xref: /linux-6.15/include/linux/ptr_ring.h (revision e91c2518)
1 /*
2  *	Definitions for the 'struct ptr_ring' datastructure.
3  *
4  *	Author:
5  *		Michael S. Tsirkin <[email protected]>
6  *
7  *	Copyright (C) 2016 Red Hat, Inc.
8  *
9  *	This program is free software; you can redistribute it and/or modify it
10  *	under the terms of the GNU General Public License as published by the
11  *	Free Software Foundation; either version 2 of the License, or (at your
12  *	option) any later version.
13  *
14  *	This is a limited-size FIFO maintaining pointers in FIFO order, with
15  *	one CPU producing entries and another consuming entries from a FIFO.
16  *
17  *	This implementation tries to minimize cache-contention when there is a
18  *	single producer and a single consumer CPU.
19  */
20 
21 #ifndef _LINUX_PTR_RING_H
22 #define _LINUX_PTR_RING_H 1
23 
24 #ifdef __KERNEL__
25 #include <linux/spinlock.h>
26 #include <linux/cache.h>
27 #include <linux/types.h>
28 #include <linux/compiler.h>
29 #include <linux/cache.h>
30 #include <linux/slab.h>
31 #include <asm/errno.h>
32 #endif
33 
34 struct ptr_ring {
35 	int producer ____cacheline_aligned_in_smp;
36 	spinlock_t producer_lock;
37 	int consumer_head ____cacheline_aligned_in_smp; /* next valid entry */
38 	int consumer_tail; /* next entry to invalidate */
39 	spinlock_t consumer_lock;
40 	/* Shared consumer/producer data */
41 	/* Read-only by both the producer and the consumer */
42 	int size ____cacheline_aligned_in_smp; /* max entries in queue */
43 	int batch; /* number of entries to consume in a batch */
44 	void **queue;
45 };
46 
47 /* Note: callers invoking this in a loop must use a compiler barrier,
48  * for example cpu_relax().  If ring is ever resized, callers must hold
49  * producer_lock - see e.g. ptr_ring_full.  Otherwise, if callers don't hold
50  * producer_lock, the next call to __ptr_ring_produce may fail.
51  */
52 static inline bool __ptr_ring_full(struct ptr_ring *r)
53 {
54 	return r->queue[r->producer];
55 }
56 
57 static inline bool ptr_ring_full(struct ptr_ring *r)
58 {
59 	bool ret;
60 
61 	spin_lock(&r->producer_lock);
62 	ret = __ptr_ring_full(r);
63 	spin_unlock(&r->producer_lock);
64 
65 	return ret;
66 }
67 
68 static inline bool ptr_ring_full_irq(struct ptr_ring *r)
69 {
70 	bool ret;
71 
72 	spin_lock_irq(&r->producer_lock);
73 	ret = __ptr_ring_full(r);
74 	spin_unlock_irq(&r->producer_lock);
75 
76 	return ret;
77 }
78 
79 static inline bool ptr_ring_full_any(struct ptr_ring *r)
80 {
81 	unsigned long flags;
82 	bool ret;
83 
84 	spin_lock_irqsave(&r->producer_lock, flags);
85 	ret = __ptr_ring_full(r);
86 	spin_unlock_irqrestore(&r->producer_lock, flags);
87 
88 	return ret;
89 }
90 
91 static inline bool ptr_ring_full_bh(struct ptr_ring *r)
92 {
93 	bool ret;
94 
95 	spin_lock_bh(&r->producer_lock);
96 	ret = __ptr_ring_full(r);
97 	spin_unlock_bh(&r->producer_lock);
98 
99 	return ret;
100 }
101 
102 /* Note: callers invoking this in a loop must use a compiler barrier,
103  * for example cpu_relax(). Callers must hold producer_lock.
104  * Callers are responsible for making sure pointer that is being queued
105  * points to a valid data.
106  */
107 static inline int __ptr_ring_produce(struct ptr_ring *r, void *ptr)
108 {
109 	if (unlikely(!r->size) || r->queue[r->producer])
110 		return -ENOSPC;
111 
112 	/* Make sure the pointer we are storing points to a valid data. */
113 	/* Pairs with smp_read_barrier_depends in __ptr_ring_consume. */
114 	smp_wmb();
115 
116 	r->queue[r->producer++] = ptr;
117 	if (unlikely(r->producer >= r->size))
118 		r->producer = 0;
119 	return 0;
120 }
121 
122 /*
123  * Note: resize (below) nests producer lock within consumer lock, so if you
124  * consume in interrupt or BH context, you must disable interrupts/BH when
125  * calling this.
126  */
127 static inline int ptr_ring_produce(struct ptr_ring *r, void *ptr)
128 {
129 	int ret;
130 
131 	spin_lock(&r->producer_lock);
132 	ret = __ptr_ring_produce(r, ptr);
133 	spin_unlock(&r->producer_lock);
134 
135 	return ret;
136 }
137 
138 static inline int ptr_ring_produce_irq(struct ptr_ring *r, void *ptr)
139 {
140 	int ret;
141 
142 	spin_lock_irq(&r->producer_lock);
143 	ret = __ptr_ring_produce(r, ptr);
144 	spin_unlock_irq(&r->producer_lock);
145 
146 	return ret;
147 }
148 
149 static inline int ptr_ring_produce_any(struct ptr_ring *r, void *ptr)
150 {
151 	unsigned long flags;
152 	int ret;
153 
154 	spin_lock_irqsave(&r->producer_lock, flags);
155 	ret = __ptr_ring_produce(r, ptr);
156 	spin_unlock_irqrestore(&r->producer_lock, flags);
157 
158 	return ret;
159 }
160 
161 static inline int ptr_ring_produce_bh(struct ptr_ring *r, void *ptr)
162 {
163 	int ret;
164 
165 	spin_lock_bh(&r->producer_lock);
166 	ret = __ptr_ring_produce(r, ptr);
167 	spin_unlock_bh(&r->producer_lock);
168 
169 	return ret;
170 }
171 
172 /* Note: callers invoking this in a loop must use a compiler barrier,
173  * for example cpu_relax(). Callers must take consumer_lock
174  * if they dereference the pointer - see e.g. PTR_RING_PEEK_CALL.
175  * If ring is never resized, and if the pointer is merely
176  * tested, there's no need to take the lock - see e.g.  __ptr_ring_empty.
177  * However, if called outside the lock, and if some other CPU
178  * consumes ring entries at the same time, the value returned
179  * is not guaranteed to be correct.
180  * In this case - to avoid incorrectly detecting the ring
181  * as empty - the CPU consuming the ring entries is responsible
182  * for either consuming all ring entries until the ring is empty,
183  * or synchronizing with some other CPU and causing it to
184  * execute __ptr_ring_peek and/or consume the ring enteries
185  * after the synchronization point.
186  */
187 static inline void *__ptr_ring_peek(struct ptr_ring *r)
188 {
189 	if (likely(r->size))
190 		return r->queue[r->consumer_head];
191 	return NULL;
192 }
193 
194 /* See __ptr_ring_peek above for locking rules. */
195 static inline bool __ptr_ring_empty(struct ptr_ring *r)
196 {
197 	return !__ptr_ring_peek(r);
198 }
199 
200 static inline bool ptr_ring_empty(struct ptr_ring *r)
201 {
202 	bool ret;
203 
204 	spin_lock(&r->consumer_lock);
205 	ret = __ptr_ring_empty(r);
206 	spin_unlock(&r->consumer_lock);
207 
208 	return ret;
209 }
210 
211 static inline bool ptr_ring_empty_irq(struct ptr_ring *r)
212 {
213 	bool ret;
214 
215 	spin_lock_irq(&r->consumer_lock);
216 	ret = __ptr_ring_empty(r);
217 	spin_unlock_irq(&r->consumer_lock);
218 
219 	return ret;
220 }
221 
222 static inline bool ptr_ring_empty_any(struct ptr_ring *r)
223 {
224 	unsigned long flags;
225 	bool ret;
226 
227 	spin_lock_irqsave(&r->consumer_lock, flags);
228 	ret = __ptr_ring_empty(r);
229 	spin_unlock_irqrestore(&r->consumer_lock, flags);
230 
231 	return ret;
232 }
233 
234 static inline bool ptr_ring_empty_bh(struct ptr_ring *r)
235 {
236 	bool ret;
237 
238 	spin_lock_bh(&r->consumer_lock);
239 	ret = __ptr_ring_empty(r);
240 	spin_unlock_bh(&r->consumer_lock);
241 
242 	return ret;
243 }
244 
245 /* Must only be called after __ptr_ring_peek returned !NULL */
246 static inline void __ptr_ring_discard_one(struct ptr_ring *r)
247 {
248 	/* Fundamentally, what we want to do is update consumer
249 	 * index and zero out the entry so producer can reuse it.
250 	 * Doing it naively at each consume would be as simple as:
251 	 *       r->queue[r->consumer++] = NULL;
252 	 *       if (unlikely(r->consumer >= r->size))
253 	 *               r->consumer = 0;
254 	 * but that is suboptimal when the ring is full as producer is writing
255 	 * out new entries in the same cache line.  Defer these updates until a
256 	 * batch of entries has been consumed.
257 	 */
258 	int head = r->consumer_head++;
259 
260 	/* Once we have processed enough entries invalidate them in
261 	 * the ring all at once so producer can reuse their space in the ring.
262 	 * We also do this when we reach end of the ring - not mandatory
263 	 * but helps keep the implementation simple.
264 	 */
265 	if (unlikely(r->consumer_head - r->consumer_tail >= r->batch ||
266 		     r->consumer_head >= r->size)) {
267 		/* Zero out entries in the reverse order: this way we touch the
268 		 * cache line that producer might currently be reading the last;
269 		 * producer won't make progress and touch other cache lines
270 		 * besides the first one until we write out all entries.
271 		 */
272 		while (likely(head >= r->consumer_tail))
273 			r->queue[head--] = NULL;
274 		r->consumer_tail = r->consumer_head;
275 	}
276 	if (unlikely(r->consumer_head >= r->size)) {
277 		r->consumer_head = 0;
278 		r->consumer_tail = 0;
279 	}
280 }
281 
282 static inline void *__ptr_ring_consume(struct ptr_ring *r)
283 {
284 	void *ptr;
285 
286 	ptr = __ptr_ring_peek(r);
287 	if (ptr)
288 		__ptr_ring_discard_one(r);
289 
290 	/* Make sure anyone accessing data through the pointer is up to date. */
291 	/* Pairs with smp_wmb in __ptr_ring_produce. */
292 	smp_read_barrier_depends();
293 	return ptr;
294 }
295 
296 static inline int __ptr_ring_consume_batched(struct ptr_ring *r,
297 					     void **array, int n)
298 {
299 	void *ptr;
300 	int i;
301 
302 	for (i = 0; i < n; i++) {
303 		ptr = __ptr_ring_consume(r);
304 		if (!ptr)
305 			break;
306 		array[i] = ptr;
307 	}
308 
309 	return i;
310 }
311 
312 /*
313  * Note: resize (below) nests producer lock within consumer lock, so if you
314  * call this in interrupt or BH context, you must disable interrupts/BH when
315  * producing.
316  */
317 static inline void *ptr_ring_consume(struct ptr_ring *r)
318 {
319 	void *ptr;
320 
321 	spin_lock(&r->consumer_lock);
322 	ptr = __ptr_ring_consume(r);
323 	spin_unlock(&r->consumer_lock);
324 
325 	return ptr;
326 }
327 
328 static inline void *ptr_ring_consume_irq(struct ptr_ring *r)
329 {
330 	void *ptr;
331 
332 	spin_lock_irq(&r->consumer_lock);
333 	ptr = __ptr_ring_consume(r);
334 	spin_unlock_irq(&r->consumer_lock);
335 
336 	return ptr;
337 }
338 
339 static inline void *ptr_ring_consume_any(struct ptr_ring *r)
340 {
341 	unsigned long flags;
342 	void *ptr;
343 
344 	spin_lock_irqsave(&r->consumer_lock, flags);
345 	ptr = __ptr_ring_consume(r);
346 	spin_unlock_irqrestore(&r->consumer_lock, flags);
347 
348 	return ptr;
349 }
350 
351 static inline void *ptr_ring_consume_bh(struct ptr_ring *r)
352 {
353 	void *ptr;
354 
355 	spin_lock_bh(&r->consumer_lock);
356 	ptr = __ptr_ring_consume(r);
357 	spin_unlock_bh(&r->consumer_lock);
358 
359 	return ptr;
360 }
361 
362 static inline int ptr_ring_consume_batched(struct ptr_ring *r,
363 					   void **array, int n)
364 {
365 	int ret;
366 
367 	spin_lock(&r->consumer_lock);
368 	ret = __ptr_ring_consume_batched(r, array, n);
369 	spin_unlock(&r->consumer_lock);
370 
371 	return ret;
372 }
373 
374 static inline int ptr_ring_consume_batched_irq(struct ptr_ring *r,
375 					       void **array, int n)
376 {
377 	int ret;
378 
379 	spin_lock_irq(&r->consumer_lock);
380 	ret = __ptr_ring_consume_batched(r, array, n);
381 	spin_unlock_irq(&r->consumer_lock);
382 
383 	return ret;
384 }
385 
386 static inline int ptr_ring_consume_batched_any(struct ptr_ring *r,
387 					       void **array, int n)
388 {
389 	unsigned long flags;
390 	int ret;
391 
392 	spin_lock_irqsave(&r->consumer_lock, flags);
393 	ret = __ptr_ring_consume_batched(r, array, n);
394 	spin_unlock_irqrestore(&r->consumer_lock, flags);
395 
396 	return ret;
397 }
398 
399 static inline int ptr_ring_consume_batched_bh(struct ptr_ring *r,
400 					      void **array, int n)
401 {
402 	int ret;
403 
404 	spin_lock_bh(&r->consumer_lock);
405 	ret = __ptr_ring_consume_batched(r, array, n);
406 	spin_unlock_bh(&r->consumer_lock);
407 
408 	return ret;
409 }
410 
411 /* Cast to structure type and call a function without discarding from FIFO.
412  * Function must return a value.
413  * Callers must take consumer_lock.
414  */
415 #define __PTR_RING_PEEK_CALL(r, f) ((f)(__ptr_ring_peek(r)))
416 
417 #define PTR_RING_PEEK_CALL(r, f) ({ \
418 	typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
419 	\
420 	spin_lock(&(r)->consumer_lock); \
421 	__PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
422 	spin_unlock(&(r)->consumer_lock); \
423 	__PTR_RING_PEEK_CALL_v; \
424 })
425 
426 #define PTR_RING_PEEK_CALL_IRQ(r, f) ({ \
427 	typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
428 	\
429 	spin_lock_irq(&(r)->consumer_lock); \
430 	__PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
431 	spin_unlock_irq(&(r)->consumer_lock); \
432 	__PTR_RING_PEEK_CALL_v; \
433 })
434 
435 #define PTR_RING_PEEK_CALL_BH(r, f) ({ \
436 	typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
437 	\
438 	spin_lock_bh(&(r)->consumer_lock); \
439 	__PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
440 	spin_unlock_bh(&(r)->consumer_lock); \
441 	__PTR_RING_PEEK_CALL_v; \
442 })
443 
444 #define PTR_RING_PEEK_CALL_ANY(r, f) ({ \
445 	typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
446 	unsigned long __PTR_RING_PEEK_CALL_f;\
447 	\
448 	spin_lock_irqsave(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \
449 	__PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
450 	spin_unlock_irqrestore(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \
451 	__PTR_RING_PEEK_CALL_v; \
452 })
453 
454 static inline void **__ptr_ring_init_queue_alloc(unsigned int size, gfp_t gfp)
455 {
456 	return kcalloc(size, sizeof(void *), gfp);
457 }
458 
459 static inline void __ptr_ring_set_size(struct ptr_ring *r, int size)
460 {
461 	r->size = size;
462 	r->batch = SMP_CACHE_BYTES * 2 / sizeof(*(r->queue));
463 	/* We need to set batch at least to 1 to make logic
464 	 * in __ptr_ring_discard_one work correctly.
465 	 * Batching too much (because ring is small) would cause a lot of
466 	 * burstiness. Needs tuning, for now disable batching.
467 	 */
468 	if (r->batch > r->size / 2 || !r->batch)
469 		r->batch = 1;
470 }
471 
472 static inline int ptr_ring_init(struct ptr_ring *r, int size, gfp_t gfp)
473 {
474 	r->queue = __ptr_ring_init_queue_alloc(size, gfp);
475 	if (!r->queue)
476 		return -ENOMEM;
477 
478 	__ptr_ring_set_size(r, size);
479 	r->producer = r->consumer_head = r->consumer_tail = 0;
480 	spin_lock_init(&r->producer_lock);
481 	spin_lock_init(&r->consumer_lock);
482 
483 	return 0;
484 }
485 
486 /*
487  * Return entries into ring. Destroy entries that don't fit.
488  *
489  * Note: this is expected to be a rare slow path operation.
490  *
491  * Note: producer lock is nested within consumer lock, so if you
492  * resize you must make sure all uses nest correctly.
493  * In particular if you consume ring in interrupt or BH context, you must
494  * disable interrupts/BH when doing so.
495  */
496 static inline void ptr_ring_unconsume(struct ptr_ring *r, void **batch, int n,
497 				      void (*destroy)(void *))
498 {
499 	unsigned long flags;
500 	int head;
501 
502 	spin_lock_irqsave(&r->consumer_lock, flags);
503 	spin_lock(&r->producer_lock);
504 
505 	if (!r->size)
506 		goto done;
507 
508 	/*
509 	 * Clean out buffered entries (for simplicity). This way following code
510 	 * can test entries for NULL and if not assume they are valid.
511 	 */
512 	head = r->consumer_head - 1;
513 	while (likely(head >= r->consumer_tail))
514 		r->queue[head--] = NULL;
515 	r->consumer_tail = r->consumer_head;
516 
517 	/*
518 	 * Go over entries in batch, start moving head back and copy entries.
519 	 * Stop when we run into previously unconsumed entries.
520 	 */
521 	while (n) {
522 		head = r->consumer_head - 1;
523 		if (head < 0)
524 			head = r->size - 1;
525 		if (r->queue[head]) {
526 			/* This batch entry will have to be destroyed. */
527 			goto done;
528 		}
529 		r->queue[head] = batch[--n];
530 		r->consumer_tail = r->consumer_head = head;
531 	}
532 
533 done:
534 	/* Destroy all entries left in the batch. */
535 	while (n)
536 		destroy(batch[--n]);
537 	spin_unlock(&r->producer_lock);
538 	spin_unlock_irqrestore(&r->consumer_lock, flags);
539 }
540 
541 static inline void **__ptr_ring_swap_queue(struct ptr_ring *r, void **queue,
542 					   int size, gfp_t gfp,
543 					   void (*destroy)(void *))
544 {
545 	int producer = 0;
546 	void **old;
547 	void *ptr;
548 
549 	while ((ptr = __ptr_ring_consume(r)))
550 		if (producer < size)
551 			queue[producer++] = ptr;
552 		else if (destroy)
553 			destroy(ptr);
554 
555 	__ptr_ring_set_size(r, size);
556 	r->producer = producer;
557 	r->consumer_head = 0;
558 	r->consumer_tail = 0;
559 	old = r->queue;
560 	r->queue = queue;
561 
562 	return old;
563 }
564 
565 /*
566  * Note: producer lock is nested within consumer lock, so if you
567  * resize you must make sure all uses nest correctly.
568  * In particular if you consume ring in interrupt or BH context, you must
569  * disable interrupts/BH when doing so.
570  */
571 static inline int ptr_ring_resize(struct ptr_ring *r, int size, gfp_t gfp,
572 				  void (*destroy)(void *))
573 {
574 	unsigned long flags;
575 	void **queue = __ptr_ring_init_queue_alloc(size, gfp);
576 	void **old;
577 
578 	if (!queue)
579 		return -ENOMEM;
580 
581 	spin_lock_irqsave(&(r)->consumer_lock, flags);
582 	spin_lock(&(r)->producer_lock);
583 
584 	old = __ptr_ring_swap_queue(r, queue, size, gfp, destroy);
585 
586 	spin_unlock(&(r)->producer_lock);
587 	spin_unlock_irqrestore(&(r)->consumer_lock, flags);
588 
589 	kfree(old);
590 
591 	return 0;
592 }
593 
594 /*
595  * Note: producer lock is nested within consumer lock, so if you
596  * resize you must make sure all uses nest correctly.
597  * In particular if you consume ring in interrupt or BH context, you must
598  * disable interrupts/BH when doing so.
599  */
600 static inline int ptr_ring_resize_multiple(struct ptr_ring **rings,
601 					   unsigned int nrings,
602 					   int size,
603 					   gfp_t gfp, void (*destroy)(void *))
604 {
605 	unsigned long flags;
606 	void ***queues;
607 	int i;
608 
609 	queues = kmalloc_array(nrings, sizeof(*queues), gfp);
610 	if (!queues)
611 		goto noqueues;
612 
613 	for (i = 0; i < nrings; ++i) {
614 		queues[i] = __ptr_ring_init_queue_alloc(size, gfp);
615 		if (!queues[i])
616 			goto nomem;
617 	}
618 
619 	for (i = 0; i < nrings; ++i) {
620 		spin_lock_irqsave(&(rings[i])->consumer_lock, flags);
621 		spin_lock(&(rings[i])->producer_lock);
622 		queues[i] = __ptr_ring_swap_queue(rings[i], queues[i],
623 						  size, gfp, destroy);
624 		spin_unlock(&(rings[i])->producer_lock);
625 		spin_unlock_irqrestore(&(rings[i])->consumer_lock, flags);
626 	}
627 
628 	for (i = 0; i < nrings; ++i)
629 		kfree(queues[i]);
630 
631 	kfree(queues);
632 
633 	return 0;
634 
635 nomem:
636 	while (--i >= 0)
637 		kfree(queues[i]);
638 
639 	kfree(queues);
640 
641 noqueues:
642 	return -ENOMEM;
643 }
644 
645 static inline void ptr_ring_cleanup(struct ptr_ring *r, void (*destroy)(void *))
646 {
647 	void *ptr;
648 
649 	if (destroy)
650 		while ((ptr = ptr_ring_consume(r)))
651 			destroy(ptr);
652 	kfree(r->queue);
653 }
654 
655 #endif /* _LINUX_PTR_RING_H  */
656