xref: /linux-6.15/include/linux/pwm.h (revision 2ea25aab)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_PWM_H
3 #define __LINUX_PWM_H
4 
5 #include <linux/device.h>
6 #include <linux/err.h>
7 #include <linux/module.h>
8 #include <linux/mutex.h>
9 #include <linux/of.h>
10 
11 MODULE_IMPORT_NS(PWM);
12 
13 struct pwm_chip;
14 
15 /**
16  * enum pwm_polarity - polarity of a PWM signal
17  * @PWM_POLARITY_NORMAL: a high signal for the duration of the duty-
18  * cycle, followed by a low signal for the remainder of the pulse
19  * period
20  * @PWM_POLARITY_INVERSED: a low signal for the duration of the duty-
21  * cycle, followed by a high signal for the remainder of the pulse
22  * period
23  */
24 enum pwm_polarity {
25 	PWM_POLARITY_NORMAL,
26 	PWM_POLARITY_INVERSED,
27 };
28 
29 /**
30  * struct pwm_args - board-dependent PWM arguments
31  * @period: reference period
32  * @polarity: reference polarity
33  *
34  * This structure describes board-dependent arguments attached to a PWM
35  * device. These arguments are usually retrieved from the PWM lookup table or
36  * device tree.
37  *
38  * Do not confuse this with the PWM state: PWM arguments represent the initial
39  * configuration that users want to use on this PWM device rather than the
40  * current PWM hardware state.
41  */
42 struct pwm_args {
43 	u64 period;
44 	enum pwm_polarity polarity;
45 };
46 
47 enum {
48 	PWMF_REQUESTED = 0,
49 	PWMF_EXPORTED = 1,
50 };
51 
52 /**
53  * struct pwm_waveform - description of a PWM waveform
54  * @period_length_ns: PWM period
55  * @duty_length_ns: PWM duty cycle
56  * @duty_offset_ns: offset of the rising edge from the period's start
57  *
58  * This is a representation of a PWM waveform alternative to struct pwm_state
59  * below. It's more expressive than struct pwm_state as it contains a
60  * duty_offset_ns and so can represent offsets other than zero (with .polarity =
61  * PWM_POLARITY_NORMAL) and period - duty_cycle (.polarity =
62  * PWM_POLARITY_INVERSED).
63  *
64  * Note there is no explicit bool for enabled. A "disabled" PWM is represented
65  * by .period_length_ns = 0. Note further that the behaviour of a "disabled" PWM
66  * is undefined. Depending on the hardware's capabilities it might drive the
67  * active or inactive level, go high-z or even continue to toggle.
68  *
69  * The unit for all three members is nanoseconds.
70  */
71 struct pwm_waveform {
72 	u64 period_length_ns;
73 	u64 duty_length_ns;
74 	u64 duty_offset_ns;
75 };
76 
77 /*
78  * struct pwm_state - state of a PWM channel
79  * @period: PWM period (in nanoseconds)
80  * @duty_cycle: PWM duty cycle (in nanoseconds)
81  * @polarity: PWM polarity
82  * @enabled: PWM enabled status
83  * @usage_power: If set, the PWM driver is only required to maintain the power
84  *               output but has more freedom regarding signal form.
85  *               If supported, the signal can be optimized, for example to
86  *               improve EMI by phase shifting individual channels.
87  */
88 struct pwm_state {
89 	u64 period;
90 	u64 duty_cycle;
91 	enum pwm_polarity polarity;
92 	bool enabled;
93 	bool usage_power;
94 };
95 
96 /**
97  * struct pwm_device - PWM channel object
98  * @label: name of the PWM device
99  * @flags: flags associated with the PWM device
100  * @hwpwm: per-chip relative index of the PWM device
101  * @chip: PWM chip providing this PWM device
102  * @args: PWM arguments
103  * @state: last applied state
104  * @last: last implemented state (for PWM_DEBUG)
105  */
106 struct pwm_device {
107 	const char *label;
108 	unsigned long flags;
109 	unsigned int hwpwm;
110 	struct pwm_chip *chip;
111 
112 	struct pwm_args args;
113 	struct pwm_state state;
114 	struct pwm_state last;
115 };
116 
117 /**
118  * pwm_get_state() - retrieve the current PWM state
119  * @pwm: PWM device
120  * @state: state to fill with the current PWM state
121  *
122  * The returned PWM state represents the state that was applied by a previous call to
123  * pwm_apply_might_sleep(). Drivers may have to slightly tweak that state before programming it to
124  * hardware. If pwm_apply_might_sleep() was never called, this returns either the current hardware
125  * state (if supported) or the default settings.
126  */
127 static inline void pwm_get_state(const struct pwm_device *pwm,
128 				 struct pwm_state *state)
129 {
130 	*state = pwm->state;
131 }
132 
133 static inline bool pwm_is_enabled(const struct pwm_device *pwm)
134 {
135 	struct pwm_state state;
136 
137 	pwm_get_state(pwm, &state);
138 
139 	return state.enabled;
140 }
141 
142 static inline u64 pwm_get_period(const struct pwm_device *pwm)
143 {
144 	struct pwm_state state;
145 
146 	pwm_get_state(pwm, &state);
147 
148 	return state.period;
149 }
150 
151 static inline u64 pwm_get_duty_cycle(const struct pwm_device *pwm)
152 {
153 	struct pwm_state state;
154 
155 	pwm_get_state(pwm, &state);
156 
157 	return state.duty_cycle;
158 }
159 
160 static inline enum pwm_polarity pwm_get_polarity(const struct pwm_device *pwm)
161 {
162 	struct pwm_state state;
163 
164 	pwm_get_state(pwm, &state);
165 
166 	return state.polarity;
167 }
168 
169 static inline void pwm_get_args(const struct pwm_device *pwm,
170 				struct pwm_args *args)
171 {
172 	*args = pwm->args;
173 }
174 
175 /**
176  * pwm_init_state() - prepare a new state to be applied with pwm_apply_might_sleep()
177  * @pwm: PWM device
178  * @state: state to fill with the prepared PWM state
179  *
180  * This functions prepares a state that can later be tweaked and applied
181  * to the PWM device with pwm_apply_might_sleep(). This is a convenient function
182  * that first retrieves the current PWM state and the replaces the period
183  * and polarity fields with the reference values defined in pwm->args.
184  * Once the function returns, you can adjust the ->enabled and ->duty_cycle
185  * fields according to your needs before calling pwm_apply_might_sleep().
186  *
187  * ->duty_cycle is initially set to zero to avoid cases where the current
188  * ->duty_cycle value exceed the pwm_args->period one, which would trigger
189  * an error if the user calls pwm_apply_might_sleep() without adjusting ->duty_cycle
190  * first.
191  */
192 static inline void pwm_init_state(const struct pwm_device *pwm,
193 				  struct pwm_state *state)
194 {
195 	struct pwm_args args;
196 
197 	/* First get the current state. */
198 	pwm_get_state(pwm, state);
199 
200 	/* Then fill it with the reference config */
201 	pwm_get_args(pwm, &args);
202 
203 	state->period = args.period;
204 	state->polarity = args.polarity;
205 	state->duty_cycle = 0;
206 	state->usage_power = false;
207 }
208 
209 /**
210  * pwm_get_relative_duty_cycle() - Get a relative duty cycle value
211  * @state: PWM state to extract the duty cycle from
212  * @scale: target scale of the relative duty cycle
213  *
214  * This functions converts the absolute duty cycle stored in @state (expressed
215  * in nanosecond) into a value relative to the period.
216  *
217  * For example if you want to get the duty_cycle expressed in percent, call:
218  *
219  * pwm_get_state(pwm, &state);
220  * duty = pwm_get_relative_duty_cycle(&state, 100);
221  */
222 static inline unsigned int
223 pwm_get_relative_duty_cycle(const struct pwm_state *state, unsigned int scale)
224 {
225 	if (!state->period)
226 		return 0;
227 
228 	return DIV_ROUND_CLOSEST_ULL((u64)state->duty_cycle * scale,
229 				     state->period);
230 }
231 
232 /**
233  * pwm_set_relative_duty_cycle() - Set a relative duty cycle value
234  * @state: PWM state to fill
235  * @duty_cycle: relative duty cycle value
236  * @scale: scale in which @duty_cycle is expressed
237  *
238  * This functions converts a relative into an absolute duty cycle (expressed
239  * in nanoseconds), and puts the result in state->duty_cycle.
240  *
241  * For example if you want to configure a 50% duty cycle, call:
242  *
243  * pwm_init_state(pwm, &state);
244  * pwm_set_relative_duty_cycle(&state, 50, 100);
245  * pwm_apply_might_sleep(pwm, &state);
246  *
247  * This functions returns -EINVAL if @duty_cycle and/or @scale are
248  * inconsistent (@scale == 0 or @duty_cycle > @scale).
249  */
250 static inline int
251 pwm_set_relative_duty_cycle(struct pwm_state *state, unsigned int duty_cycle,
252 			    unsigned int scale)
253 {
254 	if (!scale || duty_cycle > scale)
255 		return -EINVAL;
256 
257 	state->duty_cycle = DIV_ROUND_CLOSEST_ULL((u64)duty_cycle *
258 						  state->period,
259 						  scale);
260 
261 	return 0;
262 }
263 
264 /**
265  * struct pwm_capture - PWM capture data
266  * @period: period of the PWM signal (in nanoseconds)
267  * @duty_cycle: duty cycle of the PWM signal (in nanoseconds)
268  */
269 struct pwm_capture {
270 	unsigned int period;
271 	unsigned int duty_cycle;
272 };
273 
274 /**
275  * struct pwm_ops - PWM controller operations
276  * @request: optional hook for requesting a PWM
277  * @free: optional hook for freeing a PWM
278  * @capture: capture and report PWM signal
279  * @sizeof_wfhw: size (in bytes) of driver specific waveform presentation
280  * @round_waveform_tohw: convert a struct pwm_waveform to driver specific presentation
281  * @round_waveform_fromhw: convert a driver specific waveform presentation to struct pwm_waveform
282  * @read_waveform: read driver specific waveform presentation from hardware
283  * @write_waveform: write driver specific waveform presentation to hardware
284  * @apply: atomically apply a new PWM config
285  * @get_state: get the current PWM state.
286  */
287 struct pwm_ops {
288 	int (*request)(struct pwm_chip *chip, struct pwm_device *pwm);
289 	void (*free)(struct pwm_chip *chip, struct pwm_device *pwm);
290 	int (*capture)(struct pwm_chip *chip, struct pwm_device *pwm,
291 		       struct pwm_capture *result, unsigned long timeout);
292 
293 	size_t sizeof_wfhw;
294 	int (*round_waveform_tohw)(struct pwm_chip *chip, struct pwm_device *pwm,
295 				   const struct pwm_waveform *wf, void *wfhw);
296 	int (*round_waveform_fromhw)(struct pwm_chip *chip, struct pwm_device *pwm,
297 				     const void *wfhw, struct pwm_waveform *wf);
298 	int (*read_waveform)(struct pwm_chip *chip, struct pwm_device *pwm,
299 			    void *wfhw);
300 	int (*write_waveform)(struct pwm_chip *chip, struct pwm_device *pwm,
301 			      const void *wfhw);
302 
303 	int (*apply)(struct pwm_chip *chip, struct pwm_device *pwm,
304 		     const struct pwm_state *state);
305 	int (*get_state)(struct pwm_chip *chip, struct pwm_device *pwm,
306 			 struct pwm_state *state);
307 };
308 
309 /**
310  * struct pwm_chip - abstract a PWM controller
311  * @dev: device providing the PWMs
312  * @ops: callbacks for this PWM controller
313  * @owner: module providing this chip
314  * @id: unique number of this PWM chip
315  * @npwm: number of PWMs controlled by this chip
316  * @of_xlate: request a PWM device given a device tree PWM specifier
317  * @atomic: can the driver's ->apply() be called in atomic context
318  * @uses_pwmchip_alloc: signals if pwmchip_allow was used to allocate this chip
319  * @operational: signals if the chip can be used (or is already deregistered)
320  * @nonatomic_lock: mutex for nonatomic chips
321  * @atomic_lock: mutex for atomic chips
322  * @pwms: array of PWM devices allocated by the framework
323  */
324 struct pwm_chip {
325 	struct device dev;
326 	const struct pwm_ops *ops;
327 	struct module *owner;
328 	unsigned int id;
329 	unsigned int npwm;
330 
331 	struct pwm_device * (*of_xlate)(struct pwm_chip *chip,
332 					const struct of_phandle_args *args);
333 	bool atomic;
334 
335 	/* only used internally by the PWM framework */
336 	bool uses_pwmchip_alloc;
337 	bool operational;
338 	union {
339 		/*
340 		 * depending on the chip being atomic or not either the mutex or
341 		 * the spinlock is used. It protects .operational and
342 		 * synchronizes the callbacks in .ops
343 		 */
344 		struct mutex nonatomic_lock;
345 		spinlock_t atomic_lock;
346 	};
347 	struct pwm_device pwms[] __counted_by(npwm);
348 };
349 
350 static inline struct device *pwmchip_parent(const struct pwm_chip *chip)
351 {
352 	return chip->dev.parent;
353 }
354 
355 static inline void *pwmchip_get_drvdata(struct pwm_chip *chip)
356 {
357 	return dev_get_drvdata(&chip->dev);
358 }
359 
360 static inline void pwmchip_set_drvdata(struct pwm_chip *chip, void *data)
361 {
362 	dev_set_drvdata(&chip->dev, data);
363 }
364 
365 #if IS_ENABLED(CONFIG_PWM)
366 
367 /* PWM consumer APIs */
368 int pwm_round_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf);
369 int pwm_get_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf);
370 int pwm_set_waveform_might_sleep(struct pwm_device *pwm, const struct pwm_waveform *wf, bool exact);
371 int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state);
372 int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state);
373 int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state);
374 int pwm_adjust_config(struct pwm_device *pwm);
375 
376 /**
377  * pwm_config() - change a PWM device configuration
378  * @pwm: PWM device
379  * @duty_ns: "on" time (in nanoseconds)
380  * @period_ns: duration (in nanoseconds) of one cycle
381  *
382  * Returns: 0 on success or a negative error code on failure.
383  */
384 static inline int pwm_config(struct pwm_device *pwm, int duty_ns,
385 			     int period_ns)
386 {
387 	struct pwm_state state;
388 
389 	if (!pwm)
390 		return -EINVAL;
391 
392 	if (duty_ns < 0 || period_ns < 0)
393 		return -EINVAL;
394 
395 	pwm_get_state(pwm, &state);
396 	if (state.duty_cycle == duty_ns && state.period == period_ns)
397 		return 0;
398 
399 	state.duty_cycle = duty_ns;
400 	state.period = period_ns;
401 	return pwm_apply_might_sleep(pwm, &state);
402 }
403 
404 /**
405  * pwm_enable() - start a PWM output toggling
406  * @pwm: PWM device
407  *
408  * Returns: 0 on success or a negative error code on failure.
409  */
410 static inline int pwm_enable(struct pwm_device *pwm)
411 {
412 	struct pwm_state state;
413 
414 	if (!pwm)
415 		return -EINVAL;
416 
417 	pwm_get_state(pwm, &state);
418 	if (state.enabled)
419 		return 0;
420 
421 	state.enabled = true;
422 	return pwm_apply_might_sleep(pwm, &state);
423 }
424 
425 /**
426  * pwm_disable() - stop a PWM output toggling
427  * @pwm: PWM device
428  */
429 static inline void pwm_disable(struct pwm_device *pwm)
430 {
431 	struct pwm_state state;
432 
433 	if (!pwm)
434 		return;
435 
436 	pwm_get_state(pwm, &state);
437 	if (!state.enabled)
438 		return;
439 
440 	state.enabled = false;
441 	pwm_apply_might_sleep(pwm, &state);
442 }
443 
444 /**
445  * pwm_might_sleep() - is pwm_apply_atomic() supported?
446  * @pwm: PWM device
447  *
448  * Returns: false if pwm_apply_atomic() can be called from atomic context.
449  */
450 static inline bool pwm_might_sleep(struct pwm_device *pwm)
451 {
452 	return !pwm->chip->atomic;
453 }
454 
455 /* PWM provider APIs */
456 void pwmchip_put(struct pwm_chip *chip);
457 struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv);
458 struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv);
459 
460 int __pwmchip_add(struct pwm_chip *chip, struct module *owner);
461 #define pwmchip_add(chip) __pwmchip_add(chip, THIS_MODULE)
462 void pwmchip_remove(struct pwm_chip *chip);
463 
464 int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner);
465 #define devm_pwmchip_add(dev, chip) __devm_pwmchip_add(dev, chip, THIS_MODULE)
466 
467 struct pwm_device *of_pwm_xlate_with_flags(struct pwm_chip *chip,
468 		const struct of_phandle_args *args);
469 struct pwm_device *of_pwm_single_xlate(struct pwm_chip *chip,
470 				       const struct of_phandle_args *args);
471 
472 struct pwm_device *pwm_get(struct device *dev, const char *con_id);
473 void pwm_put(struct pwm_device *pwm);
474 
475 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id);
476 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
477 				       struct fwnode_handle *fwnode,
478 				       const char *con_id);
479 #else
480 static inline bool pwm_might_sleep(struct pwm_device *pwm)
481 {
482 	return true;
483 }
484 
485 static inline int pwm_apply_might_sleep(struct pwm_device *pwm,
486 					const struct pwm_state *state)
487 {
488 	might_sleep();
489 	return -EOPNOTSUPP;
490 }
491 
492 static inline int pwm_apply_atomic(struct pwm_device *pwm,
493 				   const struct pwm_state *state)
494 {
495 	return -EOPNOTSUPP;
496 }
497 
498 static inline int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state)
499 {
500 	return -EOPNOTSUPP;
501 }
502 
503 static inline int pwm_adjust_config(struct pwm_device *pwm)
504 {
505 	return -EOPNOTSUPP;
506 }
507 
508 static inline int pwm_config(struct pwm_device *pwm, int duty_ns,
509 			     int period_ns)
510 {
511 	might_sleep();
512 	return -EINVAL;
513 }
514 
515 static inline int pwm_enable(struct pwm_device *pwm)
516 {
517 	might_sleep();
518 	return -EINVAL;
519 }
520 
521 static inline void pwm_disable(struct pwm_device *pwm)
522 {
523 	might_sleep();
524 }
525 
526 static inline void pwmchip_put(struct pwm_chip *chip)
527 {
528 }
529 
530 static inline struct pwm_chip *pwmchip_alloc(struct device *parent,
531 					     unsigned int npwm,
532 					     size_t sizeof_priv)
533 {
534 	return ERR_PTR(-EINVAL);
535 }
536 
537 static inline struct pwm_chip *devm_pwmchip_alloc(struct device *parent,
538 						  unsigned int npwm,
539 						  size_t sizeof_priv)
540 {
541 	return pwmchip_alloc(parent, npwm, sizeof_priv);
542 }
543 
544 static inline int pwmchip_add(struct pwm_chip *chip)
545 {
546 	return -EINVAL;
547 }
548 
549 static inline int pwmchip_remove(struct pwm_chip *chip)
550 {
551 	return -EINVAL;
552 }
553 
554 static inline int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip)
555 {
556 	return -EINVAL;
557 }
558 
559 static inline struct pwm_device *pwm_get(struct device *dev,
560 					 const char *consumer)
561 {
562 	might_sleep();
563 	return ERR_PTR(-ENODEV);
564 }
565 
566 static inline void pwm_put(struct pwm_device *pwm)
567 {
568 	might_sleep();
569 }
570 
571 static inline struct pwm_device *devm_pwm_get(struct device *dev,
572 					      const char *consumer)
573 {
574 	might_sleep();
575 	return ERR_PTR(-ENODEV);
576 }
577 
578 static inline struct pwm_device *
579 devm_fwnode_pwm_get(struct device *dev, struct fwnode_handle *fwnode,
580 		    const char *con_id)
581 {
582 	might_sleep();
583 	return ERR_PTR(-ENODEV);
584 }
585 #endif
586 
587 static inline void pwm_apply_args(struct pwm_device *pwm)
588 {
589 	struct pwm_state state = { };
590 
591 	/*
592 	 * PWM users calling pwm_apply_args() expect to have a fresh config
593 	 * where the polarity and period are set according to pwm_args info.
594 	 * The problem is, polarity can only be changed when the PWM is
595 	 * disabled.
596 	 *
597 	 * PWM drivers supporting hardware readout may declare the PWM device
598 	 * as enabled, and prevent polarity setting, which changes from the
599 	 * existing behavior, where all PWM devices are declared as disabled
600 	 * at startup (even if they are actually enabled), thus authorizing
601 	 * polarity setting.
602 	 *
603 	 * To fulfill this requirement, we apply a new state which disables
604 	 * the PWM device and set the reference period and polarity config.
605 	 *
606 	 * Note that PWM users requiring a smooth handover between the
607 	 * bootloader and the kernel (like critical regulators controlled by
608 	 * PWM devices) will have to switch to the atomic API and avoid calling
609 	 * pwm_apply_args().
610 	 */
611 
612 	state.enabled = false;
613 	state.polarity = pwm->args.polarity;
614 	state.period = pwm->args.period;
615 	state.usage_power = false;
616 
617 	pwm_apply_might_sleep(pwm, &state);
618 }
619 
620 struct pwm_lookup {
621 	struct list_head list;
622 	const char *provider;
623 	unsigned int index;
624 	const char *dev_id;
625 	const char *con_id;
626 	unsigned int period;
627 	enum pwm_polarity polarity;
628 	const char *module; /* optional, may be NULL */
629 };
630 
631 #define PWM_LOOKUP_WITH_MODULE(_provider, _index, _dev_id, _con_id,	\
632 			       _period, _polarity, _module)		\
633 	{								\
634 		.provider = _provider,					\
635 		.index = _index,					\
636 		.dev_id = _dev_id,					\
637 		.con_id = _con_id,					\
638 		.period = _period,					\
639 		.polarity = _polarity,					\
640 		.module = _module,					\
641 	}
642 
643 #define PWM_LOOKUP(_provider, _index, _dev_id, _con_id, _period, _polarity) \
644 	PWM_LOOKUP_WITH_MODULE(_provider, _index, _dev_id, _con_id, _period, \
645 			       _polarity, NULL)
646 
647 #if IS_ENABLED(CONFIG_PWM)
648 void pwm_add_table(struct pwm_lookup *table, size_t num);
649 void pwm_remove_table(struct pwm_lookup *table, size_t num);
650 #else
651 static inline void pwm_add_table(struct pwm_lookup *table, size_t num)
652 {
653 }
654 
655 static inline void pwm_remove_table(struct pwm_lookup *table, size_t num)
656 {
657 }
658 #endif
659 
660 #endif /* __LINUX_PWM_H */
661