1 /* 2 * Definitions for the 'struct ptr_ring' datastructure. 3 * 4 * Author: 5 * Michael S. Tsirkin <[email protected]> 6 * 7 * Copyright (C) 2016 Red Hat, Inc. 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 * This is a limited-size FIFO maintaining pointers in FIFO order, with 15 * one CPU producing entries and another consuming entries from a FIFO. 16 * 17 * This implementation tries to minimize cache-contention when there is a 18 * single producer and a single consumer CPU. 19 */ 20 21 #ifndef _LINUX_PTR_RING_H 22 #define _LINUX_PTR_RING_H 1 23 24 #ifdef __KERNEL__ 25 #include <linux/spinlock.h> 26 #include <linux/cache.h> 27 #include <linux/types.h> 28 #include <linux/compiler.h> 29 #include <linux/cache.h> 30 #include <linux/slab.h> 31 #include <asm/errno.h> 32 #endif 33 34 struct ptr_ring { 35 int producer ____cacheline_aligned_in_smp; 36 spinlock_t producer_lock; 37 int consumer_head ____cacheline_aligned_in_smp; /* next valid entry */ 38 int consumer_tail; /* next entry to invalidate */ 39 spinlock_t consumer_lock; 40 /* Shared consumer/producer data */ 41 /* Read-only by both the producer and the consumer */ 42 int size ____cacheline_aligned_in_smp; /* max entries in queue */ 43 int batch; /* number of entries to consume in a batch */ 44 void **queue; 45 }; 46 47 /* Note: callers invoking this in a loop must use a compiler barrier, 48 * for example cpu_relax(). 49 * 50 * NB: this is unlike __ptr_ring_empty in that callers must hold producer_lock: 51 * see e.g. ptr_ring_full. 52 */ 53 static inline bool __ptr_ring_full(struct ptr_ring *r) 54 { 55 return r->queue[r->producer]; 56 } 57 58 static inline bool ptr_ring_full(struct ptr_ring *r) 59 { 60 bool ret; 61 62 spin_lock(&r->producer_lock); 63 ret = __ptr_ring_full(r); 64 spin_unlock(&r->producer_lock); 65 66 return ret; 67 } 68 69 static inline bool ptr_ring_full_irq(struct ptr_ring *r) 70 { 71 bool ret; 72 73 spin_lock_irq(&r->producer_lock); 74 ret = __ptr_ring_full(r); 75 spin_unlock_irq(&r->producer_lock); 76 77 return ret; 78 } 79 80 static inline bool ptr_ring_full_any(struct ptr_ring *r) 81 { 82 unsigned long flags; 83 bool ret; 84 85 spin_lock_irqsave(&r->producer_lock, flags); 86 ret = __ptr_ring_full(r); 87 spin_unlock_irqrestore(&r->producer_lock, flags); 88 89 return ret; 90 } 91 92 static inline bool ptr_ring_full_bh(struct ptr_ring *r) 93 { 94 bool ret; 95 96 spin_lock_bh(&r->producer_lock); 97 ret = __ptr_ring_full(r); 98 spin_unlock_bh(&r->producer_lock); 99 100 return ret; 101 } 102 103 /* Note: callers invoking this in a loop must use a compiler barrier, 104 * for example cpu_relax(). Callers must hold producer_lock. 105 * Callers are responsible for making sure pointer that is being queued 106 * points to a valid data. 107 */ 108 static inline int __ptr_ring_produce(struct ptr_ring *r, void *ptr) 109 { 110 if (unlikely(!r->size) || r->queue[r->producer]) 111 return -ENOSPC; 112 113 /* Make sure the pointer we are storing points to a valid data. */ 114 /* Pairs with smp_read_barrier_depends in __ptr_ring_consume. */ 115 smp_wmb(); 116 117 WRITE_ONCE(r->queue[r->producer++], ptr); 118 if (unlikely(r->producer >= r->size)) 119 r->producer = 0; 120 return 0; 121 } 122 123 /* 124 * Note: resize (below) nests producer lock within consumer lock, so if you 125 * consume in interrupt or BH context, you must disable interrupts/BH when 126 * calling this. 127 */ 128 static inline int ptr_ring_produce(struct ptr_ring *r, void *ptr) 129 { 130 int ret; 131 132 spin_lock(&r->producer_lock); 133 ret = __ptr_ring_produce(r, ptr); 134 spin_unlock(&r->producer_lock); 135 136 return ret; 137 } 138 139 static inline int ptr_ring_produce_irq(struct ptr_ring *r, void *ptr) 140 { 141 int ret; 142 143 spin_lock_irq(&r->producer_lock); 144 ret = __ptr_ring_produce(r, ptr); 145 spin_unlock_irq(&r->producer_lock); 146 147 return ret; 148 } 149 150 static inline int ptr_ring_produce_any(struct ptr_ring *r, void *ptr) 151 { 152 unsigned long flags; 153 int ret; 154 155 spin_lock_irqsave(&r->producer_lock, flags); 156 ret = __ptr_ring_produce(r, ptr); 157 spin_unlock_irqrestore(&r->producer_lock, flags); 158 159 return ret; 160 } 161 162 static inline int ptr_ring_produce_bh(struct ptr_ring *r, void *ptr) 163 { 164 int ret; 165 166 spin_lock_bh(&r->producer_lock); 167 ret = __ptr_ring_produce(r, ptr); 168 spin_unlock_bh(&r->producer_lock); 169 170 return ret; 171 } 172 173 static inline void *__ptr_ring_peek(struct ptr_ring *r) 174 { 175 if (likely(r->size)) 176 return READ_ONCE(r->queue[r->consumer_head]); 177 return NULL; 178 } 179 180 /* 181 * Test ring empty status without taking any locks. 182 * 183 * NB: This is only safe to call if ring is never resized. 184 * 185 * However, if some other CPU consumes ring entries at the same time, the value 186 * returned is not guaranteed to be correct. 187 * 188 * In this case - to avoid incorrectly detecting the ring 189 * as empty - the CPU consuming the ring entries is responsible 190 * for either consuming all ring entries until the ring is empty, 191 * or synchronizing with some other CPU and causing it to 192 * re-test __ptr_ring_empty and/or consume the ring enteries 193 * after the synchronization point. 194 * 195 * Note: callers invoking this in a loop must use a compiler barrier, 196 * for example cpu_relax(). 197 */ 198 static inline bool __ptr_ring_empty(struct ptr_ring *r) 199 { 200 if (likely(r->size)) 201 return !r->queue[READ_ONCE(r->consumer_head)]; 202 return true; 203 } 204 205 static inline bool ptr_ring_empty(struct ptr_ring *r) 206 { 207 bool ret; 208 209 spin_lock(&r->consumer_lock); 210 ret = __ptr_ring_empty(r); 211 spin_unlock(&r->consumer_lock); 212 213 return ret; 214 } 215 216 static inline bool ptr_ring_empty_irq(struct ptr_ring *r) 217 { 218 bool ret; 219 220 spin_lock_irq(&r->consumer_lock); 221 ret = __ptr_ring_empty(r); 222 spin_unlock_irq(&r->consumer_lock); 223 224 return ret; 225 } 226 227 static inline bool ptr_ring_empty_any(struct ptr_ring *r) 228 { 229 unsigned long flags; 230 bool ret; 231 232 spin_lock_irqsave(&r->consumer_lock, flags); 233 ret = __ptr_ring_empty(r); 234 spin_unlock_irqrestore(&r->consumer_lock, flags); 235 236 return ret; 237 } 238 239 static inline bool ptr_ring_empty_bh(struct ptr_ring *r) 240 { 241 bool ret; 242 243 spin_lock_bh(&r->consumer_lock); 244 ret = __ptr_ring_empty(r); 245 spin_unlock_bh(&r->consumer_lock); 246 247 return ret; 248 } 249 250 /* Must only be called after __ptr_ring_peek returned !NULL */ 251 static inline void __ptr_ring_discard_one(struct ptr_ring *r) 252 { 253 /* Fundamentally, what we want to do is update consumer 254 * index and zero out the entry so producer can reuse it. 255 * Doing it naively at each consume would be as simple as: 256 * consumer = r->consumer; 257 * r->queue[consumer++] = NULL; 258 * if (unlikely(consumer >= r->size)) 259 * consumer = 0; 260 * r->consumer = consumer; 261 * but that is suboptimal when the ring is full as producer is writing 262 * out new entries in the same cache line. Defer these updates until a 263 * batch of entries has been consumed. 264 */ 265 /* Note: we must keep consumer_head valid at all times for __ptr_ring_empty 266 * to work correctly. 267 */ 268 int consumer_head = r->consumer_head; 269 int head = consumer_head++; 270 271 /* Once we have processed enough entries invalidate them in 272 * the ring all at once so producer can reuse their space in the ring. 273 * We also do this when we reach end of the ring - not mandatory 274 * but helps keep the implementation simple. 275 */ 276 if (unlikely(consumer_head - r->consumer_tail >= r->batch || 277 consumer_head >= r->size)) { 278 /* Zero out entries in the reverse order: this way we touch the 279 * cache line that producer might currently be reading the last; 280 * producer won't make progress and touch other cache lines 281 * besides the first one until we write out all entries. 282 */ 283 while (likely(head >= r->consumer_tail)) 284 r->queue[head--] = NULL; 285 r->consumer_tail = consumer_head; 286 } 287 if (unlikely(consumer_head >= r->size)) { 288 consumer_head = 0; 289 r->consumer_tail = 0; 290 } 291 /* matching READ_ONCE in __ptr_ring_empty for lockless tests */ 292 WRITE_ONCE(r->consumer_head, consumer_head); 293 } 294 295 static inline void *__ptr_ring_consume(struct ptr_ring *r) 296 { 297 void *ptr; 298 299 ptr = __ptr_ring_peek(r); 300 if (ptr) 301 __ptr_ring_discard_one(r); 302 303 /* Make sure anyone accessing data through the pointer is up to date. */ 304 /* Pairs with smp_wmb in __ptr_ring_produce. */ 305 smp_read_barrier_depends(); 306 return ptr; 307 } 308 309 static inline int __ptr_ring_consume_batched(struct ptr_ring *r, 310 void **array, int n) 311 { 312 void *ptr; 313 int i; 314 315 for (i = 0; i < n; i++) { 316 ptr = __ptr_ring_consume(r); 317 if (!ptr) 318 break; 319 array[i] = ptr; 320 } 321 322 return i; 323 } 324 325 /* 326 * Note: resize (below) nests producer lock within consumer lock, so if you 327 * call this in interrupt or BH context, you must disable interrupts/BH when 328 * producing. 329 */ 330 static inline void *ptr_ring_consume(struct ptr_ring *r) 331 { 332 void *ptr; 333 334 spin_lock(&r->consumer_lock); 335 ptr = __ptr_ring_consume(r); 336 spin_unlock(&r->consumer_lock); 337 338 return ptr; 339 } 340 341 static inline void *ptr_ring_consume_irq(struct ptr_ring *r) 342 { 343 void *ptr; 344 345 spin_lock_irq(&r->consumer_lock); 346 ptr = __ptr_ring_consume(r); 347 spin_unlock_irq(&r->consumer_lock); 348 349 return ptr; 350 } 351 352 static inline void *ptr_ring_consume_any(struct ptr_ring *r) 353 { 354 unsigned long flags; 355 void *ptr; 356 357 spin_lock_irqsave(&r->consumer_lock, flags); 358 ptr = __ptr_ring_consume(r); 359 spin_unlock_irqrestore(&r->consumer_lock, flags); 360 361 return ptr; 362 } 363 364 static inline void *ptr_ring_consume_bh(struct ptr_ring *r) 365 { 366 void *ptr; 367 368 spin_lock_bh(&r->consumer_lock); 369 ptr = __ptr_ring_consume(r); 370 spin_unlock_bh(&r->consumer_lock); 371 372 return ptr; 373 } 374 375 static inline int ptr_ring_consume_batched(struct ptr_ring *r, 376 void **array, int n) 377 { 378 int ret; 379 380 spin_lock(&r->consumer_lock); 381 ret = __ptr_ring_consume_batched(r, array, n); 382 spin_unlock(&r->consumer_lock); 383 384 return ret; 385 } 386 387 static inline int ptr_ring_consume_batched_irq(struct ptr_ring *r, 388 void **array, int n) 389 { 390 int ret; 391 392 spin_lock_irq(&r->consumer_lock); 393 ret = __ptr_ring_consume_batched(r, array, n); 394 spin_unlock_irq(&r->consumer_lock); 395 396 return ret; 397 } 398 399 static inline int ptr_ring_consume_batched_any(struct ptr_ring *r, 400 void **array, int n) 401 { 402 unsigned long flags; 403 int ret; 404 405 spin_lock_irqsave(&r->consumer_lock, flags); 406 ret = __ptr_ring_consume_batched(r, array, n); 407 spin_unlock_irqrestore(&r->consumer_lock, flags); 408 409 return ret; 410 } 411 412 static inline int ptr_ring_consume_batched_bh(struct ptr_ring *r, 413 void **array, int n) 414 { 415 int ret; 416 417 spin_lock_bh(&r->consumer_lock); 418 ret = __ptr_ring_consume_batched(r, array, n); 419 spin_unlock_bh(&r->consumer_lock); 420 421 return ret; 422 } 423 424 /* Cast to structure type and call a function without discarding from FIFO. 425 * Function must return a value. 426 * Callers must take consumer_lock. 427 */ 428 #define __PTR_RING_PEEK_CALL(r, f) ((f)(__ptr_ring_peek(r))) 429 430 #define PTR_RING_PEEK_CALL(r, f) ({ \ 431 typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \ 432 \ 433 spin_lock(&(r)->consumer_lock); \ 434 __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \ 435 spin_unlock(&(r)->consumer_lock); \ 436 __PTR_RING_PEEK_CALL_v; \ 437 }) 438 439 #define PTR_RING_PEEK_CALL_IRQ(r, f) ({ \ 440 typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \ 441 \ 442 spin_lock_irq(&(r)->consumer_lock); \ 443 __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \ 444 spin_unlock_irq(&(r)->consumer_lock); \ 445 __PTR_RING_PEEK_CALL_v; \ 446 }) 447 448 #define PTR_RING_PEEK_CALL_BH(r, f) ({ \ 449 typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \ 450 \ 451 spin_lock_bh(&(r)->consumer_lock); \ 452 __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \ 453 spin_unlock_bh(&(r)->consumer_lock); \ 454 __PTR_RING_PEEK_CALL_v; \ 455 }) 456 457 #define PTR_RING_PEEK_CALL_ANY(r, f) ({ \ 458 typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \ 459 unsigned long __PTR_RING_PEEK_CALL_f;\ 460 \ 461 spin_lock_irqsave(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \ 462 __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \ 463 spin_unlock_irqrestore(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \ 464 __PTR_RING_PEEK_CALL_v; \ 465 }) 466 467 /* Not all gfp_t flags (besides GFP_KERNEL) are allowed. See 468 * documentation for vmalloc for which of them are legal. 469 */ 470 static inline void **__ptr_ring_init_queue_alloc(unsigned int size, gfp_t gfp) 471 { 472 if (size > KMALLOC_MAX_SIZE / sizeof(void *)) 473 return NULL; 474 return kvmalloc_array(size, sizeof(void *), gfp | __GFP_ZERO); 475 } 476 477 static inline void __ptr_ring_set_size(struct ptr_ring *r, int size) 478 { 479 r->size = size; 480 r->batch = SMP_CACHE_BYTES * 2 / sizeof(*(r->queue)); 481 /* We need to set batch at least to 1 to make logic 482 * in __ptr_ring_discard_one work correctly. 483 * Batching too much (because ring is small) would cause a lot of 484 * burstiness. Needs tuning, for now disable batching. 485 */ 486 if (r->batch > r->size / 2 || !r->batch) 487 r->batch = 1; 488 } 489 490 static inline int ptr_ring_init(struct ptr_ring *r, int size, gfp_t gfp) 491 { 492 r->queue = __ptr_ring_init_queue_alloc(size, gfp); 493 if (!r->queue) 494 return -ENOMEM; 495 496 __ptr_ring_set_size(r, size); 497 r->producer = r->consumer_head = r->consumer_tail = 0; 498 spin_lock_init(&r->producer_lock); 499 spin_lock_init(&r->consumer_lock); 500 501 return 0; 502 } 503 504 /* 505 * Return entries into ring. Destroy entries that don't fit. 506 * 507 * Note: this is expected to be a rare slow path operation. 508 * 509 * Note: producer lock is nested within consumer lock, so if you 510 * resize you must make sure all uses nest correctly. 511 * In particular if you consume ring in interrupt or BH context, you must 512 * disable interrupts/BH when doing so. 513 */ 514 static inline void ptr_ring_unconsume(struct ptr_ring *r, void **batch, int n, 515 void (*destroy)(void *)) 516 { 517 unsigned long flags; 518 int head; 519 520 spin_lock_irqsave(&r->consumer_lock, flags); 521 spin_lock(&r->producer_lock); 522 523 if (!r->size) 524 goto done; 525 526 /* 527 * Clean out buffered entries (for simplicity). This way following code 528 * can test entries for NULL and if not assume they are valid. 529 */ 530 head = r->consumer_head - 1; 531 while (likely(head >= r->consumer_tail)) 532 r->queue[head--] = NULL; 533 r->consumer_tail = r->consumer_head; 534 535 /* 536 * Go over entries in batch, start moving head back and copy entries. 537 * Stop when we run into previously unconsumed entries. 538 */ 539 while (n) { 540 head = r->consumer_head - 1; 541 if (head < 0) 542 head = r->size - 1; 543 if (r->queue[head]) { 544 /* This batch entry will have to be destroyed. */ 545 goto done; 546 } 547 r->queue[head] = batch[--n]; 548 r->consumer_tail = head; 549 /* matching READ_ONCE in __ptr_ring_empty for lockless tests */ 550 WRITE_ONCE(r->consumer_head, head); 551 } 552 553 done: 554 /* Destroy all entries left in the batch. */ 555 while (n) 556 destroy(batch[--n]); 557 spin_unlock(&r->producer_lock); 558 spin_unlock_irqrestore(&r->consumer_lock, flags); 559 } 560 561 static inline void **__ptr_ring_swap_queue(struct ptr_ring *r, void **queue, 562 int size, gfp_t gfp, 563 void (*destroy)(void *)) 564 { 565 int producer = 0; 566 void **old; 567 void *ptr; 568 569 while ((ptr = __ptr_ring_consume(r))) 570 if (producer < size) 571 queue[producer++] = ptr; 572 else if (destroy) 573 destroy(ptr); 574 575 __ptr_ring_set_size(r, size); 576 r->producer = producer; 577 r->consumer_head = 0; 578 r->consumer_tail = 0; 579 old = r->queue; 580 r->queue = queue; 581 582 return old; 583 } 584 585 /* 586 * Note: producer lock is nested within consumer lock, so if you 587 * resize you must make sure all uses nest correctly. 588 * In particular if you consume ring in interrupt or BH context, you must 589 * disable interrupts/BH when doing so. 590 */ 591 static inline int ptr_ring_resize(struct ptr_ring *r, int size, gfp_t gfp, 592 void (*destroy)(void *)) 593 { 594 unsigned long flags; 595 void **queue = __ptr_ring_init_queue_alloc(size, gfp); 596 void **old; 597 598 if (!queue) 599 return -ENOMEM; 600 601 spin_lock_irqsave(&(r)->consumer_lock, flags); 602 spin_lock(&(r)->producer_lock); 603 604 old = __ptr_ring_swap_queue(r, queue, size, gfp, destroy); 605 606 spin_unlock(&(r)->producer_lock); 607 spin_unlock_irqrestore(&(r)->consumer_lock, flags); 608 609 kvfree(old); 610 611 return 0; 612 } 613 614 /* 615 * Note: producer lock is nested within consumer lock, so if you 616 * resize you must make sure all uses nest correctly. 617 * In particular if you consume ring in interrupt or BH context, you must 618 * disable interrupts/BH when doing so. 619 */ 620 static inline int ptr_ring_resize_multiple(struct ptr_ring **rings, 621 unsigned int nrings, 622 int size, 623 gfp_t gfp, void (*destroy)(void *)) 624 { 625 unsigned long flags; 626 void ***queues; 627 int i; 628 629 queues = kmalloc_array(nrings, sizeof(*queues), gfp); 630 if (!queues) 631 goto noqueues; 632 633 for (i = 0; i < nrings; ++i) { 634 queues[i] = __ptr_ring_init_queue_alloc(size, gfp); 635 if (!queues[i]) 636 goto nomem; 637 } 638 639 for (i = 0; i < nrings; ++i) { 640 spin_lock_irqsave(&(rings[i])->consumer_lock, flags); 641 spin_lock(&(rings[i])->producer_lock); 642 queues[i] = __ptr_ring_swap_queue(rings[i], queues[i], 643 size, gfp, destroy); 644 spin_unlock(&(rings[i])->producer_lock); 645 spin_unlock_irqrestore(&(rings[i])->consumer_lock, flags); 646 } 647 648 for (i = 0; i < nrings; ++i) 649 kvfree(queues[i]); 650 651 kfree(queues); 652 653 return 0; 654 655 nomem: 656 while (--i >= 0) 657 kvfree(queues[i]); 658 659 kfree(queues); 660 661 noqueues: 662 return -ENOMEM; 663 } 664 665 static inline void ptr_ring_cleanup(struct ptr_ring *r, void (*destroy)(void *)) 666 { 667 void *ptr; 668 669 if (destroy) 670 while ((ptr = ptr_ring_consume(r))) 671 destroy(ptr); 672 kvfree(r->queue); 673 } 674 675 #endif /* _LINUX_PTR_RING_H */ 676