1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_PTRACE_H 3 #define _LINUX_PTRACE_H 4 5 #include <linux/compiler.h> /* For unlikely. */ 6 #include <linux/sched.h> /* For struct task_struct. */ 7 #include <linux/sched/signal.h> /* For send_sig(), same_thread_group(), etc. */ 8 #include <linux/err.h> /* for IS_ERR_VALUE */ 9 #include <linux/bug.h> /* For BUG_ON. */ 10 #include <linux/pid_namespace.h> /* For task_active_pid_ns. */ 11 #include <uapi/linux/ptrace.h> 12 13 extern int ptrace_access_vm(struct task_struct *tsk, unsigned long addr, 14 void *buf, int len, unsigned int gup_flags); 15 16 /* 17 * Ptrace flags 18 * 19 * The owner ship rules for task->ptrace which holds the ptrace 20 * flags is simple. When a task is running it owns it's task->ptrace 21 * flags. When the a task is stopped the ptracer owns task->ptrace. 22 */ 23 24 #define PT_SEIZED 0x00010000 /* SEIZE used, enable new behavior */ 25 #define PT_PTRACED 0x00000001 26 #define PT_DTRACE 0x00000002 /* delayed trace (used on m68k, i386) */ 27 28 #define PT_OPT_FLAG_SHIFT 3 29 /* PT_TRACE_* event enable flags */ 30 #define PT_EVENT_FLAG(event) (1 << (PT_OPT_FLAG_SHIFT + (event))) 31 #define PT_TRACESYSGOOD PT_EVENT_FLAG(0) 32 #define PT_TRACE_FORK PT_EVENT_FLAG(PTRACE_EVENT_FORK) 33 #define PT_TRACE_VFORK PT_EVENT_FLAG(PTRACE_EVENT_VFORK) 34 #define PT_TRACE_CLONE PT_EVENT_FLAG(PTRACE_EVENT_CLONE) 35 #define PT_TRACE_EXEC PT_EVENT_FLAG(PTRACE_EVENT_EXEC) 36 #define PT_TRACE_VFORK_DONE PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE) 37 #define PT_TRACE_EXIT PT_EVENT_FLAG(PTRACE_EVENT_EXIT) 38 #define PT_TRACE_SECCOMP PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP) 39 40 #define PT_EXITKILL (PTRACE_O_EXITKILL << PT_OPT_FLAG_SHIFT) 41 #define PT_SUSPEND_SECCOMP (PTRACE_O_SUSPEND_SECCOMP << PT_OPT_FLAG_SHIFT) 42 43 /* single stepping state bits (used on ARM and PA-RISC) */ 44 #define PT_SINGLESTEP_BIT 31 45 #define PT_SINGLESTEP (1<<PT_SINGLESTEP_BIT) 46 #define PT_BLOCKSTEP_BIT 30 47 #define PT_BLOCKSTEP (1<<PT_BLOCKSTEP_BIT) 48 49 extern long arch_ptrace(struct task_struct *child, long request, 50 unsigned long addr, unsigned long data); 51 extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len); 52 extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len); 53 extern void ptrace_disable(struct task_struct *); 54 extern int ptrace_request(struct task_struct *child, long request, 55 unsigned long addr, unsigned long data); 56 extern void ptrace_notify(int exit_code); 57 extern void __ptrace_link(struct task_struct *child, 58 struct task_struct *new_parent, 59 const struct cred *ptracer_cred); 60 extern void __ptrace_unlink(struct task_struct *child); 61 extern void exit_ptrace(struct task_struct *tracer, struct list_head *dead); 62 #define PTRACE_MODE_READ 0x01 63 #define PTRACE_MODE_ATTACH 0x02 64 #define PTRACE_MODE_NOAUDIT 0x04 65 #define PTRACE_MODE_FSCREDS 0x08 66 #define PTRACE_MODE_REALCREDS 0x10 67 #define PTRACE_MODE_SCHED 0x20 68 #define PTRACE_MODE_IBPB 0x40 69 70 /* shorthands for READ/ATTACH and FSCREDS/REALCREDS combinations */ 71 #define PTRACE_MODE_READ_FSCREDS (PTRACE_MODE_READ | PTRACE_MODE_FSCREDS) 72 #define PTRACE_MODE_READ_REALCREDS (PTRACE_MODE_READ | PTRACE_MODE_REALCREDS) 73 #define PTRACE_MODE_ATTACH_FSCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_FSCREDS) 74 #define PTRACE_MODE_ATTACH_REALCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_REALCREDS) 75 #define PTRACE_MODE_SPEC_IBPB (PTRACE_MODE_ATTACH_REALCREDS | PTRACE_MODE_IBPB) 76 77 /** 78 * ptrace_may_access - check whether the caller is permitted to access 79 * a target task. 80 * @task: target task 81 * @mode: selects type of access and caller credentials 82 * 83 * Returns true on success, false on denial. 84 * 85 * One of the flags PTRACE_MODE_FSCREDS and PTRACE_MODE_REALCREDS must 86 * be set in @mode to specify whether the access was requested through 87 * a filesystem syscall (should use effective capabilities and fsuid 88 * of the caller) or through an explicit syscall such as 89 * process_vm_writev or ptrace (and should use the real credentials). 90 */ 91 extern bool ptrace_may_access(struct task_struct *task, unsigned int mode); 92 93 /** 94 * ptrace_may_access - check whether the caller is permitted to access 95 * a target task. 96 * @task: target task 97 * @mode: selects type of access and caller credentials 98 * 99 * Returns true on success, false on denial. 100 * 101 * Similar to ptrace_may_access(). Only to be called from context switch 102 * code. Does not call into audit and the regular LSM hooks due to locking 103 * constraints. 104 */ 105 extern bool ptrace_may_access_sched(struct task_struct *task, unsigned int mode); 106 107 static inline int ptrace_reparented(struct task_struct *child) 108 { 109 return !same_thread_group(child->real_parent, child->parent); 110 } 111 112 static inline void ptrace_unlink(struct task_struct *child) 113 { 114 if (unlikely(child->ptrace)) 115 __ptrace_unlink(child); 116 } 117 118 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr, 119 unsigned long data); 120 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr, 121 unsigned long data); 122 123 /** 124 * ptrace_parent - return the task that is tracing the given task 125 * @task: task to consider 126 * 127 * Returns %NULL if no one is tracing @task, or the &struct task_struct 128 * pointer to its tracer. 129 * 130 * Must called under rcu_read_lock(). The pointer returned might be kept 131 * live only by RCU. During exec, this may be called with task_lock() held 132 * on @task, still held from when check_unsafe_exec() was called. 133 */ 134 static inline struct task_struct *ptrace_parent(struct task_struct *task) 135 { 136 if (unlikely(task->ptrace)) 137 return rcu_dereference(task->parent); 138 return NULL; 139 } 140 141 /** 142 * ptrace_event_enabled - test whether a ptrace event is enabled 143 * @task: ptracee of interest 144 * @event: %PTRACE_EVENT_* to test 145 * 146 * Test whether @event is enabled for ptracee @task. 147 * 148 * Returns %true if @event is enabled, %false otherwise. 149 */ 150 static inline bool ptrace_event_enabled(struct task_struct *task, int event) 151 { 152 return task->ptrace & PT_EVENT_FLAG(event); 153 } 154 155 /** 156 * ptrace_event - possibly stop for a ptrace event notification 157 * @event: %PTRACE_EVENT_* value to report 158 * @message: value for %PTRACE_GETEVENTMSG to return 159 * 160 * Check whether @event is enabled and, if so, report @event and @message 161 * to the ptrace parent. 162 * 163 * Called without locks. 164 */ 165 static inline void ptrace_event(int event, unsigned long message) 166 { 167 if (unlikely(ptrace_event_enabled(current, event))) { 168 current->ptrace_message = message; 169 ptrace_notify((event << 8) | SIGTRAP); 170 } else if (event == PTRACE_EVENT_EXEC) { 171 /* legacy EXEC report via SIGTRAP */ 172 if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED) 173 send_sig(SIGTRAP, current, 0); 174 } 175 } 176 177 /** 178 * ptrace_event_pid - possibly stop for a ptrace event notification 179 * @event: %PTRACE_EVENT_* value to report 180 * @pid: process identifier for %PTRACE_GETEVENTMSG to return 181 * 182 * Check whether @event is enabled and, if so, report @event and @pid 183 * to the ptrace parent. @pid is reported as the pid_t seen from the 184 * the ptrace parent's pid namespace. 185 * 186 * Called without locks. 187 */ 188 static inline void ptrace_event_pid(int event, struct pid *pid) 189 { 190 /* 191 * FIXME: There's a potential race if a ptracer in a different pid 192 * namespace than parent attaches between computing message below and 193 * when we acquire tasklist_lock in ptrace_stop(). If this happens, 194 * the ptracer will get a bogus pid from PTRACE_GETEVENTMSG. 195 */ 196 unsigned long message = 0; 197 struct pid_namespace *ns; 198 199 rcu_read_lock(); 200 ns = task_active_pid_ns(rcu_dereference(current->parent)); 201 if (ns) 202 message = pid_nr_ns(pid, ns); 203 rcu_read_unlock(); 204 205 ptrace_event(event, message); 206 } 207 208 /** 209 * ptrace_init_task - initialize ptrace state for a new child 210 * @child: new child task 211 * @ptrace: true if child should be ptrace'd by parent's tracer 212 * 213 * This is called immediately after adding @child to its parent's children 214 * list. @ptrace is false in the normal case, and true to ptrace @child. 215 * 216 * Called with current's siglock and write_lock_irq(&tasklist_lock) held. 217 */ 218 static inline void ptrace_init_task(struct task_struct *child, bool ptrace) 219 { 220 INIT_LIST_HEAD(&child->ptrace_entry); 221 INIT_LIST_HEAD(&child->ptraced); 222 child->jobctl = 0; 223 child->ptrace = 0; 224 child->parent = child->real_parent; 225 226 if (unlikely(ptrace) && current->ptrace) { 227 child->ptrace = current->ptrace; 228 __ptrace_link(child, current->parent, current->ptracer_cred); 229 230 if (child->ptrace & PT_SEIZED) 231 task_set_jobctl_pending(child, JOBCTL_TRAP_STOP); 232 else 233 sigaddset(&child->pending.signal, SIGSTOP); 234 } 235 else 236 child->ptracer_cred = NULL; 237 } 238 239 /** 240 * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped 241 * @task: task in %EXIT_DEAD state 242 * 243 * Called with write_lock(&tasklist_lock) held. 244 */ 245 static inline void ptrace_release_task(struct task_struct *task) 246 { 247 BUG_ON(!list_empty(&task->ptraced)); 248 ptrace_unlink(task); 249 BUG_ON(!list_empty(&task->ptrace_entry)); 250 } 251 252 #ifndef force_successful_syscall_return 253 /* 254 * System call handlers that, upon successful completion, need to return a 255 * negative value should call force_successful_syscall_return() right before 256 * returning. On architectures where the syscall convention provides for a 257 * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly 258 * others), this macro can be used to ensure that the error flag will not get 259 * set. On architectures which do not support a separate error flag, the macro 260 * is a no-op and the spurious error condition needs to be filtered out by some 261 * other means (e.g., in user-level, by passing an extra argument to the 262 * syscall handler, or something along those lines). 263 */ 264 #define force_successful_syscall_return() do { } while (0) 265 #endif 266 267 #ifndef is_syscall_success 268 /* 269 * On most systems we can tell if a syscall is a success based on if the retval 270 * is an error value. On some systems like ia64 and powerpc they have different 271 * indicators of success/failure and must define their own. 272 */ 273 #define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs)))) 274 #endif 275 276 /* 277 * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__. 278 * 279 * These do-nothing inlines are used when the arch does not 280 * implement single-step. The kerneldoc comments are here 281 * to document the interface for all arch definitions. 282 */ 283 284 #ifndef arch_has_single_step 285 /** 286 * arch_has_single_step - does this CPU support user-mode single-step? 287 * 288 * If this is defined, then there must be function declarations or 289 * inlines for user_enable_single_step() and user_disable_single_step(). 290 * arch_has_single_step() should evaluate to nonzero iff the machine 291 * supports instruction single-step for user mode. 292 * It can be a constant or it can test a CPU feature bit. 293 */ 294 #define arch_has_single_step() (0) 295 296 /** 297 * user_enable_single_step - single-step in user-mode task 298 * @task: either current or a task stopped in %TASK_TRACED 299 * 300 * This can only be called when arch_has_single_step() has returned nonzero. 301 * Set @task so that when it returns to user mode, it will trap after the 302 * next single instruction executes. If arch_has_block_step() is defined, 303 * this must clear the effects of user_enable_block_step() too. 304 */ 305 static inline void user_enable_single_step(struct task_struct *task) 306 { 307 BUG(); /* This can never be called. */ 308 } 309 310 /** 311 * user_disable_single_step - cancel user-mode single-step 312 * @task: either current or a task stopped in %TASK_TRACED 313 * 314 * Clear @task of the effects of user_enable_single_step() and 315 * user_enable_block_step(). This can be called whether or not either 316 * of those was ever called on @task, and even if arch_has_single_step() 317 * returned zero. 318 */ 319 static inline void user_disable_single_step(struct task_struct *task) 320 { 321 } 322 #else 323 extern void user_enable_single_step(struct task_struct *); 324 extern void user_disable_single_step(struct task_struct *); 325 #endif /* arch_has_single_step */ 326 327 #ifndef arch_has_block_step 328 /** 329 * arch_has_block_step - does this CPU support user-mode block-step? 330 * 331 * If this is defined, then there must be a function declaration or inline 332 * for user_enable_block_step(), and arch_has_single_step() must be defined 333 * too. arch_has_block_step() should evaluate to nonzero iff the machine 334 * supports step-until-branch for user mode. It can be a constant or it 335 * can test a CPU feature bit. 336 */ 337 #define arch_has_block_step() (0) 338 339 /** 340 * user_enable_block_step - step until branch in user-mode task 341 * @task: either current or a task stopped in %TASK_TRACED 342 * 343 * This can only be called when arch_has_block_step() has returned nonzero, 344 * and will never be called when single-instruction stepping is being used. 345 * Set @task so that when it returns to user mode, it will trap after the 346 * next branch or trap taken. 347 */ 348 static inline void user_enable_block_step(struct task_struct *task) 349 { 350 BUG(); /* This can never be called. */ 351 } 352 #else 353 extern void user_enable_block_step(struct task_struct *); 354 #endif /* arch_has_block_step */ 355 356 #ifdef ARCH_HAS_USER_SINGLE_STEP_REPORT 357 extern void user_single_step_report(struct pt_regs *regs); 358 #else 359 static inline void user_single_step_report(struct pt_regs *regs) 360 { 361 kernel_siginfo_t info; 362 clear_siginfo(&info); 363 info.si_signo = SIGTRAP; 364 info.si_errno = 0; 365 info.si_code = SI_USER; 366 info.si_pid = 0; 367 info.si_uid = 0; 368 force_sig_info(info.si_signo, &info, current); 369 } 370 #endif 371 372 #ifndef arch_ptrace_stop_needed 373 /** 374 * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called 375 * @code: current->exit_code value ptrace will stop with 376 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with 377 * 378 * This is called with the siglock held, to decide whether or not it's 379 * necessary to release the siglock and call arch_ptrace_stop() with the 380 * same @code and @info arguments. It can be defined to a constant if 381 * arch_ptrace_stop() is never required, or always is. On machines where 382 * this makes sense, it should be defined to a quick test to optimize out 383 * calling arch_ptrace_stop() when it would be superfluous. For example, 384 * if the thread has not been back to user mode since the last stop, the 385 * thread state might indicate that nothing needs to be done. 386 * 387 * This is guaranteed to be invoked once before a task stops for ptrace and 388 * may include arch-specific operations necessary prior to a ptrace stop. 389 */ 390 #define arch_ptrace_stop_needed(code, info) (0) 391 #endif 392 393 #ifndef arch_ptrace_stop 394 /** 395 * arch_ptrace_stop - Do machine-specific work before stopping for ptrace 396 * @code: current->exit_code value ptrace will stop with 397 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with 398 * 399 * This is called with no locks held when arch_ptrace_stop_needed() has 400 * just returned nonzero. It is allowed to block, e.g. for user memory 401 * access. The arch can have machine-specific work to be done before 402 * ptrace stops. On ia64, register backing store gets written back to user 403 * memory here. Since this can be costly (requires dropping the siglock), 404 * we only do it when the arch requires it for this particular stop, as 405 * indicated by arch_ptrace_stop_needed(). 406 */ 407 #define arch_ptrace_stop(code, info) do { } while (0) 408 #endif 409 410 #ifndef current_pt_regs 411 #define current_pt_regs() task_pt_regs(current) 412 #endif 413 414 /* 415 * unlike current_pt_regs(), this one is equal to task_pt_regs(current) 416 * on *all* architectures; the only reason to have a per-arch definition 417 * is optimisation. 418 */ 419 #ifndef signal_pt_regs 420 #define signal_pt_regs() task_pt_regs(current) 421 #endif 422 423 #ifndef current_user_stack_pointer 424 #define current_user_stack_pointer() user_stack_pointer(current_pt_regs()) 425 #endif 426 427 extern int task_current_syscall(struct task_struct *target, long *callno, 428 unsigned long args[6], unsigned int maxargs, 429 unsigned long *sp, unsigned long *pc); 430 431 #endif 432