1 #ifndef _LINUX_PTRACE_H 2 #define _LINUX_PTRACE_H 3 4 #include <linux/compiler.h> /* For unlikely. */ 5 #include <linux/sched.h> /* For struct task_struct. */ 6 #include <linux/err.h> /* for IS_ERR_VALUE */ 7 #include <linux/bug.h> /* For BUG_ON. */ 8 #include <linux/pid_namespace.h> /* For task_active_pid_ns. */ 9 #include <uapi/linux/ptrace.h> 10 11 /* 12 * Ptrace flags 13 * 14 * The owner ship rules for task->ptrace which holds the ptrace 15 * flags is simple. When a task is running it owns it's task->ptrace 16 * flags. When the a task is stopped the ptracer owns task->ptrace. 17 */ 18 19 #define PT_SEIZED 0x00010000 /* SEIZE used, enable new behavior */ 20 #define PT_PTRACED 0x00000001 21 #define PT_DTRACE 0x00000002 /* delayed trace (used on m68k, i386) */ 22 #define PT_PTRACE_CAP 0x00000004 /* ptracer can follow suid-exec */ 23 24 #define PT_OPT_FLAG_SHIFT 3 25 /* PT_TRACE_* event enable flags */ 26 #define PT_EVENT_FLAG(event) (1 << (PT_OPT_FLAG_SHIFT + (event))) 27 #define PT_TRACESYSGOOD PT_EVENT_FLAG(0) 28 #define PT_TRACE_FORK PT_EVENT_FLAG(PTRACE_EVENT_FORK) 29 #define PT_TRACE_VFORK PT_EVENT_FLAG(PTRACE_EVENT_VFORK) 30 #define PT_TRACE_CLONE PT_EVENT_FLAG(PTRACE_EVENT_CLONE) 31 #define PT_TRACE_EXEC PT_EVENT_FLAG(PTRACE_EVENT_EXEC) 32 #define PT_TRACE_VFORK_DONE PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE) 33 #define PT_TRACE_EXIT PT_EVENT_FLAG(PTRACE_EVENT_EXIT) 34 #define PT_TRACE_SECCOMP PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP) 35 36 #define PT_EXITKILL (PTRACE_O_EXITKILL << PT_OPT_FLAG_SHIFT) 37 #define PT_SUSPEND_SECCOMP (PTRACE_O_SUSPEND_SECCOMP << PT_OPT_FLAG_SHIFT) 38 39 /* single stepping state bits (used on ARM and PA-RISC) */ 40 #define PT_SINGLESTEP_BIT 31 41 #define PT_SINGLESTEP (1<<PT_SINGLESTEP_BIT) 42 #define PT_BLOCKSTEP_BIT 30 43 #define PT_BLOCKSTEP (1<<PT_BLOCKSTEP_BIT) 44 45 extern long arch_ptrace(struct task_struct *child, long request, 46 unsigned long addr, unsigned long data); 47 extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len); 48 extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len); 49 extern void ptrace_disable(struct task_struct *); 50 extern int ptrace_request(struct task_struct *child, long request, 51 unsigned long addr, unsigned long data); 52 extern void ptrace_notify(int exit_code); 53 extern void __ptrace_link(struct task_struct *child, 54 struct task_struct *new_parent); 55 extern void __ptrace_unlink(struct task_struct *child); 56 extern void exit_ptrace(struct task_struct *tracer, struct list_head *dead); 57 #define PTRACE_MODE_READ 0x01 58 #define PTRACE_MODE_ATTACH 0x02 59 #define PTRACE_MODE_NOAUDIT 0x04 60 /* Returns true on success, false on denial. */ 61 extern bool ptrace_may_access(struct task_struct *task, unsigned int mode); 62 63 static inline int ptrace_reparented(struct task_struct *child) 64 { 65 return !same_thread_group(child->real_parent, child->parent); 66 } 67 68 static inline void ptrace_unlink(struct task_struct *child) 69 { 70 if (unlikely(child->ptrace)) 71 __ptrace_unlink(child); 72 } 73 74 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr, 75 unsigned long data); 76 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr, 77 unsigned long data); 78 79 /** 80 * ptrace_parent - return the task that is tracing the given task 81 * @task: task to consider 82 * 83 * Returns %NULL if no one is tracing @task, or the &struct task_struct 84 * pointer to its tracer. 85 * 86 * Must called under rcu_read_lock(). The pointer returned might be kept 87 * live only by RCU. During exec, this may be called with task_lock() held 88 * on @task, still held from when check_unsafe_exec() was called. 89 */ 90 static inline struct task_struct *ptrace_parent(struct task_struct *task) 91 { 92 if (unlikely(task->ptrace)) 93 return rcu_dereference(task->parent); 94 return NULL; 95 } 96 97 /** 98 * ptrace_event_enabled - test whether a ptrace event is enabled 99 * @task: ptracee of interest 100 * @event: %PTRACE_EVENT_* to test 101 * 102 * Test whether @event is enabled for ptracee @task. 103 * 104 * Returns %true if @event is enabled, %false otherwise. 105 */ 106 static inline bool ptrace_event_enabled(struct task_struct *task, int event) 107 { 108 return task->ptrace & PT_EVENT_FLAG(event); 109 } 110 111 /** 112 * ptrace_event - possibly stop for a ptrace event notification 113 * @event: %PTRACE_EVENT_* value to report 114 * @message: value for %PTRACE_GETEVENTMSG to return 115 * 116 * Check whether @event is enabled and, if so, report @event and @message 117 * to the ptrace parent. 118 * 119 * Called without locks. 120 */ 121 static inline void ptrace_event(int event, unsigned long message) 122 { 123 if (unlikely(ptrace_event_enabled(current, event))) { 124 current->ptrace_message = message; 125 ptrace_notify((event << 8) | SIGTRAP); 126 } else if (event == PTRACE_EVENT_EXEC) { 127 /* legacy EXEC report via SIGTRAP */ 128 if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED) 129 send_sig(SIGTRAP, current, 0); 130 } 131 } 132 133 /** 134 * ptrace_event_pid - possibly stop for a ptrace event notification 135 * @event: %PTRACE_EVENT_* value to report 136 * @pid: process identifier for %PTRACE_GETEVENTMSG to return 137 * 138 * Check whether @event is enabled and, if so, report @event and @pid 139 * to the ptrace parent. @pid is reported as the pid_t seen from the 140 * the ptrace parent's pid namespace. 141 * 142 * Called without locks. 143 */ 144 static inline void ptrace_event_pid(int event, struct pid *pid) 145 { 146 /* 147 * FIXME: There's a potential race if a ptracer in a different pid 148 * namespace than parent attaches between computing message below and 149 * when we acquire tasklist_lock in ptrace_stop(). If this happens, 150 * the ptracer will get a bogus pid from PTRACE_GETEVENTMSG. 151 */ 152 unsigned long message = 0; 153 struct pid_namespace *ns; 154 155 rcu_read_lock(); 156 ns = task_active_pid_ns(rcu_dereference(current->parent)); 157 if (ns) 158 message = pid_nr_ns(pid, ns); 159 rcu_read_unlock(); 160 161 ptrace_event(event, message); 162 } 163 164 /** 165 * ptrace_init_task - initialize ptrace state for a new child 166 * @child: new child task 167 * @ptrace: true if child should be ptrace'd by parent's tracer 168 * 169 * This is called immediately after adding @child to its parent's children 170 * list. @ptrace is false in the normal case, and true to ptrace @child. 171 * 172 * Called with current's siglock and write_lock_irq(&tasklist_lock) held. 173 */ 174 static inline void ptrace_init_task(struct task_struct *child, bool ptrace) 175 { 176 INIT_LIST_HEAD(&child->ptrace_entry); 177 INIT_LIST_HEAD(&child->ptraced); 178 child->jobctl = 0; 179 child->ptrace = 0; 180 child->parent = child->real_parent; 181 182 if (unlikely(ptrace) && current->ptrace) { 183 child->ptrace = current->ptrace; 184 __ptrace_link(child, current->parent); 185 186 if (child->ptrace & PT_SEIZED) 187 task_set_jobctl_pending(child, JOBCTL_TRAP_STOP); 188 else 189 sigaddset(&child->pending.signal, SIGSTOP); 190 191 set_tsk_thread_flag(child, TIF_SIGPENDING); 192 } 193 } 194 195 /** 196 * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped 197 * @task: task in %EXIT_DEAD state 198 * 199 * Called with write_lock(&tasklist_lock) held. 200 */ 201 static inline void ptrace_release_task(struct task_struct *task) 202 { 203 BUG_ON(!list_empty(&task->ptraced)); 204 ptrace_unlink(task); 205 BUG_ON(!list_empty(&task->ptrace_entry)); 206 } 207 208 #ifndef force_successful_syscall_return 209 /* 210 * System call handlers that, upon successful completion, need to return a 211 * negative value should call force_successful_syscall_return() right before 212 * returning. On architectures where the syscall convention provides for a 213 * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly 214 * others), this macro can be used to ensure that the error flag will not get 215 * set. On architectures which do not support a separate error flag, the macro 216 * is a no-op and the spurious error condition needs to be filtered out by some 217 * other means (e.g., in user-level, by passing an extra argument to the 218 * syscall handler, or something along those lines). 219 */ 220 #define force_successful_syscall_return() do { } while (0) 221 #endif 222 223 #ifndef is_syscall_success 224 /* 225 * On most systems we can tell if a syscall is a success based on if the retval 226 * is an error value. On some systems like ia64 and powerpc they have different 227 * indicators of success/failure and must define their own. 228 */ 229 #define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs)))) 230 #endif 231 232 /* 233 * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__. 234 * 235 * These do-nothing inlines are used when the arch does not 236 * implement single-step. The kerneldoc comments are here 237 * to document the interface for all arch definitions. 238 */ 239 240 #ifndef arch_has_single_step 241 /** 242 * arch_has_single_step - does this CPU support user-mode single-step? 243 * 244 * If this is defined, then there must be function declarations or 245 * inlines for user_enable_single_step() and user_disable_single_step(). 246 * arch_has_single_step() should evaluate to nonzero iff the machine 247 * supports instruction single-step for user mode. 248 * It can be a constant or it can test a CPU feature bit. 249 */ 250 #define arch_has_single_step() (0) 251 252 /** 253 * user_enable_single_step - single-step in user-mode task 254 * @task: either current or a task stopped in %TASK_TRACED 255 * 256 * This can only be called when arch_has_single_step() has returned nonzero. 257 * Set @task so that when it returns to user mode, it will trap after the 258 * next single instruction executes. If arch_has_block_step() is defined, 259 * this must clear the effects of user_enable_block_step() too. 260 */ 261 static inline void user_enable_single_step(struct task_struct *task) 262 { 263 BUG(); /* This can never be called. */ 264 } 265 266 /** 267 * user_disable_single_step - cancel user-mode single-step 268 * @task: either current or a task stopped in %TASK_TRACED 269 * 270 * Clear @task of the effects of user_enable_single_step() and 271 * user_enable_block_step(). This can be called whether or not either 272 * of those was ever called on @task, and even if arch_has_single_step() 273 * returned zero. 274 */ 275 static inline void user_disable_single_step(struct task_struct *task) 276 { 277 } 278 #else 279 extern void user_enable_single_step(struct task_struct *); 280 extern void user_disable_single_step(struct task_struct *); 281 #endif /* arch_has_single_step */ 282 283 #ifndef arch_has_block_step 284 /** 285 * arch_has_block_step - does this CPU support user-mode block-step? 286 * 287 * If this is defined, then there must be a function declaration or inline 288 * for user_enable_block_step(), and arch_has_single_step() must be defined 289 * too. arch_has_block_step() should evaluate to nonzero iff the machine 290 * supports step-until-branch for user mode. It can be a constant or it 291 * can test a CPU feature bit. 292 */ 293 #define arch_has_block_step() (0) 294 295 /** 296 * user_enable_block_step - step until branch in user-mode task 297 * @task: either current or a task stopped in %TASK_TRACED 298 * 299 * This can only be called when arch_has_block_step() has returned nonzero, 300 * and will never be called when single-instruction stepping is being used. 301 * Set @task so that when it returns to user mode, it will trap after the 302 * next branch or trap taken. 303 */ 304 static inline void user_enable_block_step(struct task_struct *task) 305 { 306 BUG(); /* This can never be called. */ 307 } 308 #else 309 extern void user_enable_block_step(struct task_struct *); 310 #endif /* arch_has_block_step */ 311 312 #ifdef ARCH_HAS_USER_SINGLE_STEP_INFO 313 extern void user_single_step_siginfo(struct task_struct *tsk, 314 struct pt_regs *regs, siginfo_t *info); 315 #else 316 static inline void user_single_step_siginfo(struct task_struct *tsk, 317 struct pt_regs *regs, siginfo_t *info) 318 { 319 memset(info, 0, sizeof(*info)); 320 info->si_signo = SIGTRAP; 321 } 322 #endif 323 324 #ifndef arch_ptrace_stop_needed 325 /** 326 * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called 327 * @code: current->exit_code value ptrace will stop with 328 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with 329 * 330 * This is called with the siglock held, to decide whether or not it's 331 * necessary to release the siglock and call arch_ptrace_stop() with the 332 * same @code and @info arguments. It can be defined to a constant if 333 * arch_ptrace_stop() is never required, or always is. On machines where 334 * this makes sense, it should be defined to a quick test to optimize out 335 * calling arch_ptrace_stop() when it would be superfluous. For example, 336 * if the thread has not been back to user mode since the last stop, the 337 * thread state might indicate that nothing needs to be done. 338 * 339 * This is guaranteed to be invoked once before a task stops for ptrace and 340 * may include arch-specific operations necessary prior to a ptrace stop. 341 */ 342 #define arch_ptrace_stop_needed(code, info) (0) 343 #endif 344 345 #ifndef arch_ptrace_stop 346 /** 347 * arch_ptrace_stop - Do machine-specific work before stopping for ptrace 348 * @code: current->exit_code value ptrace will stop with 349 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with 350 * 351 * This is called with no locks held when arch_ptrace_stop_needed() has 352 * just returned nonzero. It is allowed to block, e.g. for user memory 353 * access. The arch can have machine-specific work to be done before 354 * ptrace stops. On ia64, register backing store gets written back to user 355 * memory here. Since this can be costly (requires dropping the siglock), 356 * we only do it when the arch requires it for this particular stop, as 357 * indicated by arch_ptrace_stop_needed(). 358 */ 359 #define arch_ptrace_stop(code, info) do { } while (0) 360 #endif 361 362 #ifndef current_pt_regs 363 #define current_pt_regs() task_pt_regs(current) 364 #endif 365 366 #ifndef ptrace_signal_deliver 367 #define ptrace_signal_deliver() ((void)0) 368 #endif 369 370 /* 371 * unlike current_pt_regs(), this one is equal to task_pt_regs(current) 372 * on *all* architectures; the only reason to have a per-arch definition 373 * is optimisation. 374 */ 375 #ifndef signal_pt_regs 376 #define signal_pt_regs() task_pt_regs(current) 377 #endif 378 379 #ifndef current_user_stack_pointer 380 #define current_user_stack_pointer() user_stack_pointer(current_pt_regs()) 381 #endif 382 383 extern int task_current_syscall(struct task_struct *target, long *callno, 384 unsigned long args[6], unsigned int maxargs, 385 unsigned long *sp, unsigned long *pc); 386 387 #endif 388