1 /* 2 * Copyright (C) 2001 Momchil Velikov 3 * Portions Copyright (C) 2001 Christoph Hellwig 4 * Copyright (C) 2006 Nick Piggin 5 * Copyright (C) 2012 Konstantin Khlebnikov 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License as 9 * published by the Free Software Foundation; either version 2, or (at 10 * your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, but 13 * WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 */ 21 #ifndef _LINUX_RADIX_TREE_H 22 #define _LINUX_RADIX_TREE_H 23 24 #include <linux/bitops.h> 25 #include <linux/kernel.h> 26 #include <linux/list.h> 27 #include <linux/preempt.h> 28 #include <linux/rcupdate.h> 29 #include <linux/spinlock.h> 30 #include <linux/types.h> 31 32 /* 33 * The bottom two bits of the slot determine how the remaining bits in the 34 * slot are interpreted: 35 * 36 * 00 - data pointer 37 * 01 - internal entry 38 * 10 - exceptional entry 39 * 11 - this bit combination is currently unused/reserved 40 * 41 * The internal entry may be a pointer to the next level in the tree, a 42 * sibling entry, or an indicator that the entry in this slot has been moved 43 * to another location in the tree and the lookup should be restarted. While 44 * NULL fits the 'data pointer' pattern, it means that there is no entry in 45 * the tree for this index (no matter what level of the tree it is found at). 46 * This means that you cannot store NULL in the tree as a value for the index. 47 */ 48 #define RADIX_TREE_ENTRY_MASK 3UL 49 #define RADIX_TREE_INTERNAL_NODE 1UL 50 51 /* 52 * Most users of the radix tree store pointers but shmem/tmpfs stores swap 53 * entries in the same tree. They are marked as exceptional entries to 54 * distinguish them from pointers to struct page. 55 * EXCEPTIONAL_ENTRY tests the bit, EXCEPTIONAL_SHIFT shifts content past it. 56 */ 57 #define RADIX_TREE_EXCEPTIONAL_ENTRY 2 58 #define RADIX_TREE_EXCEPTIONAL_SHIFT 2 59 60 static inline bool radix_tree_is_internal_node(void *ptr) 61 { 62 return ((unsigned long)ptr & RADIX_TREE_ENTRY_MASK) == 63 RADIX_TREE_INTERNAL_NODE; 64 } 65 66 /*** radix-tree API starts here ***/ 67 68 #define RADIX_TREE_MAX_TAGS 3 69 70 #ifndef RADIX_TREE_MAP_SHIFT 71 #define RADIX_TREE_MAP_SHIFT (CONFIG_BASE_SMALL ? 4 : 6) 72 #endif 73 74 #define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT) 75 #define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1) 76 77 #define RADIX_TREE_TAG_LONGS \ 78 ((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG) 79 80 #define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long)) 81 #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \ 82 RADIX_TREE_MAP_SHIFT)) 83 84 /* 85 * @count is the count of every non-NULL element in the ->slots array 86 * whether that is an exceptional entry, a retry entry, a user pointer, 87 * a sibling entry or a pointer to the next level of the tree. 88 * @exceptional is the count of every element in ->slots which is 89 * either radix_tree_exceptional_entry() or is a sibling entry for an 90 * exceptional entry. 91 */ 92 struct radix_tree_node { 93 unsigned char shift; /* Bits remaining in each slot */ 94 unsigned char offset; /* Slot offset in parent */ 95 unsigned char count; /* Total entry count */ 96 unsigned char exceptional; /* Exceptional entry count */ 97 struct radix_tree_node *parent; /* Used when ascending tree */ 98 struct radix_tree_root *root; /* The tree we belong to */ 99 union { 100 struct list_head private_list; /* For tree user */ 101 struct rcu_head rcu_head; /* Used when freeing node */ 102 }; 103 void __rcu *slots[RADIX_TREE_MAP_SIZE]; 104 unsigned long tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS]; 105 }; 106 107 /* The IDR tag is stored in the low bits of the GFP flags */ 108 #define ROOT_IS_IDR ((__force gfp_t)4) 109 /* The top bits of gfp_mask are used to store the root tags */ 110 #define ROOT_TAG_SHIFT (__GFP_BITS_SHIFT) 111 112 struct radix_tree_root { 113 spinlock_t xa_lock; 114 gfp_t gfp_mask; 115 struct radix_tree_node __rcu *rnode; 116 }; 117 118 #define RADIX_TREE_INIT(name, mask) { \ 119 .xa_lock = __SPIN_LOCK_UNLOCKED(name.xa_lock), \ 120 .gfp_mask = (mask), \ 121 .rnode = NULL, \ 122 } 123 124 #define RADIX_TREE(name, mask) \ 125 struct radix_tree_root name = RADIX_TREE_INIT(name, mask) 126 127 #define INIT_RADIX_TREE(root, mask) \ 128 do { \ 129 spin_lock_init(&(root)->xa_lock); \ 130 (root)->gfp_mask = (mask); \ 131 (root)->rnode = NULL; \ 132 } while (0) 133 134 static inline bool radix_tree_empty(const struct radix_tree_root *root) 135 { 136 return root->rnode == NULL; 137 } 138 139 /** 140 * struct radix_tree_iter - radix tree iterator state 141 * 142 * @index: index of current slot 143 * @next_index: one beyond the last index for this chunk 144 * @tags: bit-mask for tag-iterating 145 * @node: node that contains current slot 146 * @shift: shift for the node that holds our slots 147 * 148 * This radix tree iterator works in terms of "chunks" of slots. A chunk is a 149 * subinterval of slots contained within one radix tree leaf node. It is 150 * described by a pointer to its first slot and a struct radix_tree_iter 151 * which holds the chunk's position in the tree and its size. For tagged 152 * iteration radix_tree_iter also holds the slots' bit-mask for one chosen 153 * radix tree tag. 154 */ 155 struct radix_tree_iter { 156 unsigned long index; 157 unsigned long next_index; 158 unsigned long tags; 159 struct radix_tree_node *node; 160 #ifdef CONFIG_RADIX_TREE_MULTIORDER 161 unsigned int shift; 162 #endif 163 }; 164 165 static inline unsigned int iter_shift(const struct radix_tree_iter *iter) 166 { 167 #ifdef CONFIG_RADIX_TREE_MULTIORDER 168 return iter->shift; 169 #else 170 return 0; 171 #endif 172 } 173 174 /** 175 * Radix-tree synchronization 176 * 177 * The radix-tree API requires that users provide all synchronisation (with 178 * specific exceptions, noted below). 179 * 180 * Synchronization of access to the data items being stored in the tree, and 181 * management of their lifetimes must be completely managed by API users. 182 * 183 * For API usage, in general, 184 * - any function _modifying_ the tree or tags (inserting or deleting 185 * items, setting or clearing tags) must exclude other modifications, and 186 * exclude any functions reading the tree. 187 * - any function _reading_ the tree or tags (looking up items or tags, 188 * gang lookups) must exclude modifications to the tree, but may occur 189 * concurrently with other readers. 190 * 191 * The notable exceptions to this rule are the following functions: 192 * __radix_tree_lookup 193 * radix_tree_lookup 194 * radix_tree_lookup_slot 195 * radix_tree_tag_get 196 * radix_tree_gang_lookup 197 * radix_tree_gang_lookup_slot 198 * radix_tree_gang_lookup_tag 199 * radix_tree_gang_lookup_tag_slot 200 * radix_tree_tagged 201 * 202 * The first 8 functions are able to be called locklessly, using RCU. The 203 * caller must ensure calls to these functions are made within rcu_read_lock() 204 * regions. Other readers (lock-free or otherwise) and modifications may be 205 * running concurrently. 206 * 207 * It is still required that the caller manage the synchronization and lifetimes 208 * of the items. So if RCU lock-free lookups are used, typically this would mean 209 * that the items have their own locks, or are amenable to lock-free access; and 210 * that the items are freed by RCU (or only freed after having been deleted from 211 * the radix tree *and* a synchronize_rcu() grace period). 212 * 213 * (Note, rcu_assign_pointer and rcu_dereference are not needed to control 214 * access to data items when inserting into or looking up from the radix tree) 215 * 216 * Note that the value returned by radix_tree_tag_get() may not be relied upon 217 * if only the RCU read lock is held. Functions to set/clear tags and to 218 * delete nodes running concurrently with it may affect its result such that 219 * two consecutive reads in the same locked section may return different 220 * values. If reliability is required, modification functions must also be 221 * excluded from concurrency. 222 * 223 * radix_tree_tagged is able to be called without locking or RCU. 224 */ 225 226 /** 227 * radix_tree_deref_slot - dereference a slot 228 * @slot: slot pointer, returned by radix_tree_lookup_slot 229 * 230 * For use with radix_tree_lookup_slot(). Caller must hold tree at least read 231 * locked across slot lookup and dereference. Not required if write lock is 232 * held (ie. items cannot be concurrently inserted). 233 * 234 * radix_tree_deref_retry must be used to confirm validity of the pointer if 235 * only the read lock is held. 236 * 237 * Return: entry stored in that slot. 238 */ 239 static inline void *radix_tree_deref_slot(void __rcu **slot) 240 { 241 return rcu_dereference(*slot); 242 } 243 244 /** 245 * radix_tree_deref_slot_protected - dereference a slot with tree lock held 246 * @slot: slot pointer, returned by radix_tree_lookup_slot 247 * 248 * Similar to radix_tree_deref_slot. The caller does not hold the RCU read 249 * lock but it must hold the tree lock to prevent parallel updates. 250 * 251 * Return: entry stored in that slot. 252 */ 253 static inline void *radix_tree_deref_slot_protected(void __rcu **slot, 254 spinlock_t *treelock) 255 { 256 return rcu_dereference_protected(*slot, lockdep_is_held(treelock)); 257 } 258 259 /** 260 * radix_tree_deref_retry - check radix_tree_deref_slot 261 * @arg: pointer returned by radix_tree_deref_slot 262 * Returns: 0 if retry is not required, otherwise retry is required 263 * 264 * radix_tree_deref_retry must be used with radix_tree_deref_slot. 265 */ 266 static inline int radix_tree_deref_retry(void *arg) 267 { 268 return unlikely(radix_tree_is_internal_node(arg)); 269 } 270 271 /** 272 * radix_tree_exceptional_entry - radix_tree_deref_slot gave exceptional entry? 273 * @arg: value returned by radix_tree_deref_slot 274 * Returns: 0 if well-aligned pointer, non-0 if exceptional entry. 275 */ 276 static inline int radix_tree_exceptional_entry(void *arg) 277 { 278 /* Not unlikely because radix_tree_exception often tested first */ 279 return (unsigned long)arg & RADIX_TREE_EXCEPTIONAL_ENTRY; 280 } 281 282 /** 283 * radix_tree_exception - radix_tree_deref_slot returned either exception? 284 * @arg: value returned by radix_tree_deref_slot 285 * Returns: 0 if well-aligned pointer, non-0 if either kind of exception. 286 */ 287 static inline int radix_tree_exception(void *arg) 288 { 289 return unlikely((unsigned long)arg & RADIX_TREE_ENTRY_MASK); 290 } 291 292 int __radix_tree_create(struct radix_tree_root *, unsigned long index, 293 unsigned order, struct radix_tree_node **nodep, 294 void __rcu ***slotp); 295 int __radix_tree_insert(struct radix_tree_root *, unsigned long index, 296 unsigned order, void *); 297 static inline int radix_tree_insert(struct radix_tree_root *root, 298 unsigned long index, void *entry) 299 { 300 return __radix_tree_insert(root, index, 0, entry); 301 } 302 void *__radix_tree_lookup(const struct radix_tree_root *, unsigned long index, 303 struct radix_tree_node **nodep, void __rcu ***slotp); 304 void *radix_tree_lookup(const struct radix_tree_root *, unsigned long); 305 void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *, 306 unsigned long index); 307 typedef void (*radix_tree_update_node_t)(struct radix_tree_node *); 308 void __radix_tree_replace(struct radix_tree_root *, struct radix_tree_node *, 309 void __rcu **slot, void *entry, 310 radix_tree_update_node_t update_node); 311 void radix_tree_iter_replace(struct radix_tree_root *, 312 const struct radix_tree_iter *, void __rcu **slot, void *entry); 313 void radix_tree_replace_slot(struct radix_tree_root *, 314 void __rcu **slot, void *entry); 315 void __radix_tree_delete_node(struct radix_tree_root *, 316 struct radix_tree_node *, 317 radix_tree_update_node_t update_node); 318 void radix_tree_iter_delete(struct radix_tree_root *, 319 struct radix_tree_iter *iter, void __rcu **slot); 320 void *radix_tree_delete_item(struct radix_tree_root *, unsigned long, void *); 321 void *radix_tree_delete(struct radix_tree_root *, unsigned long); 322 void radix_tree_clear_tags(struct radix_tree_root *, struct radix_tree_node *, 323 void __rcu **slot); 324 unsigned int radix_tree_gang_lookup(const struct radix_tree_root *, 325 void **results, unsigned long first_index, 326 unsigned int max_items); 327 unsigned int radix_tree_gang_lookup_slot(const struct radix_tree_root *, 328 void __rcu ***results, unsigned long *indices, 329 unsigned long first_index, unsigned int max_items); 330 int radix_tree_preload(gfp_t gfp_mask); 331 int radix_tree_maybe_preload(gfp_t gfp_mask); 332 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order); 333 void radix_tree_init(void); 334 void *radix_tree_tag_set(struct radix_tree_root *, 335 unsigned long index, unsigned int tag); 336 void *radix_tree_tag_clear(struct radix_tree_root *, 337 unsigned long index, unsigned int tag); 338 int radix_tree_tag_get(const struct radix_tree_root *, 339 unsigned long index, unsigned int tag); 340 void radix_tree_iter_tag_set(struct radix_tree_root *, 341 const struct radix_tree_iter *iter, unsigned int tag); 342 void radix_tree_iter_tag_clear(struct radix_tree_root *, 343 const struct radix_tree_iter *iter, unsigned int tag); 344 unsigned int radix_tree_gang_lookup_tag(const struct radix_tree_root *, 345 void **results, unsigned long first_index, 346 unsigned int max_items, unsigned int tag); 347 unsigned int radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *, 348 void __rcu ***results, unsigned long first_index, 349 unsigned int max_items, unsigned int tag); 350 int radix_tree_tagged(const struct radix_tree_root *, unsigned int tag); 351 352 static inline void radix_tree_preload_end(void) 353 { 354 preempt_enable(); 355 } 356 357 int radix_tree_split_preload(unsigned old_order, unsigned new_order, gfp_t); 358 int radix_tree_split(struct radix_tree_root *, unsigned long index, 359 unsigned new_order); 360 int radix_tree_join(struct radix_tree_root *, unsigned long index, 361 unsigned new_order, void *); 362 363 void __rcu **idr_get_free(struct radix_tree_root *root, 364 struct radix_tree_iter *iter, gfp_t gfp, 365 unsigned long max); 366 367 enum { 368 RADIX_TREE_ITER_TAG_MASK = 0x0f, /* tag index in lower nybble */ 369 RADIX_TREE_ITER_TAGGED = 0x10, /* lookup tagged slots */ 370 RADIX_TREE_ITER_CONTIG = 0x20, /* stop at first hole */ 371 }; 372 373 /** 374 * radix_tree_iter_init - initialize radix tree iterator 375 * 376 * @iter: pointer to iterator state 377 * @start: iteration starting index 378 * Returns: NULL 379 */ 380 static __always_inline void __rcu ** 381 radix_tree_iter_init(struct radix_tree_iter *iter, unsigned long start) 382 { 383 /* 384 * Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it 385 * in the case of a successful tagged chunk lookup. If the lookup was 386 * unsuccessful or non-tagged then nobody cares about ->tags. 387 * 388 * Set index to zero to bypass next_index overflow protection. 389 * See the comment in radix_tree_next_chunk() for details. 390 */ 391 iter->index = 0; 392 iter->next_index = start; 393 return NULL; 394 } 395 396 /** 397 * radix_tree_next_chunk - find next chunk of slots for iteration 398 * 399 * @root: radix tree root 400 * @iter: iterator state 401 * @flags: RADIX_TREE_ITER_* flags and tag index 402 * Returns: pointer to chunk first slot, or NULL if there no more left 403 * 404 * This function looks up the next chunk in the radix tree starting from 405 * @iter->next_index. It returns a pointer to the chunk's first slot. 406 * Also it fills @iter with data about chunk: position in the tree (index), 407 * its end (next_index), and constructs a bit mask for tagged iterating (tags). 408 */ 409 void __rcu **radix_tree_next_chunk(const struct radix_tree_root *, 410 struct radix_tree_iter *iter, unsigned flags); 411 412 /** 413 * radix_tree_iter_lookup - look up an index in the radix tree 414 * @root: radix tree root 415 * @iter: iterator state 416 * @index: key to look up 417 * 418 * If @index is present in the radix tree, this function returns the slot 419 * containing it and updates @iter to describe the entry. If @index is not 420 * present, it returns NULL. 421 */ 422 static inline void __rcu ** 423 radix_tree_iter_lookup(const struct radix_tree_root *root, 424 struct radix_tree_iter *iter, unsigned long index) 425 { 426 radix_tree_iter_init(iter, index); 427 return radix_tree_next_chunk(root, iter, RADIX_TREE_ITER_CONTIG); 428 } 429 430 /** 431 * radix_tree_iter_find - find a present entry 432 * @root: radix tree root 433 * @iter: iterator state 434 * @index: start location 435 * 436 * This function returns the slot containing the entry with the lowest index 437 * which is at least @index. If @index is larger than any present entry, this 438 * function returns NULL. The @iter is updated to describe the entry found. 439 */ 440 static inline void __rcu ** 441 radix_tree_iter_find(const struct radix_tree_root *root, 442 struct radix_tree_iter *iter, unsigned long index) 443 { 444 radix_tree_iter_init(iter, index); 445 return radix_tree_next_chunk(root, iter, 0); 446 } 447 448 /** 449 * radix_tree_iter_retry - retry this chunk of the iteration 450 * @iter: iterator state 451 * 452 * If we iterate over a tree protected only by the RCU lock, a race 453 * against deletion or creation may result in seeing a slot for which 454 * radix_tree_deref_retry() returns true. If so, call this function 455 * and continue the iteration. 456 */ 457 static inline __must_check 458 void __rcu **radix_tree_iter_retry(struct radix_tree_iter *iter) 459 { 460 iter->next_index = iter->index; 461 iter->tags = 0; 462 return NULL; 463 } 464 465 static inline unsigned long 466 __radix_tree_iter_add(struct radix_tree_iter *iter, unsigned long slots) 467 { 468 return iter->index + (slots << iter_shift(iter)); 469 } 470 471 /** 472 * radix_tree_iter_resume - resume iterating when the chunk may be invalid 473 * @slot: pointer to current slot 474 * @iter: iterator state 475 * Returns: New slot pointer 476 * 477 * If the iterator needs to release then reacquire a lock, the chunk may 478 * have been invalidated by an insertion or deletion. Call this function 479 * before releasing the lock to continue the iteration from the next index. 480 */ 481 void __rcu **__must_check radix_tree_iter_resume(void __rcu **slot, 482 struct radix_tree_iter *iter); 483 484 /** 485 * radix_tree_chunk_size - get current chunk size 486 * 487 * @iter: pointer to radix tree iterator 488 * Returns: current chunk size 489 */ 490 static __always_inline long 491 radix_tree_chunk_size(struct radix_tree_iter *iter) 492 { 493 return (iter->next_index - iter->index) >> iter_shift(iter); 494 } 495 496 #ifdef CONFIG_RADIX_TREE_MULTIORDER 497 void __rcu **__radix_tree_next_slot(void __rcu **slot, 498 struct radix_tree_iter *iter, unsigned flags); 499 #else 500 /* Can't happen without sibling entries, but the compiler can't tell that */ 501 static inline void __rcu **__radix_tree_next_slot(void __rcu **slot, 502 struct radix_tree_iter *iter, unsigned flags) 503 { 504 return slot; 505 } 506 #endif 507 508 /** 509 * radix_tree_next_slot - find next slot in chunk 510 * 511 * @slot: pointer to current slot 512 * @iter: pointer to interator state 513 * @flags: RADIX_TREE_ITER_*, should be constant 514 * Returns: pointer to next slot, or NULL if there no more left 515 * 516 * This function updates @iter->index in the case of a successful lookup. 517 * For tagged lookup it also eats @iter->tags. 518 * 519 * There are several cases where 'slot' can be passed in as NULL to this 520 * function. These cases result from the use of radix_tree_iter_resume() or 521 * radix_tree_iter_retry(). In these cases we don't end up dereferencing 522 * 'slot' because either: 523 * a) we are doing tagged iteration and iter->tags has been set to 0, or 524 * b) we are doing non-tagged iteration, and iter->index and iter->next_index 525 * have been set up so that radix_tree_chunk_size() returns 1 or 0. 526 */ 527 static __always_inline void __rcu **radix_tree_next_slot(void __rcu **slot, 528 struct radix_tree_iter *iter, unsigned flags) 529 { 530 if (flags & RADIX_TREE_ITER_TAGGED) { 531 iter->tags >>= 1; 532 if (unlikely(!iter->tags)) 533 return NULL; 534 if (likely(iter->tags & 1ul)) { 535 iter->index = __radix_tree_iter_add(iter, 1); 536 slot++; 537 goto found; 538 } 539 if (!(flags & RADIX_TREE_ITER_CONTIG)) { 540 unsigned offset = __ffs(iter->tags); 541 542 iter->tags >>= offset++; 543 iter->index = __radix_tree_iter_add(iter, offset); 544 slot += offset; 545 goto found; 546 } 547 } else { 548 long count = radix_tree_chunk_size(iter); 549 550 while (--count > 0) { 551 slot++; 552 iter->index = __radix_tree_iter_add(iter, 1); 553 554 if (likely(*slot)) 555 goto found; 556 if (flags & RADIX_TREE_ITER_CONTIG) { 557 /* forbid switching to the next chunk */ 558 iter->next_index = 0; 559 break; 560 } 561 } 562 } 563 return NULL; 564 565 found: 566 if (unlikely(radix_tree_is_internal_node(rcu_dereference_raw(*slot)))) 567 return __radix_tree_next_slot(slot, iter, flags); 568 return slot; 569 } 570 571 /** 572 * radix_tree_for_each_slot - iterate over non-empty slots 573 * 574 * @slot: the void** variable for pointer to slot 575 * @root: the struct radix_tree_root pointer 576 * @iter: the struct radix_tree_iter pointer 577 * @start: iteration starting index 578 * 579 * @slot points to radix tree slot, @iter->index contains its index. 580 */ 581 #define radix_tree_for_each_slot(slot, root, iter, start) \ 582 for (slot = radix_tree_iter_init(iter, start) ; \ 583 slot || (slot = radix_tree_next_chunk(root, iter, 0)) ; \ 584 slot = radix_tree_next_slot(slot, iter, 0)) 585 586 /** 587 * radix_tree_for_each_contig - iterate over contiguous slots 588 * 589 * @slot: the void** variable for pointer to slot 590 * @root: the struct radix_tree_root pointer 591 * @iter: the struct radix_tree_iter pointer 592 * @start: iteration starting index 593 * 594 * @slot points to radix tree slot, @iter->index contains its index. 595 */ 596 #define radix_tree_for_each_contig(slot, root, iter, start) \ 597 for (slot = radix_tree_iter_init(iter, start) ; \ 598 slot || (slot = radix_tree_next_chunk(root, iter, \ 599 RADIX_TREE_ITER_CONTIG)) ; \ 600 slot = radix_tree_next_slot(slot, iter, \ 601 RADIX_TREE_ITER_CONTIG)) 602 603 /** 604 * radix_tree_for_each_tagged - iterate over tagged slots 605 * 606 * @slot: the void** variable for pointer to slot 607 * @root: the struct radix_tree_root pointer 608 * @iter: the struct radix_tree_iter pointer 609 * @start: iteration starting index 610 * @tag: tag index 611 * 612 * @slot points to radix tree slot, @iter->index contains its index. 613 */ 614 #define radix_tree_for_each_tagged(slot, root, iter, start, tag) \ 615 for (slot = radix_tree_iter_init(iter, start) ; \ 616 slot || (slot = radix_tree_next_chunk(root, iter, \ 617 RADIX_TREE_ITER_TAGGED | tag)) ; \ 618 slot = radix_tree_next_slot(slot, iter, \ 619 RADIX_TREE_ITER_TAGGED | tag)) 620 621 #endif /* _LINUX_RADIX_TREE_H */ 622