xref: /linux-6.15/include/linux/ptr_ring.h (revision d66fa9ec)
1 /*
2  *	Definitions for the 'struct ptr_ring' datastructure.
3  *
4  *	Author:
5  *		Michael S. Tsirkin <[email protected]>
6  *
7  *	Copyright (C) 2016 Red Hat, Inc.
8  *
9  *	This program is free software; you can redistribute it and/or modify it
10  *	under the terms of the GNU General Public License as published by the
11  *	Free Software Foundation; either version 2 of the License, or (at your
12  *	option) any later version.
13  *
14  *	This is a limited-size FIFO maintaining pointers in FIFO order, with
15  *	one CPU producing entries and another consuming entries from a FIFO.
16  *
17  *	This implementation tries to minimize cache-contention when there is a
18  *	single producer and a single consumer CPU.
19  */
20 
21 #ifndef _LINUX_PTR_RING_H
22 #define _LINUX_PTR_RING_H 1
23 
24 #ifdef __KERNEL__
25 #include <linux/spinlock.h>
26 #include <linux/cache.h>
27 #include <linux/types.h>
28 #include <linux/compiler.h>
29 #include <linux/cache.h>
30 #include <linux/slab.h>
31 #include <asm/errno.h>
32 #endif
33 
34 struct ptr_ring {
35 	int producer ____cacheline_aligned_in_smp;
36 	spinlock_t producer_lock;
37 	int consumer_head ____cacheline_aligned_in_smp; /* next valid entry */
38 	int consumer_tail; /* next entry to invalidate */
39 	spinlock_t consumer_lock;
40 	/* Shared consumer/producer data */
41 	/* Read-only by both the producer and the consumer */
42 	int size ____cacheline_aligned_in_smp; /* max entries in queue */
43 	int batch; /* number of entries to consume in a batch */
44 	void **queue;
45 };
46 
47 /* Note: callers invoking this in a loop must use a compiler barrier,
48  * for example cpu_relax().  If ring is ever resized, callers must hold
49  * producer_lock - see e.g. ptr_ring_full.  Otherwise, if callers don't hold
50  * producer_lock, the next call to __ptr_ring_produce may fail.
51  */
52 static inline bool __ptr_ring_full(struct ptr_ring *r)
53 {
54 	return r->queue[r->producer];
55 }
56 
57 static inline bool ptr_ring_full(struct ptr_ring *r)
58 {
59 	bool ret;
60 
61 	spin_lock(&r->producer_lock);
62 	ret = __ptr_ring_full(r);
63 	spin_unlock(&r->producer_lock);
64 
65 	return ret;
66 }
67 
68 static inline bool ptr_ring_full_irq(struct ptr_ring *r)
69 {
70 	bool ret;
71 
72 	spin_lock_irq(&r->producer_lock);
73 	ret = __ptr_ring_full(r);
74 	spin_unlock_irq(&r->producer_lock);
75 
76 	return ret;
77 }
78 
79 static inline bool ptr_ring_full_any(struct ptr_ring *r)
80 {
81 	unsigned long flags;
82 	bool ret;
83 
84 	spin_lock_irqsave(&r->producer_lock, flags);
85 	ret = __ptr_ring_full(r);
86 	spin_unlock_irqrestore(&r->producer_lock, flags);
87 
88 	return ret;
89 }
90 
91 static inline bool ptr_ring_full_bh(struct ptr_ring *r)
92 {
93 	bool ret;
94 
95 	spin_lock_bh(&r->producer_lock);
96 	ret = __ptr_ring_full(r);
97 	spin_unlock_bh(&r->producer_lock);
98 
99 	return ret;
100 }
101 
102 /* Note: callers invoking this in a loop must use a compiler barrier,
103  * for example cpu_relax(). Callers must hold producer_lock.
104  * Callers are responsible for making sure pointer that is being queued
105  * points to a valid data.
106  */
107 static inline int __ptr_ring_produce(struct ptr_ring *r, void *ptr)
108 {
109 	if (unlikely(!r->size) || r->queue[r->producer])
110 		return -ENOSPC;
111 
112 	/* Make sure the pointer we are storing points to a valid data. */
113 	/* Pairs with smp_read_barrier_depends in __ptr_ring_consume. */
114 	smp_wmb();
115 
116 	r->queue[r->producer++] = ptr;
117 	if (unlikely(r->producer >= r->size))
118 		r->producer = 0;
119 	return 0;
120 }
121 
122 /*
123  * Note: resize (below) nests producer lock within consumer lock, so if you
124  * consume in interrupt or BH context, you must disable interrupts/BH when
125  * calling this.
126  */
127 static inline int ptr_ring_produce(struct ptr_ring *r, void *ptr)
128 {
129 	int ret;
130 
131 	spin_lock(&r->producer_lock);
132 	ret = __ptr_ring_produce(r, ptr);
133 	spin_unlock(&r->producer_lock);
134 
135 	return ret;
136 }
137 
138 static inline int ptr_ring_produce_irq(struct ptr_ring *r, void *ptr)
139 {
140 	int ret;
141 
142 	spin_lock_irq(&r->producer_lock);
143 	ret = __ptr_ring_produce(r, ptr);
144 	spin_unlock_irq(&r->producer_lock);
145 
146 	return ret;
147 }
148 
149 static inline int ptr_ring_produce_any(struct ptr_ring *r, void *ptr)
150 {
151 	unsigned long flags;
152 	int ret;
153 
154 	spin_lock_irqsave(&r->producer_lock, flags);
155 	ret = __ptr_ring_produce(r, ptr);
156 	spin_unlock_irqrestore(&r->producer_lock, flags);
157 
158 	return ret;
159 }
160 
161 static inline int ptr_ring_produce_bh(struct ptr_ring *r, void *ptr)
162 {
163 	int ret;
164 
165 	spin_lock_bh(&r->producer_lock);
166 	ret = __ptr_ring_produce(r, ptr);
167 	spin_unlock_bh(&r->producer_lock);
168 
169 	return ret;
170 }
171 
172 /* Note: callers invoking this in a loop must use a compiler barrier,
173  * for example cpu_relax(). Callers must take consumer_lock
174  * if they dereference the pointer - see e.g. PTR_RING_PEEK_CALL.
175  * If ring is never resized, and if the pointer is merely
176  * tested, there's no need to take the lock - see e.g.  __ptr_ring_empty.
177  */
178 static inline void *__ptr_ring_peek(struct ptr_ring *r)
179 {
180 	if (likely(r->size))
181 		return r->queue[r->consumer_head];
182 	return NULL;
183 }
184 
185 /* Note: callers invoking this in a loop must use a compiler barrier,
186  * for example cpu_relax(). Callers must take consumer_lock
187  * if the ring is ever resized - see e.g. ptr_ring_empty.
188  */
189 static inline bool __ptr_ring_empty(struct ptr_ring *r)
190 {
191 	return !__ptr_ring_peek(r);
192 }
193 
194 static inline bool ptr_ring_empty(struct ptr_ring *r)
195 {
196 	bool ret;
197 
198 	spin_lock(&r->consumer_lock);
199 	ret = __ptr_ring_empty(r);
200 	spin_unlock(&r->consumer_lock);
201 
202 	return ret;
203 }
204 
205 static inline bool ptr_ring_empty_irq(struct ptr_ring *r)
206 {
207 	bool ret;
208 
209 	spin_lock_irq(&r->consumer_lock);
210 	ret = __ptr_ring_empty(r);
211 	spin_unlock_irq(&r->consumer_lock);
212 
213 	return ret;
214 }
215 
216 static inline bool ptr_ring_empty_any(struct ptr_ring *r)
217 {
218 	unsigned long flags;
219 	bool ret;
220 
221 	spin_lock_irqsave(&r->consumer_lock, flags);
222 	ret = __ptr_ring_empty(r);
223 	spin_unlock_irqrestore(&r->consumer_lock, flags);
224 
225 	return ret;
226 }
227 
228 static inline bool ptr_ring_empty_bh(struct ptr_ring *r)
229 {
230 	bool ret;
231 
232 	spin_lock_bh(&r->consumer_lock);
233 	ret = __ptr_ring_empty(r);
234 	spin_unlock_bh(&r->consumer_lock);
235 
236 	return ret;
237 }
238 
239 /* Must only be called after __ptr_ring_peek returned !NULL */
240 static inline void __ptr_ring_discard_one(struct ptr_ring *r)
241 {
242 	/* Fundamentally, what we want to do is update consumer
243 	 * index and zero out the entry so producer can reuse it.
244 	 * Doing it naively at each consume would be as simple as:
245 	 *       r->queue[r->consumer++] = NULL;
246 	 *       if (unlikely(r->consumer >= r->size))
247 	 *               r->consumer = 0;
248 	 * but that is suboptimal when the ring is full as producer is writing
249 	 * out new entries in the same cache line.  Defer these updates until a
250 	 * batch of entries has been consumed.
251 	 */
252 	int head = r->consumer_head++;
253 
254 	/* Once we have processed enough entries invalidate them in
255 	 * the ring all at once so producer can reuse their space in the ring.
256 	 * We also do this when we reach end of the ring - not mandatory
257 	 * but helps keep the implementation simple.
258 	 */
259 	if (unlikely(r->consumer_head - r->consumer_tail >= r->batch ||
260 		     r->consumer_head >= r->size)) {
261 		/* Zero out entries in the reverse order: this way we touch the
262 		 * cache line that producer might currently be reading the last;
263 		 * producer won't make progress and touch other cache lines
264 		 * besides the first one until we write out all entries.
265 		 */
266 		while (likely(head >= r->consumer_tail))
267 			r->queue[head--] = NULL;
268 		r->consumer_tail = r->consumer_head;
269 	}
270 	if (unlikely(r->consumer_head >= r->size)) {
271 		r->consumer_head = 0;
272 		r->consumer_tail = 0;
273 	}
274 }
275 
276 static inline void *__ptr_ring_consume(struct ptr_ring *r)
277 {
278 	void *ptr;
279 
280 	ptr = __ptr_ring_peek(r);
281 	if (ptr)
282 		__ptr_ring_discard_one(r);
283 
284 	/* Make sure anyone accessing data through the pointer is up to date. */
285 	/* Pairs with smp_wmb in __ptr_ring_produce. */
286 	smp_read_barrier_depends();
287 	return ptr;
288 }
289 
290 static inline int __ptr_ring_consume_batched(struct ptr_ring *r,
291 					     void **array, int n)
292 {
293 	void *ptr;
294 	int i;
295 
296 	for (i = 0; i < n; i++) {
297 		ptr = __ptr_ring_consume(r);
298 		if (!ptr)
299 			break;
300 		array[i] = ptr;
301 	}
302 
303 	return i;
304 }
305 
306 /*
307  * Note: resize (below) nests producer lock within consumer lock, so if you
308  * call this in interrupt or BH context, you must disable interrupts/BH when
309  * producing.
310  */
311 static inline void *ptr_ring_consume(struct ptr_ring *r)
312 {
313 	void *ptr;
314 
315 	spin_lock(&r->consumer_lock);
316 	ptr = __ptr_ring_consume(r);
317 	spin_unlock(&r->consumer_lock);
318 
319 	return ptr;
320 }
321 
322 static inline void *ptr_ring_consume_irq(struct ptr_ring *r)
323 {
324 	void *ptr;
325 
326 	spin_lock_irq(&r->consumer_lock);
327 	ptr = __ptr_ring_consume(r);
328 	spin_unlock_irq(&r->consumer_lock);
329 
330 	return ptr;
331 }
332 
333 static inline void *ptr_ring_consume_any(struct ptr_ring *r)
334 {
335 	unsigned long flags;
336 	void *ptr;
337 
338 	spin_lock_irqsave(&r->consumer_lock, flags);
339 	ptr = __ptr_ring_consume(r);
340 	spin_unlock_irqrestore(&r->consumer_lock, flags);
341 
342 	return ptr;
343 }
344 
345 static inline void *ptr_ring_consume_bh(struct ptr_ring *r)
346 {
347 	void *ptr;
348 
349 	spin_lock_bh(&r->consumer_lock);
350 	ptr = __ptr_ring_consume(r);
351 	spin_unlock_bh(&r->consumer_lock);
352 
353 	return ptr;
354 }
355 
356 static inline int ptr_ring_consume_batched(struct ptr_ring *r,
357 					   void **array, int n)
358 {
359 	int ret;
360 
361 	spin_lock(&r->consumer_lock);
362 	ret = __ptr_ring_consume_batched(r, array, n);
363 	spin_unlock(&r->consumer_lock);
364 
365 	return ret;
366 }
367 
368 static inline int ptr_ring_consume_batched_irq(struct ptr_ring *r,
369 					       void **array, int n)
370 {
371 	int ret;
372 
373 	spin_lock_irq(&r->consumer_lock);
374 	ret = __ptr_ring_consume_batched(r, array, n);
375 	spin_unlock_irq(&r->consumer_lock);
376 
377 	return ret;
378 }
379 
380 static inline int ptr_ring_consume_batched_any(struct ptr_ring *r,
381 					       void **array, int n)
382 {
383 	unsigned long flags;
384 	int ret;
385 
386 	spin_lock_irqsave(&r->consumer_lock, flags);
387 	ret = __ptr_ring_consume_batched(r, array, n);
388 	spin_unlock_irqrestore(&r->consumer_lock, flags);
389 
390 	return ret;
391 }
392 
393 static inline int ptr_ring_consume_batched_bh(struct ptr_ring *r,
394 					      void **array, int n)
395 {
396 	int ret;
397 
398 	spin_lock_bh(&r->consumer_lock);
399 	ret = __ptr_ring_consume_batched(r, array, n);
400 	spin_unlock_bh(&r->consumer_lock);
401 
402 	return ret;
403 }
404 
405 /* Cast to structure type and call a function without discarding from FIFO.
406  * Function must return a value.
407  * Callers must take consumer_lock.
408  */
409 #define __PTR_RING_PEEK_CALL(r, f) ((f)(__ptr_ring_peek(r)))
410 
411 #define PTR_RING_PEEK_CALL(r, f) ({ \
412 	typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
413 	\
414 	spin_lock(&(r)->consumer_lock); \
415 	__PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
416 	spin_unlock(&(r)->consumer_lock); \
417 	__PTR_RING_PEEK_CALL_v; \
418 })
419 
420 #define PTR_RING_PEEK_CALL_IRQ(r, f) ({ \
421 	typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
422 	\
423 	spin_lock_irq(&(r)->consumer_lock); \
424 	__PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
425 	spin_unlock_irq(&(r)->consumer_lock); \
426 	__PTR_RING_PEEK_CALL_v; \
427 })
428 
429 #define PTR_RING_PEEK_CALL_BH(r, f) ({ \
430 	typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
431 	\
432 	spin_lock_bh(&(r)->consumer_lock); \
433 	__PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
434 	spin_unlock_bh(&(r)->consumer_lock); \
435 	__PTR_RING_PEEK_CALL_v; \
436 })
437 
438 #define PTR_RING_PEEK_CALL_ANY(r, f) ({ \
439 	typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
440 	unsigned long __PTR_RING_PEEK_CALL_f;\
441 	\
442 	spin_lock_irqsave(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \
443 	__PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
444 	spin_unlock_irqrestore(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \
445 	__PTR_RING_PEEK_CALL_v; \
446 })
447 
448 static inline void **__ptr_ring_init_queue_alloc(unsigned int size, gfp_t gfp)
449 {
450 	return kcalloc(size, sizeof(void *), gfp);
451 }
452 
453 static inline void __ptr_ring_set_size(struct ptr_ring *r, int size)
454 {
455 	r->size = size;
456 	r->batch = SMP_CACHE_BYTES * 2 / sizeof(*(r->queue));
457 	/* We need to set batch at least to 1 to make logic
458 	 * in __ptr_ring_discard_one work correctly.
459 	 * Batching too much (because ring is small) would cause a lot of
460 	 * burstiness. Needs tuning, for now disable batching.
461 	 */
462 	if (r->batch > r->size / 2 || !r->batch)
463 		r->batch = 1;
464 }
465 
466 static inline int ptr_ring_init(struct ptr_ring *r, int size, gfp_t gfp)
467 {
468 	r->queue = __ptr_ring_init_queue_alloc(size, gfp);
469 	if (!r->queue)
470 		return -ENOMEM;
471 
472 	__ptr_ring_set_size(r, size);
473 	r->producer = r->consumer_head = r->consumer_tail = 0;
474 	spin_lock_init(&r->producer_lock);
475 	spin_lock_init(&r->consumer_lock);
476 
477 	return 0;
478 }
479 
480 /*
481  * Return entries into ring. Destroy entries that don't fit.
482  *
483  * Note: this is expected to be a rare slow path operation.
484  *
485  * Note: producer lock is nested within consumer lock, so if you
486  * resize you must make sure all uses nest correctly.
487  * In particular if you consume ring in interrupt or BH context, you must
488  * disable interrupts/BH when doing so.
489  */
490 static inline void ptr_ring_unconsume(struct ptr_ring *r, void **batch, int n,
491 				      void (*destroy)(void *))
492 {
493 	unsigned long flags;
494 	int head;
495 
496 	spin_lock_irqsave(&r->consumer_lock, flags);
497 	spin_lock(&r->producer_lock);
498 
499 	if (!r->size)
500 		goto done;
501 
502 	/*
503 	 * Clean out buffered entries (for simplicity). This way following code
504 	 * can test entries for NULL and if not assume they are valid.
505 	 */
506 	head = r->consumer_head - 1;
507 	while (likely(head >= r->consumer_tail))
508 		r->queue[head--] = NULL;
509 	r->consumer_tail = r->consumer_head;
510 
511 	/*
512 	 * Go over entries in batch, start moving head back and copy entries.
513 	 * Stop when we run into previously unconsumed entries.
514 	 */
515 	while (n) {
516 		head = r->consumer_head - 1;
517 		if (head < 0)
518 			head = r->size - 1;
519 		if (r->queue[head]) {
520 			/* This batch entry will have to be destroyed. */
521 			goto done;
522 		}
523 		r->queue[head] = batch[--n];
524 		r->consumer_tail = r->consumer_head = head;
525 	}
526 
527 done:
528 	/* Destroy all entries left in the batch. */
529 	while (n)
530 		destroy(batch[--n]);
531 	spin_unlock(&r->producer_lock);
532 	spin_unlock_irqrestore(&r->consumer_lock, flags);
533 }
534 
535 static inline void **__ptr_ring_swap_queue(struct ptr_ring *r, void **queue,
536 					   int size, gfp_t gfp,
537 					   void (*destroy)(void *))
538 {
539 	int producer = 0;
540 	void **old;
541 	void *ptr;
542 
543 	while ((ptr = __ptr_ring_consume(r)))
544 		if (producer < size)
545 			queue[producer++] = ptr;
546 		else if (destroy)
547 			destroy(ptr);
548 
549 	__ptr_ring_set_size(r, size);
550 	r->producer = producer;
551 	r->consumer_head = 0;
552 	r->consumer_tail = 0;
553 	old = r->queue;
554 	r->queue = queue;
555 
556 	return old;
557 }
558 
559 /*
560  * Note: producer lock is nested within consumer lock, so if you
561  * resize you must make sure all uses nest correctly.
562  * In particular if you consume ring in interrupt or BH context, you must
563  * disable interrupts/BH when doing so.
564  */
565 static inline int ptr_ring_resize(struct ptr_ring *r, int size, gfp_t gfp,
566 				  void (*destroy)(void *))
567 {
568 	unsigned long flags;
569 	void **queue = __ptr_ring_init_queue_alloc(size, gfp);
570 	void **old;
571 
572 	if (!queue)
573 		return -ENOMEM;
574 
575 	spin_lock_irqsave(&(r)->consumer_lock, flags);
576 	spin_lock(&(r)->producer_lock);
577 
578 	old = __ptr_ring_swap_queue(r, queue, size, gfp, destroy);
579 
580 	spin_unlock(&(r)->producer_lock);
581 	spin_unlock_irqrestore(&(r)->consumer_lock, flags);
582 
583 	kfree(old);
584 
585 	return 0;
586 }
587 
588 /*
589  * Note: producer lock is nested within consumer lock, so if you
590  * resize you must make sure all uses nest correctly.
591  * In particular if you consume ring in interrupt or BH context, you must
592  * disable interrupts/BH when doing so.
593  */
594 static inline int ptr_ring_resize_multiple(struct ptr_ring **rings,
595 					   unsigned int nrings,
596 					   int size,
597 					   gfp_t gfp, void (*destroy)(void *))
598 {
599 	unsigned long flags;
600 	void ***queues;
601 	int i;
602 
603 	queues = kmalloc_array(nrings, sizeof(*queues), gfp);
604 	if (!queues)
605 		goto noqueues;
606 
607 	for (i = 0; i < nrings; ++i) {
608 		queues[i] = __ptr_ring_init_queue_alloc(size, gfp);
609 		if (!queues[i])
610 			goto nomem;
611 	}
612 
613 	for (i = 0; i < nrings; ++i) {
614 		spin_lock_irqsave(&(rings[i])->consumer_lock, flags);
615 		spin_lock(&(rings[i])->producer_lock);
616 		queues[i] = __ptr_ring_swap_queue(rings[i], queues[i],
617 						  size, gfp, destroy);
618 		spin_unlock(&(rings[i])->producer_lock);
619 		spin_unlock_irqrestore(&(rings[i])->consumer_lock, flags);
620 	}
621 
622 	for (i = 0; i < nrings; ++i)
623 		kfree(queues[i]);
624 
625 	kfree(queues);
626 
627 	return 0;
628 
629 nomem:
630 	while (--i >= 0)
631 		kfree(queues[i]);
632 
633 	kfree(queues);
634 
635 noqueues:
636 	return -ENOMEM;
637 }
638 
639 static inline void ptr_ring_cleanup(struct ptr_ring *r, void (*destroy)(void *))
640 {
641 	void *ptr;
642 
643 	if (destroy)
644 		while ((ptr = ptr_ring_consume(r)))
645 			destroy(ptr);
646 	kfree(r->queue);
647 }
648 
649 #endif /* _LINUX_PTR_RING_H  */
650