; 377 iter->next_index = start; 378 return NULL; 379 } 380 381 /** 382 * radix_tree_next_chunk - find next chunk of slots for iteration 383 * 384 * @root: radix tree root 385 * @iter: iterator state 386 * @flags: RADIX_TREE_ITER_* flags and tag index 387 * Returns: pointer to chunk first slot, or NULL if there no more left 388 * 389 * This function looks up the next chunk in the radix tree starting from 390 * @iter->next_index. It returns a pointer to the chunk's first slot. 391 * Also it fills @iter with data about chunk: position in the tree (index), 392 * its end (next_index), and constructs a bit mask for tagged iterating (tags). 393 */ 394 void **radix_tree_next_chunk(struct radix_tree_root *root, 395 struct radix_tree_iter *iter, unsigned flags); 396 397 /** 398 * radix_tree_iter_retry - retry this chunk of the iteration 399 * @iter: iterator state 400 * 401 * If we iterate over a tree protected only by the RCU lock, a race 402 * against deletion or creation may result in seeing a slot for which 403 * radix_tree_deref_retry() returns true. If so, call this function 404 * and continue the iteration. 405 */ 406 static inline __must_check 407 void **radix_tree_iter_retry(struct radix_tree_iter *iter) 408 { 409 iter->next_index = iter->index; 410 iter->tags = 0; 411 return NULL; 412 } 413 414 static inline unsigned long 415 __radix_tree_iter_add(struct radix_tree_iter *iter, unsigned long slots) 416 { 417 return iter->index + (slots << iter_shift(iter)); 418 } 419 420 /** 421 * radix_tree_iter_resume - resume iterating when the chunk may be invalid 422 * @slot: pointer to current slot 423 * @iter: iterator state 424 * Returns: New slot pointer 425 * 426 * If the iterator needs to release then reacquire a lock, the chunk may 427 * have been invalidated by an insertion or deletion. Call this function 428 * before releasing the lock to continue the iteration from the next index. 429 */ 430 void **__must_check radix_tree_iter_resume(void **slot, 431 struct radix_tree_iter *iter); 432 433 /** 434 * radix_tree_chunk_size - get current chunk size 435 * 436 * @iter: pointer to radix tree iterator 437 * Returns: current chunk size 438 */ 439 static __always_inline long 440 radix_tree_chunk_size(struct radix_tree_iter *iter) 441 { 442 return (iter->next_index - iter->index) >> iter_shift(iter); 443 } 444 445 #ifdef CONFIG_RADIX_TREE_MULTIORDER 446 void ** __radix_tree_next_slot(void **slot, struct radix_tree_iter *iter, 447 unsigned flags); 448 #else 449 /* Can't happen without sibling entries, but the compiler can't tell that */ 450 static inline void ** __radix_tree_next_slot(void **slot, 451 struct radix_tree_iter *iter, unsigned flags) 452 { 453 return slot; 454 } 455 #endif 456 457 /** 458 * radix_tree_next_slot - find next slot in chunk 459 * 460 * @slot: pointer to current slot 461 * @iter: pointer to interator state 462 * @flags: RADIX_TREE_ITER_*, should be constant 463 * Returns: pointer to next slot, or NULL if there no more left 464 * 465 * This function updates @iter->index in the case of a successful lookup. 466 * For tagged lookup it also eats @iter->tags. 467 * 468 * There are several cases where 'slot' can be passed in as NULL to this 469 * function. These cases result from the use of radix_tree_iter_resume() or 470 * radix_tree_iter_retry(). In these cases we don't end up dereferencing 471 * 'slot' because either: 472 * a) we are doing tagged iteration and iter->tags has been set to 0, or 473 * b) we are doing non-tagged iteration, and iter->index and iter->next_index 474 * have been set up so that radix_tree_chunk_size() returns 1 or 0. 475 */ 476 static __always_inline void ** 477 radix_tree_next_slot(void **slot, struct radix_tree_iter *iter, unsigned flags) 478 { 479 if (flags & RADIX_TREE_ITER_TAGGED) { 480 iter->tags >>= 1; 481 if (unlikely(!iter->tags)) 482 return NULL; 483 if (likely(iter->tags & 1ul)) { 484 iter->index = __radix_tree_iter_add(iter, 1); 485 slot++; 486 goto found; 487 } 488 if (!(flags & RADIX_TREE_ITER_CONTIG)) { 489 unsigned offset = __ffs(iter->tags); 490 491 iter->tags >>= offset++; 492 iter->index = __radix_tree_iter_add(iter, offset); 493 slot += offset; 494 goto found; 495 } 496 } else { 497 long count = radix_tree_chunk_size(iter); 498 499 while (--count > 0) { 500 slot++; 501 iter->index = __radix_tree_iter_add(iter, 1); 502 503 if (likely(*slot)) 504 goto found; 505 if (flags & RADIX_TREE_ITER_CONTIG) { 506 /* forbid switching to the next chunk */ 507 iter->next_index = 0; 508 break; 509 } 510 } 511 } 512 return NULL; 513 514 found: 515 if (unlikely(radix_tree_is_internal_node(*slot))) 516 return __radix_tree_next_slot(slot, iter, flags); 517 return slot; 518 } 519 520 /** 521 * radix_tree_for_each_slot - iterate over non-empty slots 522 * 523 * @slot: the void** variable for pointer to slot 524 * @root: the struct radix_tree_root pointer 525 * @iter: the struct radix_tree_iter pointer 526 * @start: iteration starting index 527 * 528 * @slot points to radix tree slot, @iter->index contains its index. 529 */ 530 #define radix_tree_for_each_slot(slot, root, iter, start) \ 531 for (slot = radix_tree_iter_init(iter, start) ; \ 532 slot || (slot = radix_tree_next_chunk(root, iter, 0)) ; \ 533 slot = radix_tree_next_slot(slot, iter, 0)) 534 535 /** 536 * radix_tree_for_each_contig - iterate over contiguous slots 537 * 538 * @slot: the void** variable for pointer to slot 539 * @root: the struct radix_tree_root pointer 540 * @iter: the struct radix_tree_iter pointer 541 * @start: iteration starting index 542 * 543 * @slot points to radix tree slot, @iter->index contains its index. 544 */ 545 #define radix_tree_for_each_contig(slot, root, iter, start) \ 546 for (slot = radix_tree_iter_init(iter, start) ; \ 547 slot || (slot = radix_tree_next_chunk(root, iter, \ 548 RADIX_TREE_ITER_CONTIG)) ; \ 549 slot = radix_tree_next_slot(slot, iter, \ 550 RADIX_TREE_ITER_CONTIG)) 551 552 /** 553 * radix_tree_for_each_tagged - iterate over tagged slots 554 * 555 * @slot: the void** variable for pointer to slot 556 * @root: the struct radix_tree_root pointer 557 * @iter: the struct radix_tree_iter pointer 558 * @start: iteration starting index 559 * @tag: tag index 560 * 561 * @slot points to radix tree slot, @iter->index contains its index. 562 */ 563 #define radix_tree_for_each_tagged(slot, root, iter, start, tag) \ 564 for (slot = radix_tree_iter_init(iter, start) ; \ 565 slot || (slot = radix_tree_next_chunk(root, iter, \ 566 RADIX_TREE_ITER_TAGGED | tag)) ; \ 567 slot = radix_tree_next_slot(slot, iter, \ 568 RADIX_TREE_ITER_TAGGED | tag)) 569 570 #endif /* _LINUX_RADIX_TREE_H */ 571