1 #ifndef _LINUX_PTRACE_H 2 #define _LINUX_PTRACE_H 3 4 #include <linux/compiler.h> /* For unlikely. */ 5 #include <linux/sched.h> /* For struct task_struct. */ 6 #include <linux/sched/signal.h> /* For send_sig(), same_thread_group(), etc. */ 7 #include <linux/err.h> /* for IS_ERR_VALUE */ 8 #include <linux/bug.h> /* For BUG_ON. */ 9 #include <linux/pid_namespace.h> /* For task_active_pid_ns. */ 10 #include <uapi/linux/ptrace.h> 11 12 extern int ptrace_access_vm(struct task_struct *tsk, unsigned long addr, 13 void *buf, int len, unsigned int gup_flags); 14 15 /* 16 * Ptrace flags 17 * 18 * The owner ship rules for task->ptrace which holds the ptrace 19 * flags is simple. When a task is running it owns it's task->ptrace 20 * flags. When the a task is stopped the ptracer owns task->ptrace. 21 */ 22 23 #define PT_SEIZED 0x00010000 /* SEIZE used, enable new behavior */ 24 #define PT_PTRACED 0x00000001 25 #define PT_DTRACE 0x00000002 /* delayed trace (used on m68k, i386) */ 26 27 #define PT_OPT_FLAG_SHIFT 3 28 /* PT_TRACE_* event enable flags */ 29 #define PT_EVENT_FLAG(event) (1 << (PT_OPT_FLAG_SHIFT + (event))) 30 #define PT_TRACESYSGOOD PT_EVENT_FLAG(0) 31 #define PT_TRACE_FORK PT_EVENT_FLAG(PTRACE_EVENT_FORK) 32 #define PT_TRACE_VFORK PT_EVENT_FLAG(PTRACE_EVENT_VFORK) 33 #define PT_TRACE_CLONE PT_EVENT_FLAG(PTRACE_EVENT_CLONE) 34 #define PT_TRACE_EXEC PT_EVENT_FLAG(PTRACE_EVENT_EXEC) 35 #define PT_TRACE_VFORK_DONE PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE) 36 #define PT_TRACE_EXIT PT_EVENT_FLAG(PTRACE_EVENT_EXIT) 37 #define PT_TRACE_SECCOMP PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP) 38 39 #define PT_EXITKILL (PTRACE_O_EXITKILL << PT_OPT_FLAG_SHIFT) 40 #define PT_SUSPEND_SECCOMP (PTRACE_O_SUSPEND_SECCOMP << PT_OPT_FLAG_SHIFT) 41 42 /* single stepping state bits (used on ARM and PA-RISC) */ 43 #define PT_SINGLESTEP_BIT 31 44 #define PT_SINGLESTEP (1<<PT_SINGLESTEP_BIT) 45 #define PT_BLOCKSTEP_BIT 30 46 #define PT_BLOCKSTEP (1<<PT_BLOCKSTEP_BIT) 47 48 extern long arch_ptrace(struct task_struct *child, long request, 49 unsigned long addr, unsigned long data); 50 extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len); 51 extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len); 52 extern void ptrace_disable(struct task_struct *); 53 extern int ptrace_request(struct task_struct *child, long request, 54 unsigned long addr, unsigned long data); 55 extern void ptrace_notify(int exit_code); 56 extern void __ptrace_link(struct task_struct *child, 57 struct task_struct *new_parent, 58 const struct cred *ptracer_cred); 59 extern void __ptrace_unlink(struct task_struct *child); 60 extern void exit_ptrace(struct task_struct *tracer, struct list_head *dead); 61 #define PTRACE_MODE_READ 0x01 62 #define PTRACE_MODE_ATTACH 0x02 63 #define PTRACE_MODE_NOAUDIT 0x04 64 #define PTRACE_MODE_FSCREDS 0x08 65 #define PTRACE_MODE_REALCREDS 0x10 66 67 /* shorthands for READ/ATTACH and FSCREDS/REALCREDS combinations */ 68 #define PTRACE_MODE_READ_FSCREDS (PTRACE_MODE_READ | PTRACE_MODE_FSCREDS) 69 #define PTRACE_MODE_READ_REALCREDS (PTRACE_MODE_READ | PTRACE_MODE_REALCREDS) 70 #define PTRACE_MODE_ATTACH_FSCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_FSCREDS) 71 #define PTRACE_MODE_ATTACH_REALCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_REALCREDS) 72 73 /** 74 * ptrace_may_access - check whether the caller is permitted to access 75 * a target task. 76 * @task: target task 77 * @mode: selects type of access and caller credentials 78 * 79 * Returns true on success, false on denial. 80 * 81 * One of the flags PTRACE_MODE_FSCREDS and PTRACE_MODE_REALCREDS must 82 * be set in @mode to specify whether the access was requested through 83 * a filesystem syscall (should use effective capabilities and fsuid 84 * of the caller) or through an explicit syscall such as 85 * process_vm_writev or ptrace (and should use the real credentials). 86 */ 87 extern bool ptrace_may_access(struct task_struct *task, unsigned int mode); 88 89 static inline int ptrace_reparented(struct task_struct *child) 90 { 91 return !same_thread_group(child->real_parent, child->parent); 92 } 93 94 static inline void ptrace_unlink(struct task_struct *child) 95 { 96 if (unlikely(child->ptrace)) 97 __ptrace_unlink(child); 98 } 99 100 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr, 101 unsigned long data); 102 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr, 103 unsigned long data); 104 105 /** 106 * ptrace_parent - return the task that is tracing the given task 107 * @task: task to consider 108 * 109 * Returns %NULL if no one is tracing @task, or the &struct task_struct 110 * pointer to its tracer. 111 * 112 * Must called under rcu_read_lock(). The pointer returned might be kept 113 * live only by RCU. During exec, this may be called with task_lock() held 114 * on @task, still held from when check_unsafe_exec() was called. 115 */ 116 static inline struct task_struct *ptrace_parent(struct task_struct *task) 117 { 118 if (unlikely(task->ptrace)) 119 return rcu_dereference(task->parent); 120 return NULL; 121 } 122 123 /** 124 * ptrace_event_enabled - test whether a ptrace event is enabled 125 * @task: ptracee of interest 126 * @event: %PTRACE_EVENT_* to test 127 * 128 * Test whether @event is enabled for ptracee @task. 129 * 130 * Returns %true if @event is enabled, %false otherwise. 131 */ 132 static inline bool ptrace_event_enabled(struct task_struct *task, int event) 133 { 134 return task->ptrace & PT_EVENT_FLAG(event); 135 } 136 137 /** 138 * ptrace_event - possibly stop for a ptrace event notification 139 * @event: %PTRACE_EVENT_* value to report 140 * @message: value for %PTRACE_GETEVENTMSG to return 141 * 142 * Check whether @event is enabled and, if so, report @event and @message 143 * to the ptrace parent. 144 * 145 * Called without locks. 146 */ 147 static inline void ptrace_event(int event, unsigned long message) 148 { 149 if (unlikely(ptrace_event_enabled(current, event))) { 150 current->ptrace_message = message; 151 ptrace_notify((event << 8) | SIGTRAP); 152 } else if (event == PTRACE_EVENT_EXEC) { 153 /* legacy EXEC report via SIGTRAP */ 154 if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED) 155 send_sig(SIGTRAP, current, 0); 156 } 157 } 158 159 /** 160 * ptrace_event_pid - possibly stop for a ptrace event notification 161 * @event: %PTRACE_EVENT_* value to report 162 * @pid: process identifier for %PTRACE_GETEVENTMSG to return 163 * 164 * Check whether @event is enabled and, if so, report @event and @pid 165 * to the ptrace parent. @pid is reported as the pid_t seen from the 166 * the ptrace parent's pid namespace. 167 * 168 * Called without locks. 169 */ 170 static inline void ptrace_event_pid(int event, struct pid *pid) 171 { 172 /* 173 * FIXME: There's a potential race if a ptracer in a different pid 174 * namespace than parent attaches between computing message below and 175 * when we acquire tasklist_lock in ptrace_stop(). If this happens, 176 * the ptracer will get a bogus pid from PTRACE_GETEVENTMSG. 177 */ 178 unsigned long message = 0; 179 struct pid_namespace *ns; 180 181 rcu_read_lock(); 182 ns = task_active_pid_ns(rcu_dereference(current->parent)); 183 if (ns) 184 message = pid_nr_ns(pid, ns); 185 rcu_read_unlock(); 186 187 ptrace_event(event, message); 188 } 189 190 /** 191 * ptrace_init_task - initialize ptrace state for a new child 192 * @child: new child task 193 * @ptrace: true if child should be ptrace'd by parent's tracer 194 * 195 * This is called immediately after adding @child to its parent's children 196 * list. @ptrace is false in the normal case, and true to ptrace @child. 197 * 198 * Called with current's siglock and write_lock_irq(&tasklist_lock) held. 199 */ 200 static inline void ptrace_init_task(struct task_struct *child, bool ptrace) 201 { 202 INIT_LIST_HEAD(&child->ptrace_entry); 203 INIT_LIST_HEAD(&child->ptraced); 204 child->jobctl = 0; 205 child->ptrace = 0; 206 child->parent = child->real_parent; 207 208 if (unlikely(ptrace) && current->ptrace) { 209 child->ptrace = current->ptrace; 210 __ptrace_link(child, current->parent, current->ptracer_cred); 211 212 if (child->ptrace & PT_SEIZED) 213 task_set_jobctl_pending(child, JOBCTL_TRAP_STOP); 214 else 215 sigaddset(&child->pending.signal, SIGSTOP); 216 217 set_tsk_thread_flag(child, TIF_SIGPENDING); 218 } 219 else 220 child->ptracer_cred = NULL; 221 } 222 223 /** 224 * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped 225 * @task: task in %EXIT_DEAD state 226 * 227 * Called with write_lock(&tasklist_lock) held. 228 */ 229 static inline void ptrace_release_task(struct task_struct *task) 230 { 231 BUG_ON(!list_empty(&task->ptraced)); 232 ptrace_unlink(task); 233 BUG_ON(!list_empty(&task->ptrace_entry)); 234 } 235 236 #ifndef force_successful_syscall_return 237 /* 238 * System call handlers that, upon successful completion, need to return a 239 * negative value should call force_successful_syscall_return() right before 240 * returning. On architectures where the syscall convention provides for a 241 * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly 242 * others), this macro can be used to ensure that the error flag will not get 243 * set. On architectures which do not support a separate error flag, the macro 244 * is a no-op and the spurious error condition needs to be filtered out by some 245 * other means (e.g., in user-level, by passing an extra argument to the 246 * syscall handler, or something along those lines). 247 */ 248 #define force_successful_syscall_return() do { } while (0) 249 #endif 250 251 #ifndef is_syscall_success 252 /* 253 * On most systems we can tell if a syscall is a success based on if the retval 254 * is an error value. On some systems like ia64 and powerpc they have different 255 * indicators of success/failure and must define their own. 256 */ 257 #define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs)))) 258 #endif 259 260 /* 261 * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__. 262 * 263 * These do-nothing inlines are used when the arch does not 264 * implement single-step. The kerneldoc comments are here 265 * to document the interface for all arch definitions. 266 */ 267 268 #ifndef arch_has_single_step 269 /** 270 * arch_has_single_step - does this CPU support user-mode single-step? 271 * 272 * If this is defined, then there must be function declarations or 273 * inlines for user_enable_single_step() and user_disable_single_step(). 274 * arch_has_single_step() should evaluate to nonzero iff the machine 275 * supports instruction single-step for user mode. 276 * It can be a constant or it can test a CPU feature bit. 277 */ 278 #define arch_has_single_step() (0) 279 280 /** 281 * user_enable_single_step - single-step in user-mode task 282 * @task: either current or a task stopped in %TASK_TRACED 283 * 284 * This can only be called when arch_has_single_step() has returned nonzero. 285 * Set @task so that when it returns to user mode, it will trap after the 286 * next single instruction executes. If arch_has_block_step() is defined, 287 * this must clear the effects of user_enable_block_step() too. 288 */ 289 static inline void user_enable_single_step(struct task_struct *task) 290 { 291 BUG(); /* This can never be called. */ 292 } 293 294 /** 295 * user_disable_single_step - cancel user-mode single-step 296 * @task: either current or a task stopped in %TASK_TRACED 297 * 298 * Clear @task of the effects of user_enable_single_step() and 299 * user_enable_block_step(). This can be called whether or not either 300 * of those was ever called on @task, and even if arch_has_single_step() 301 * returned zero. 302 */ 303 static inline void user_disable_single_step(struct task_struct *task) 304 { 305 } 306 #else 307 extern void user_enable_single_step(struct task_struct *); 308 extern void user_disable_single_step(struct task_struct *); 309 #endif /* arch_has_single_step */ 310 311 #ifndef arch_has_block_step 312 /** 313 * arch_has_block_step - does this CPU support user-mode block-step? 314 * 315 * If this is defined, then there must be a function declaration or inline 316 * for user_enable_block_step(), and arch_has_single_step() must be defined 317 * too. arch_has_block_step() should evaluate to nonzero iff the machine 318 * supports step-until-branch for user mode. It can be a constant or it 319 * can test a CPU feature bit. 320 */ 321 #define arch_has_block_step() (0) 322 323 /** 324 * user_enable_block_step - step until branch in user-mode task 325 * @task: either current or a task stopped in %TASK_TRACED 326 * 327 * This can only be called when arch_has_block_step() has returned nonzero, 328 * and will never be called when single-instruction stepping is being used. 329 * Set @task so that when it returns to user mode, it will trap after the 330 * next branch or trap taken. 331 */ 332 static inline void user_enable_block_step(struct task_struct *task) 333 { 334 BUG(); /* This can never be called. */ 335 } 336 #else 337 extern void user_enable_block_step(struct task_struct *); 338 #endif /* arch_has_block_step */ 339 340 #ifdef ARCH_HAS_USER_SINGLE_STEP_INFO 341 extern void user_single_step_siginfo(struct task_struct *tsk, 342 struct pt_regs *regs, siginfo_t *info); 343 #else 344 static inline void user_single_step_siginfo(struct task_struct *tsk, 345 struct pt_regs *regs, siginfo_t *info) 346 { 347 memset(info, 0, sizeof(*info)); 348 info->si_signo = SIGTRAP; 349 } 350 #endif 351 352 #ifndef arch_ptrace_stop_needed 353 /** 354 * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called 355 * @code: current->exit_code value ptrace will stop with 356 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with 357 * 358 * This is called with the siglock held, to decide whether or not it's 359 * necessary to release the siglock and call arch_ptrace_stop() with the 360 * same @code and @info arguments. It can be defined to a constant if 361 * arch_ptrace_stop() is never required, or always is. On machines where 362 * this makes sense, it should be defined to a quick test to optimize out 363 * calling arch_ptrace_stop() when it would be superfluous. For example, 364 * if the thread has not been back to user mode since the last stop, the 365 * thread state might indicate that nothing needs to be done. 366 * 367 * This is guaranteed to be invoked once before a task stops for ptrace and 368 * may include arch-specific operations necessary prior to a ptrace stop. 369 */ 370 #define arch_ptrace_stop_needed(code, info) (0) 371 #endif 372 373 #ifndef arch_ptrace_stop 374 /** 375 * arch_ptrace_stop - Do machine-specific work before stopping for ptrace 376 * @code: current->exit_code value ptrace will stop with 377 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with 378 * 379 * This is called with no locks held when arch_ptrace_stop_needed() has 380 * just returned nonzero. It is allowed to block, e.g. for user memory 381 * access. The arch can have machine-specific work to be done before 382 * ptrace stops. On ia64, register backing store gets written back to user 383 * memory here. Since this can be costly (requires dropping the siglock), 384 * we only do it when the arch requires it for this particular stop, as 385 * indicated by arch_ptrace_stop_needed(). 386 */ 387 #define arch_ptrace_stop(code, info) do { } while (0) 388 #endif 389 390 #ifndef current_pt_regs 391 #define current_pt_regs() task_pt_regs(current) 392 #endif 393 394 /* 395 * unlike current_pt_regs(), this one is equal to task_pt_regs(current) 396 * on *all* architectures; the only reason to have a per-arch definition 397 * is optimisation. 398 */ 399 #ifndef signal_pt_regs 400 #define signal_pt_regs() task_pt_regs(current) 401 #endif 402 403 #ifndef current_user_stack_pointer 404 #define current_user_stack_pointer() user_stack_pointer(current_pt_regs()) 405 #endif 406 407 extern int task_current_syscall(struct task_struct *target, long *callno, 408 unsigned long args[6], unsigned int maxargs, 409 unsigned long *sp, unsigned long *pc); 410 411 #endif 412