xref: /linux-6.15/include/linux/radix-tree.h (revision 66dfdff0)
1 /*
2  * Copyright (C) 2001 Momchil Velikov
3  * Portions Copyright (C) 2001 Christoph Hellwig
4  * Copyright (C) 2006 Nick Piggin
5  * Copyright (C) 2012 Konstantin Khlebnikov
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as
9  * published by the Free Software Foundation; either version 2, or (at
10  * your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 #ifndef _LINUX_RADIX_TREE_H
22 #define _LINUX_RADIX_TREE_H
23 
24 #include <linux/bitops.h>
25 #include <linux/kernel.h>
26 #include <linux/list.h>
27 #include <linux/preempt.h>
28 #include <linux/rcupdate.h>
29 #include <linux/spinlock.h>
30 #include <linux/types.h>
31 
32 /*
33  * The bottom two bits of the slot determine how the remaining bits in the
34  * slot are interpreted:
35  *
36  * 00 - data pointer
37  * 01 - internal entry
38  * 10 - exceptional entry
39  * 11 - this bit combination is currently unused/reserved
40  *
41  * The internal entry may be a pointer to the next level in the tree, a
42  * sibling entry, or an indicator that the entry in this slot has been moved
43  * to another location in the tree and the lookup should be restarted.  While
44  * NULL fits the 'data pointer' pattern, it means that there is no entry in
45  * the tree for this index (no matter what level of the tree it is found at).
46  * This means that you cannot store NULL in the tree as a value for the index.
47  */
48 #define RADIX_TREE_ENTRY_MASK		3UL
49 #define RADIX_TREE_INTERNAL_NODE	1UL
50 
51 /*
52  * Most users of the radix tree store pointers but shmem/tmpfs stores swap
53  * entries in the same tree.  They are marked as exceptional entries to
54  * distinguish them from pointers to struct page.
55  * EXCEPTIONAL_ENTRY tests the bit, EXCEPTIONAL_SHIFT shifts content past it.
56  */
57 #define RADIX_TREE_EXCEPTIONAL_ENTRY	2
58 #define RADIX_TREE_EXCEPTIONAL_SHIFT	2
59 
60 static inline bool radix_tree_is_internal_node(void *ptr)
61 {
62 	return ((unsigned long)ptr & RADIX_TREE_ENTRY_MASK) ==
63 				RADIX_TREE_INTERNAL_NODE;
64 }
65 
66 /*** radix-tree API starts here ***/
67 
68 #define RADIX_TREE_MAX_TAGS 3
69 
70 #ifndef RADIX_TREE_MAP_SHIFT
71 #define RADIX_TREE_MAP_SHIFT	(CONFIG_BASE_SMALL ? 4 : 6)
72 #endif
73 
74 #define RADIX_TREE_MAP_SIZE	(1UL << RADIX_TREE_MAP_SHIFT)
75 #define RADIX_TREE_MAP_MASK	(RADIX_TREE_MAP_SIZE-1)
76 
77 #define RADIX_TREE_TAG_LONGS	\
78 	((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
79 
80 #define RADIX_TREE_INDEX_BITS  (8 /* CHAR_BIT */ * sizeof(unsigned long))
81 #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
82 					  RADIX_TREE_MAP_SHIFT))
83 
84 /*
85  * @count is the count of every non-NULL element in the ->slots array
86  * whether that is an exceptional entry, a retry entry, a user pointer,
87  * a sibling entry or a pointer to the next level of the tree.
88  * @exceptional is the count of every element in ->slots which is
89  * either radix_tree_exceptional_entry() or is a sibling entry for an
90  * exceptional entry.
91  */
92 struct radix_tree_node {
93 	unsigned char	shift;		/* Bits remaining in each slot */
94 	unsigned char	offset;		/* Slot offset in parent */
95 	unsigned char	count;		/* Total entry count */
96 	unsigned char	exceptional;	/* Exceptional entry count */
97 	struct radix_tree_node *parent;		/* Used when ascending tree */
98 	struct radix_tree_root *root;		/* The tree we belong to */
99 	union {
100 		struct list_head private_list;	/* For tree user */
101 		struct rcu_head	rcu_head;	/* Used when freeing node */
102 	};
103 	void __rcu	*slots[RADIX_TREE_MAP_SIZE];
104 	unsigned long	tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
105 };
106 
107 /* The top bits of gfp_mask are used to store the root tags and the IDR flag */
108 #define ROOT_IS_IDR	((__force gfp_t)(1 << __GFP_BITS_SHIFT))
109 #define ROOT_TAG_SHIFT	(__GFP_BITS_SHIFT + 1)
110 
111 struct radix_tree_root {
112 	gfp_t			gfp_mask;
113 	struct radix_tree_node	__rcu *rnode;
114 };
115 
116 #define RADIX_TREE_INIT(mask)	{					\
117 	.gfp_mask = (mask),						\
118 	.rnode = NULL,							\
119 }
120 
121 #define RADIX_TREE(name, mask) \
122 	struct radix_tree_root name = RADIX_TREE_INIT(mask)
123 
124 #define INIT_RADIX_TREE(root, mask)					\
125 do {									\
126 	(root)->gfp_mask = (mask);					\
127 	(root)->rnode = NULL;						\
128 } while (0)
129 
130 static inline bool radix_tree_empty(const struct radix_tree_root *root)
131 {
132 	return root->rnode == NULL;
133 }
134 
135 /**
136  * struct radix_tree_iter - radix tree iterator state
137  *
138  * @index:	index of current slot
139  * @next_index:	one beyond the last index for this chunk
140  * @tags:	bit-mask for tag-iterating
141  * @node:	node that contains current slot
142  * @shift:	shift for the node that holds our slots
143  *
144  * This radix tree iterator works in terms of "chunks" of slots.  A chunk is a
145  * subinterval of slots contained within one radix tree leaf node.  It is
146  * described by a pointer to its first slot and a struct radix_tree_iter
147  * which holds the chunk's position in the tree and its size.  For tagged
148  * iteration radix_tree_iter also holds the slots' bit-mask for one chosen
149  * radix tree tag.
150  */
151 struct radix_tree_iter {
152 	unsigned long	index;
153 	unsigned long	next_index;
154 	unsigned long	tags;
155 	struct radix_tree_node *node;
156 #ifdef CONFIG_RADIX_TREE_MULTIORDER
157 	unsigned int	shift;
158 #endif
159 };
160 
161 static inline unsigned int iter_shift(const struct radix_tree_iter *iter)
162 {
163 #ifdef CONFIG_RADIX_TREE_MULTIORDER
164 	return iter->shift;
165 #else
166 	return 0;
167 #endif
168 }
169 
170 /**
171  * Radix-tree synchronization
172  *
173  * The radix-tree API requires that users provide all synchronisation (with
174  * specific exceptions, noted below).
175  *
176  * Synchronization of access to the data items being stored in the tree, and
177  * management of their lifetimes must be completely managed by API users.
178  *
179  * For API usage, in general,
180  * - any function _modifying_ the tree or tags (inserting or deleting
181  *   items, setting or clearing tags) must exclude other modifications, and
182  *   exclude any functions reading the tree.
183  * - any function _reading_ the tree or tags (looking up items or tags,
184  *   gang lookups) must exclude modifications to the tree, but may occur
185  *   concurrently with other readers.
186  *
187  * The notable exceptions to this rule are the following functions:
188  * __radix_tree_lookup
189  * radix_tree_lookup
190  * radix_tree_lookup_slot
191  * radix_tree_tag_get
192  * radix_tree_gang_lookup
193  * radix_tree_gang_lookup_slot
194  * radix_tree_gang_lookup_tag
195  * radix_tree_gang_lookup_tag_slot
196  * radix_tree_tagged
197  *
198  * The first 8 functions are able to be called locklessly, using RCU. The
199  * caller must ensure calls to these functions are made within rcu_read_lock()
200  * regions. Other readers (lock-free or otherwise) and modifications may be
201  * running concurrently.
202  *
203  * It is still required that the caller manage the synchronization and lifetimes
204  * of the items. So if RCU lock-free lookups are used, typically this would mean
205  * that the items have their own locks, or are amenable to lock-free access; and
206  * that the items are freed by RCU (or only freed after having been deleted from
207  * the radix tree *and* a synchronize_rcu() grace period).
208  *
209  * (Note, rcu_assign_pointer and rcu_dereference are not needed to control
210  * access to data items when inserting into or looking up from the radix tree)
211  *
212  * Note that the value returned by radix_tree_tag_get() may not be relied upon
213  * if only the RCU read lock is held.  Functions to set/clear tags and to
214  * delete nodes running concurrently with it may affect its result such that
215  * two consecutive reads in the same locked section may return different
216  * values.  If reliability is required, modification functions must also be
217  * excluded from concurrency.
218  *
219  * radix_tree_tagged is able to be called without locking or RCU.
220  */
221 
222 /**
223  * radix_tree_deref_slot - dereference a slot
224  * @slot: slot pointer, returned by radix_tree_lookup_slot
225  *
226  * For use with radix_tree_lookup_slot().  Caller must hold tree at least read
227  * locked across slot lookup and dereference. Not required if write lock is
228  * held (ie. items cannot be concurrently inserted).
229  *
230  * radix_tree_deref_retry must be used to confirm validity of the pointer if
231  * only the read lock is held.
232  *
233  * Return: entry stored in that slot.
234  */
235 static inline void *radix_tree_deref_slot(void __rcu **slot)
236 {
237 	return rcu_dereference(*slot);
238 }
239 
240 /**
241  * radix_tree_deref_slot_protected - dereference a slot with tree lock held
242  * @slot: slot pointer, returned by radix_tree_lookup_slot
243  *
244  * Similar to radix_tree_deref_slot.  The caller does not hold the RCU read
245  * lock but it must hold the tree lock to prevent parallel updates.
246  *
247  * Return: entry stored in that slot.
248  */
249 static inline void *radix_tree_deref_slot_protected(void __rcu **slot,
250 							spinlock_t *treelock)
251 {
252 	return rcu_dereference_protected(*slot, lockdep_is_held(treelock));
253 }
254 
255 /**
256  * radix_tree_deref_retry	- check radix_tree_deref_slot
257  * @arg:	pointer returned by radix_tree_deref_slot
258  * Returns:	0 if retry is not required, otherwise retry is required
259  *
260  * radix_tree_deref_retry must be used with radix_tree_deref_slot.
261  */
262 static inline int radix_tree_deref_retry(void *arg)
263 {
264 	return unlikely(radix_tree_is_internal_node(arg));
265 }
266 
267 /**
268  * radix_tree_exceptional_entry	- radix_tree_deref_slot gave exceptional entry?
269  * @arg:	value returned by radix_tree_deref_slot
270  * Returns:	0 if well-aligned pointer, non-0 if exceptional entry.
271  */
272 static inline int radix_tree_exceptional_entry(void *arg)
273 {
274 	/* Not unlikely because radix_tree_exception often tested first */
275 	return (unsigned long)arg & RADIX_TREE_EXCEPTIONAL_ENTRY;
276 }
277 
278 /**
279  * radix_tree_exception	- radix_tree_deref_slot returned either exception?
280  * @arg:	value returned by radix_tree_deref_slot
281  * Returns:	0 if well-aligned pointer, non-0 if either kind of exception.
282  */
283 static inline int radix_tree_exception(void *arg)
284 {
285 	return unlikely((unsigned long)arg & RADIX_TREE_ENTRY_MASK);
286 }
287 
288 int __radix_tree_create(struct radix_tree_root *, unsigned long index,
289 			unsigned order, struct radix_tree_node **nodep,
290 			void __rcu ***slotp);
291 int __radix_tree_insert(struct radix_tree_root *, unsigned long index,
292 			unsigned order, void *);
293 static inline int radix_tree_insert(struct radix_tree_root *root,
294 			unsigned long index, void *entry)
295 {
296 	return __radix_tree_insert(root, index, 0, entry);
297 }
298 void *__radix_tree_lookup(const struct radix_tree_root *, unsigned long index,
299 			  struct radix_tree_node **nodep, void __rcu ***slotp);
300 void *radix_tree_lookup(const struct radix_tree_root *, unsigned long);
301 void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *,
302 					unsigned long index);
303 typedef void (*radix_tree_update_node_t)(struct radix_tree_node *);
304 void __radix_tree_replace(struct radix_tree_root *, struct radix_tree_node *,
305 			  void __rcu **slot, void *entry,
306 			  radix_tree_update_node_t update_node);
307 void radix_tree_iter_replace(struct radix_tree_root *,
308 		const struct radix_tree_iter *, void __rcu **slot, void *entry);
309 void radix_tree_replace_slot(struct radix_tree_root *,
310 			     void __rcu **slot, void *entry);
311 void __radix_tree_delete_node(struct radix_tree_root *,
312 			      struct radix_tree_node *,
313 			      radix_tree_update_node_t update_node);
314 void radix_tree_iter_delete(struct radix_tree_root *,
315 			struct radix_tree_iter *iter, void __rcu **slot);
316 void *radix_tree_delete_item(struct radix_tree_root *, unsigned long, void *);
317 void *radix_tree_delete(struct radix_tree_root *, unsigned long);
318 void radix_tree_clear_tags(struct radix_tree_root *, struct radix_tree_node *,
319 			   void __rcu **slot);
320 unsigned int radix_tree_gang_lookup(const struct radix_tree_root *,
321 			void **results, unsigned long first_index,
322 			unsigned int max_items);
323 unsigned int radix_tree_gang_lookup_slot(const struct radix_tree_root *,
324 			void __rcu ***results, unsigned long *indices,
325 			unsigned long first_index, unsigned int max_items);
326 int radix_tree_preload(gfp_t gfp_mask);
327 int radix_tree_maybe_preload(gfp_t gfp_mask);
328 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order);
329 void radix_tree_init(void);
330 void *radix_tree_tag_set(struct radix_tree_root *,
331 			unsigned long index, unsigned int tag);
332 void *radix_tree_tag_clear(struct radix_tree_root *,
333 			unsigned long index, unsigned int tag);
334 int radix_tree_tag_get(const struct radix_tree_root *,
335 			unsigned long index, unsigned int tag);
336 void radix_tree_iter_tag_set(struct radix_tree_root *,
337 		const struct radix_tree_iter *iter, unsigned int tag);
338 void radix_tree_iter_tag_clear(struct radix_tree_root *,
339 		const struct radix_tree_iter *iter, unsigned int tag);
340 unsigned int radix_tree_gang_lookup_tag(const struct radix_tree_root *,
341 		void **results, unsigned long first_index,
342 		unsigned int max_items, unsigned int tag);
343 unsigned int radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *,
344 		void __rcu ***results, unsigned long first_index,
345 		unsigned int max_items, unsigned int tag);
346 int radix_tree_tagged(const struct radix_tree_root *, unsigned int tag);
347 
348 static inline void radix_tree_preload_end(void)
349 {
350 	preempt_enable();
351 }
352 
353 int radix_tree_split_preload(unsigned old_order, unsigned new_order, gfp_t);
354 int radix_tree_split(struct radix_tree_root *, unsigned long index,
355 			unsigned new_order);
356 int radix_tree_join(struct radix_tree_root *, unsigned long index,
357 			unsigned new_order, void *);
358 
359 void __rcu **idr_get_free(struct radix_tree_root *root,
360 			      struct radix_tree_iter *iter, gfp_t gfp,
361 			      unsigned long max);
362 
363 enum {
364 	RADIX_TREE_ITER_TAG_MASK = 0x0f,	/* tag index in lower nybble */
365 	RADIX_TREE_ITER_TAGGED   = 0x10,	/* lookup tagged slots */
366 	RADIX_TREE_ITER_CONTIG   = 0x20,	/* stop at first hole */
367 };
368 
369 /**
370  * radix_tree_iter_init - initialize radix tree iterator
371  *
372  * @iter:	pointer to iterator state
373  * @start:	iteration starting index
374  * Returns:	NULL
375  */
376 static __always_inline void __rcu **
377 radix_tree_iter_init(struct radix_tree_iter *iter, unsigned long start)
378 {
379 	/*
380 	 * Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it
381 	 * in the case of a successful tagged chunk lookup.  If the lookup was
382 	 * unsuccessful or non-tagged then nobody cares about ->tags.
383 	 *
384 	 * Set index to zero to bypass next_index overflow protection.
385 	 * See the comment in radix_tree_next_chunk() for details.
386 	 */
387 	iter->index = 0;
388 	iter->next_index = start;
389 	return NULL;
390 }
391 
392 /**
393  * radix_tree_next_chunk - find next chunk of slots for iteration
394  *
395  * @root:	radix tree root
396  * @iter:	iterator state
397  * @flags:	RADIX_TREE_ITER_* flags and tag index
398  * Returns:	pointer to chunk first slot, or NULL if there no more left
399  *
400  * This function looks up the next chunk in the radix tree starting from
401  * @iter->next_index.  It returns a pointer to the chunk's first slot.
402  * Also it fills @iter with data about chunk: position in the tree (index),
403  * its end (next_index), and constructs a bit mask for tagged iterating (tags).
404  */
405 void __rcu **radix_tree_next_chunk(const struct radix_tree_root *,
406 			     struct radix_tree_iter *iter, unsigned flags);
407 
408 /**
409  * radix_tree_iter_lookup - look up an index in the radix tree
410  * @root: radix tree root
411  * @iter: iterator state
412  * @index: key to look up
413  *
414  * If @index is present in the radix tree, this function returns the slot
415  * containing it and updates @iter to describe the entry.  If @index is not
416  * present, it returns NULL.
417  */
418 static inline void __rcu **
419 radix_tree_iter_lookup(const struct radix_tree_root *root,
420 			struct radix_tree_iter *iter, unsigned long index)
421 {
422 	radix_tree_iter_init(iter, index);
423 	return radix_tree_next_chunk(root, iter, RADIX_TREE_ITER_CONTIG);
424 }
425 
426 /**
427  * radix_tree_iter_find - find a present entry
428  * @root: radix tree root
429  * @iter: iterator state
430  * @index: start location
431  *
432  * This function returns the slot containing the entry with the lowest index
433  * which is at least @index.  If @index is larger than any present entry, this
434  * function returns NULL.  The @iter is updated to describe the entry found.
435  */
436 static inline void __rcu **
437 radix_tree_iter_find(const struct radix_tree_root *root,
438 			struct radix_tree_iter *iter, unsigned long index)
439 {
440 	radix_tree_iter_init(iter, index);
441 	return radix_tree_next_chunk(root, iter, 0);
442 }
443 
444 /**
445  * radix_tree_iter_retry - retry this chunk of the iteration
446  * @iter:	iterator state
447  *
448  * If we iterate over a tree protected only by the RCU lock, a race
449  * against deletion or creation may result in seeing a slot for which
450  * radix_tree_deref_retry() returns true.  If so, call this function
451  * and continue the iteration.
452  */
453 static inline __must_check
454 void __rcu **radix_tree_iter_retry(struct radix_tree_iter *iter)
455 {
456 	iter->next_index = iter->index;
457 	iter->tags = 0;
458 	return NULL;
459 }
460 
461 static inline unsigned long
462 __radix_tree_iter_add(struct radix_tree_iter *iter, unsigned long slots)
463 {
464 	return iter->index + (slots << iter_shift(iter));
465 }
466 
467 /**
468  * radix_tree_iter_resume - resume iterating when the chunk may be invalid
469  * @slot: pointer to current slot
470  * @iter: iterator state
471  * Returns: New slot pointer
472  *
473  * If the iterator needs to release then reacquire a lock, the chunk may
474  * have been invalidated by an insertion or deletion.  Call this function
475  * before releasing the lock to continue the iteration from the next index.
476  */
477 void __rcu **__must_check radix_tree_iter_resume(void __rcu **slot,
478 					struct radix_tree_iter *iter);
479 
480 /**
481  * radix_tree_chunk_size - get current chunk size
482  *
483  * @iter:	pointer to radix tree iterator
484  * Returns:	current chunk size
485  */
486 static __always_inline long
487 radix_tree_chunk_size(struct radix_tree_iter *iter)
488 {
489 	return (iter->next_index - iter->index) >> iter_shift(iter);
490 }
491 
492 #ifdef CONFIG_RADIX_TREE_MULTIORDER
493 void __rcu **__radix_tree_next_slot(void __rcu **slot,
494 				struct radix_tree_iter *iter, unsigned flags);
495 #else
496 /* Can't happen without sibling entries, but the compiler can't tell that */
497 static inline void __rcu **__radix_tree_next_slot(void __rcu **slot,
498 				struct radix_tree_iter *iter, unsigned flags)
499 {
500 	return slot;
501 }
502 #endif
503 
504 /**
505  * radix_tree_next_slot - find next slot in chunk
506  *
507  * @slot:	pointer to current slot
508  * @iter:	pointer to interator state
509  * @flags:	RADIX_TREE_ITER_*, should be constant
510  * Returns:	pointer to next slot, or NULL if there no more left
511  *
512  * This function updates @iter->index in the case of a successful lookup.
513  * For tagged lookup it also eats @iter->tags.
514  *
515  * There are several cases where 'slot' can be passed in as NULL to this
516  * function.  These cases result from the use of radix_tree_iter_resume() or
517  * radix_tree_iter_retry().  In these cases we don't end up dereferencing
518  * 'slot' because either:
519  * a) we are doing tagged iteration and iter->tags has been set to 0, or
520  * b) we are doing non-tagged iteration, and iter->index and iter->next_index
521  *    have been set up so that radix_tree_chunk_size() returns 1 or 0.
522  */
523 static __always_inline void __rcu **radix_tree_next_slot(void __rcu **slot,
524 				struct radix_tree_iter *iter, unsigned flags)
525 {
526 	if (flags & RADIX_TREE_ITER_TAGGED) {
527 		iter->tags >>= 1;
528 		if (unlikely(!iter->tags))
529 			return NULL;
530 		if (likely(iter->tags & 1ul)) {
531 			iter->index = __radix_tree_iter_add(iter, 1);
532 			slot++;
533 			goto found;
534 		}
535 		if (!(flags & RADIX_TREE_ITER_CONTIG)) {
536 			unsigned offset = __ffs(iter->tags);
537 
538 			iter->tags >>= offset++;
539 			iter->index = __radix_tree_iter_add(iter, offset);
540 			slot += offset;
541 			goto found;
542 		}
543 	} else {
544 		long count = radix_tree_chunk_size(iter);
545 
546 		while (--count > 0) {
547 			slot++;
548 			iter->index = __radix_tree_iter_add(iter, 1);
549 
550 			if (likely(*slot))
551 				goto found;
552 			if (flags & RADIX_TREE_ITER_CONTIG) {
553 				/* forbid switching to the next chunk */
554 				iter->next_index = 0;
555 				break;
556 			}
557 		}
558 	}
559 	return NULL;
560 
561  found:
562 	if (unlikely(radix_tree_is_internal_node(rcu_dereference_raw(*slot))))
563 		return __radix_tree_next_slot(slot, iter, flags);
564 	return slot;
565 }
566 
567 /**
568  * radix_tree_for_each_slot - iterate over non-empty slots
569  *
570  * @slot:	the void** variable for pointer to slot
571  * @root:	the struct radix_tree_root pointer
572  * @iter:	the struct radix_tree_iter pointer
573  * @start:	iteration starting index
574  *
575  * @slot points to radix tree slot, @iter->index contains its index.
576  */
577 #define radix_tree_for_each_slot(slot, root, iter, start)		\
578 	for (slot = radix_tree_iter_init(iter, start) ;			\
579 	     slot || (slot = radix_tree_next_chunk(root, iter, 0)) ;	\
580 	     slot = radix_tree_next_slot(slot, iter, 0))
581 
582 /**
583  * radix_tree_for_each_contig - iterate over contiguous slots
584  *
585  * @slot:	the void** variable for pointer to slot
586  * @root:	the struct radix_tree_root pointer
587  * @iter:	the struct radix_tree_iter pointer
588  * @start:	iteration starting index
589  *
590  * @slot points to radix tree slot, @iter->index contains its index.
591  */
592 #define radix_tree_for_each_contig(slot, root, iter, start)		\
593 	for (slot = radix_tree_iter_init(iter, start) ;			\
594 	     slot || (slot = radix_tree_next_chunk(root, iter,		\
595 				RADIX_TREE_ITER_CONTIG)) ;		\
596 	     slot = radix_tree_next_slot(slot, iter,			\
597 				RADIX_TREE_ITER_CONTIG))
598 
599 /**
600  * radix_tree_for_each_tagged - iterate over tagged slots
601  *
602  * @slot:	the void** variable for pointer to slot
603  * @root:	the struct radix_tree_root pointer
604  * @iter:	the struct radix_tree_iter pointer
605  * @start:	iteration starting index
606  * @tag:	tag index
607  *
608  * @slot points to radix tree slot, @iter->index contains its index.
609  */
610 #define radix_tree_for_each_tagged(slot, root, iter, start, tag)	\
611 	for (slot = radix_tree_iter_init(iter, start) ;			\
612 	     slot || (slot = radix_tree_next_chunk(root, iter,		\
613 			      RADIX_TREE_ITER_TAGGED | tag)) ;		\
614 	     slot = radix_tree_next_slot(slot, iter,			\
615 				RADIX_TREE_ITER_TAGGED | tag))
616 
617 #endif /* _LINUX_RADIX_TREE_H */
618