1 /* 2 * Definitions for the 'struct ptr_ring' datastructure. 3 * 4 * Author: 5 * Michael S. Tsirkin <[email protected]> 6 * 7 * Copyright (C) 2016 Red Hat, Inc. 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 * This is a limited-size FIFO maintaining pointers in FIFO order, with 15 * one CPU producing entries and another consuming entries from a FIFO. 16 * 17 * This implementation tries to minimize cache-contention when there is a 18 * single producer and a single consumer CPU. 19 */ 20 21 #ifndef _LINUX_PTR_RING_H 22 #define _LINUX_PTR_RING_H 1 23 24 #ifdef __KERNEL__ 25 #include <linux/spinlock.h> 26 #include <linux/cache.h> 27 #include <linux/types.h> 28 #include <linux/compiler.h> 29 #include <linux/cache.h> 30 #include <linux/slab.h> 31 #include <asm/errno.h> 32 #endif 33 34 struct ptr_ring { 35 int producer ____cacheline_aligned_in_smp; 36 spinlock_t producer_lock; 37 int consumer_head ____cacheline_aligned_in_smp; /* next valid entry */ 38 int consumer_tail; /* next entry to invalidate */ 39 spinlock_t consumer_lock; 40 /* Shared consumer/producer data */ 41 /* Read-only by both the producer and the consumer */ 42 int size ____cacheline_aligned_in_smp; /* max entries in queue */ 43 int batch; /* number of entries to consume in a batch */ 44 void **queue; 45 }; 46 47 /* Note: callers invoking this in a loop must use a compiler barrier, 48 * for example cpu_relax(). If ring is ever resized, callers must hold 49 * producer_lock - see e.g. ptr_ring_full. Otherwise, if callers don't hold 50 * producer_lock, the next call to __ptr_ring_produce may fail. 51 */ 52 static inline bool __ptr_ring_full(struct ptr_ring *r) 53 { 54 return r->queue[r->producer]; 55 } 56 57 static inline bool ptr_ring_full(struct ptr_ring *r) 58 { 59 bool ret; 60 61 spin_lock(&r->producer_lock); 62 ret = __ptr_ring_full(r); 63 spin_unlock(&r->producer_lock); 64 65 return ret; 66 } 67 68 static inline bool ptr_ring_full_irq(struct ptr_ring *r) 69 { 70 bool ret; 71 72 spin_lock_irq(&r->producer_lock); 73 ret = __ptr_ring_full(r); 74 spin_unlock_irq(&r->producer_lock); 75 76 return ret; 77 } 78 79 static inline bool ptr_ring_full_any(struct ptr_ring *r) 80 { 81 unsigned long flags; 82 bool ret; 83 84 spin_lock_irqsave(&r->producer_lock, flags); 85 ret = __ptr_ring_full(r); 86 spin_unlock_irqrestore(&r->producer_lock, flags); 87 88 return ret; 89 } 90 91 static inline bool ptr_ring_full_bh(struct ptr_ring *r) 92 { 93 bool ret; 94 95 spin_lock_bh(&r->producer_lock); 96 ret = __ptr_ring_full(r); 97 spin_unlock_bh(&r->producer_lock); 98 99 return ret; 100 } 101 102 /* Note: callers invoking this in a loop must use a compiler barrier, 103 * for example cpu_relax(). Callers must hold producer_lock. 104 * Callers are responsible for making sure pointer that is being queued 105 * points to a valid data. 106 */ 107 static inline int __ptr_ring_produce(struct ptr_ring *r, void *ptr) 108 { 109 if (unlikely(!r->size) || r->queue[r->producer]) 110 return -ENOSPC; 111 112 /* Make sure the pointer we are storing points to a valid data. */ 113 /* Pairs with smp_read_barrier_depends in __ptr_ring_consume. */ 114 smp_wmb(); 115 116 r->queue[r->producer++] = ptr; 117 if (unlikely(r->producer >= r->size)) 118 r->producer = 0; 119 return 0; 120 } 121 122 /* 123 * Note: resize (below) nests producer lock within consumer lock, so if you 124 * consume in interrupt or BH context, you must disable interrupts/BH when 125 * calling this. 126 */ 127 static inline int ptr_ring_produce(struct ptr_ring *r, void *ptr) 128 { 129 int ret; 130 131 spin_lock(&r->producer_lock); 132 ret = __ptr_ring_produce(r, ptr); 133 spin_unlock(&r->producer_lock); 134 135 return ret; 136 } 137 138 static inline int ptr_ring_produce_irq(struct ptr_ring *r, void *ptr) 139 { 140 int ret; 141 142 spin_lock_irq(&r->producer_lock); 143 ret = __ptr_ring_produce(r, ptr); 144 spin_unlock_irq(&r->producer_lock); 145 146 return ret; 147 } 148 149 static inline int ptr_ring_produce_any(struct ptr_ring *r, void *ptr) 150 { 151 unsigned long flags; 152 int ret; 153 154 spin_lock_irqsave(&r->producer_lock, flags); 155 ret = __ptr_ring_produce(r, ptr); 156 spin_unlock_irqrestore(&r->producer_lock, flags); 157 158 return ret; 159 } 160 161 static inline int ptr_ring_produce_bh(struct ptr_ring *r, void *ptr) 162 { 163 int ret; 164 165 spin_lock_bh(&r->producer_lock); 166 ret = __ptr_ring_produce(r, ptr); 167 spin_unlock_bh(&r->producer_lock); 168 169 return ret; 170 } 171 172 static inline void *__ptr_ring_peek(struct ptr_ring *r) 173 { 174 if (likely(r->size)) 175 return r->queue[r->consumer_head]; 176 return NULL; 177 } 178 179 /* 180 * Test ring empty status without taking any locks. 181 * 182 * NB: This is only safe to call if ring is never resized. 183 * 184 * However, if some other CPU consumes ring entries at the same time, the value 185 * returned is not guaranteed to be correct. 186 * 187 * In this case - to avoid incorrectly detecting the ring 188 * as empty - the CPU consuming the ring entries is responsible 189 * for either consuming all ring entries until the ring is empty, 190 * or synchronizing with some other CPU and causing it to 191 * re-test __ptr_ring_empty and/or consume the ring enteries 192 * after the synchronization point. 193 * 194 * Note: callers invoking this in a loop must use a compiler barrier, 195 * for example cpu_relax(). 196 */ 197 static inline bool __ptr_ring_empty(struct ptr_ring *r) 198 { 199 if (likely(r->size)) 200 return !r->queue[READ_ONCE(r->consumer_head)]; 201 return true; 202 } 203 204 static inline bool ptr_ring_empty(struct ptr_ring *r) 205 { 206 bool ret; 207 208 spin_lock(&r->consumer_lock); 209 ret = __ptr_ring_empty(r); 210 spin_unlock(&r->consumer_lock); 211 212 return ret; 213 } 214 215 static inline bool ptr_ring_empty_irq(struct ptr_ring *r) 216 { 217 bool ret; 218 219 spin_lock_irq(&r->consumer_lock); 220 ret = __ptr_ring_empty(r); 221 spin_unlock_irq(&r->consumer_lock); 222 223 return ret; 224 } 225 226 static inline bool ptr_ring_empty_any(struct ptr_ring *r) 227 { 228 unsigned long flags; 229 bool ret; 230 231 spin_lock_irqsave(&r->consumer_lock, flags); 232 ret = __ptr_ring_empty(r); 233 spin_unlock_irqrestore(&r->consumer_lock, flags); 234 235 return ret; 236 } 237 238 static inline bool ptr_ring_empty_bh(struct ptr_ring *r) 239 { 240 bool ret; 241 242 spin_lock_bh(&r->consumer_lock); 243 ret = __ptr_ring_empty(r); 244 spin_unlock_bh(&r->consumer_lock); 245 246 return ret; 247 } 248 249 /* Must only be called after __ptr_ring_peek returned !NULL */ 250 static inline void __ptr_ring_discard_one(struct ptr_ring *r) 251 { 252 /* Fundamentally, what we want to do is update consumer 253 * index and zero out the entry so producer can reuse it. 254 * Doing it naively at each consume would be as simple as: 255 * consumer = r->consumer; 256 * r->queue[consumer++] = NULL; 257 * if (unlikely(consumer >= r->size)) 258 * consumer = 0; 259 * r->consumer = consumer; 260 * but that is suboptimal when the ring is full as producer is writing 261 * out new entries in the same cache line. Defer these updates until a 262 * batch of entries has been consumed. 263 */ 264 /* Note: we must keep consumer_head valid at all times for __ptr_ring_empty 265 * to work correctly. 266 */ 267 int consumer_head = r->consumer_head; 268 int head = consumer_head++; 269 270 /* Once we have processed enough entries invalidate them in 271 * the ring all at once so producer can reuse their space in the ring. 272 * We also do this when we reach end of the ring - not mandatory 273 * but helps keep the implementation simple. 274 */ 275 if (unlikely(consumer_head - r->consumer_tail >= r->batch || 276 consumer_head >= r->size)) { 277 /* Zero out entries in the reverse order: this way we touch the 278 * cache line that producer might currently be reading the last; 279 * producer won't make progress and touch other cache lines 280 * besides the first one until we write out all entries. 281 */ 282 while (likely(head >= r->consumer_tail)) 283 r->queue[head--] = NULL; 284 r->consumer_tail = consumer_head; 285 } 286 if (unlikely(consumer_head >= r->size)) { 287 consumer_head = 0; 288 r->consumer_tail = 0; 289 } 290 /* matching READ_ONCE in __ptr_ring_empty for lockless tests */ 291 WRITE_ONCE(r->consumer_head, consumer_head); 292 } 293 294 static inline void *__ptr_ring_consume(struct ptr_ring *r) 295 { 296 void *ptr; 297 298 ptr = __ptr_ring_peek(r); 299 if (ptr) 300 __ptr_ring_discard_one(r); 301 302 /* Make sure anyone accessing data through the pointer is up to date. */ 303 /* Pairs with smp_wmb in __ptr_ring_produce. */ 304 smp_read_barrier_depends(); 305 return ptr; 306 } 307 308 static inline int __ptr_ring_consume_batched(struct ptr_ring *r, 309 void **array, int n) 310 { 311 void *ptr; 312 int i; 313 314 for (i = 0; i < n; i++) { 315 ptr = __ptr_ring_consume(r); 316 if (!ptr) 317 break; 318 array[i] = ptr; 319 } 320 321 return i; 322 } 323 324 /* 325 * Note: resize (below) nests producer lock within consumer lock, so if you 326 * call this in interrupt or BH context, you must disable interrupts/BH when 327 * producing. 328 */ 329 static inline void *ptr_ring_consume(struct ptr_ring *r) 330 { 331 void *ptr; 332 333 spin_lock(&r->consumer_lock); 334 ptr = __ptr_ring_consume(r); 335 spin_unlock(&r->consumer_lock); 336 337 return ptr; 338 } 339 340 static inline void *ptr_ring_consume_irq(struct ptr_ring *r) 341 { 342 void *ptr; 343 344 spin_lock_irq(&r->consumer_lock); 345 ptr = __ptr_ring_consume(r); 346 spin_unlock_irq(&r->consumer_lock); 347 348 return ptr; 349 } 350 351 static inline void *ptr_ring_consume_any(struct ptr_ring *r) 352 { 353 unsigned long flags; 354 void *ptr; 355 356 spin_lock_irqsave(&r->consumer_lock, flags); 357 ptr = __ptr_ring_consume(r); 358 spin_unlock_irqrestore(&r->consumer_lock, flags); 359 360 return ptr; 361 } 362 363 static inline void *ptr_ring_consume_bh(struct ptr_ring *r) 364 { 365 void *ptr; 366 367 spin_lock_bh(&r->consumer_lock); 368 ptr = __ptr_ring_consume(r); 369 spin_unlock_bh(&r->consumer_lock); 370 371 return ptr; 372 } 373 374 static inline int ptr_ring_consume_batched(struct ptr_ring *r, 375 void **array, int n) 376 { 377 int ret; 378 379 spin_lock(&r->consumer_lock); 380 ret = __ptr_ring_consume_batched(r, array, n); 381 spin_unlock(&r->consumer_lock); 382 383 return ret; 384 } 385 386 static inline int ptr_ring_consume_batched_irq(struct ptr_ring *r, 387 void **array, int n) 388 { 389 int ret; 390 391 spin_lock_irq(&r->consumer_lock); 392 ret = __ptr_ring_consume_batched(r, array, n); 393 spin_unlock_irq(&r->consumer_lock); 394 395 return ret; 396 } 397 398 static inline int ptr_ring_consume_batched_any(struct ptr_ring *r, 399 void **array, int n) 400 { 401 unsigned long flags; 402 int ret; 403 404 spin_lock_irqsave(&r->consumer_lock, flags); 405 ret = __ptr_ring_consume_batched(r, array, n); 406 spin_unlock_irqrestore(&r->consumer_lock, flags); 407 408 return ret; 409 } 410 411 static inline int ptr_ring_consume_batched_bh(struct ptr_ring *r, 412 void **array, int n) 413 { 414 int ret; 415 416 spin_lock_bh(&r->consumer_lock); 417 ret = __ptr_ring_consume_batched(r, array, n); 418 spin_unlock_bh(&r->consumer_lock); 419 420 return ret; 421 } 422 423 /* Cast to structure type and call a function without discarding from FIFO. 424 * Function must return a value. 425 * Callers must take consumer_lock. 426 */ 427 #define __PTR_RING_PEEK_CALL(r, f) ((f)(__ptr_ring_peek(r))) 428 429 #define PTR_RING_PEEK_CALL(r, f) ({ \ 430 typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \ 431 \ 432 spin_lock(&(r)->consumer_lock); \ 433 __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \ 434 spin_unlock(&(r)->consumer_lock); \ 435 __PTR_RING_PEEK_CALL_v; \ 436 }) 437 438 #define PTR_RING_PEEK_CALL_IRQ(r, f) ({ \ 439 typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \ 440 \ 441 spin_lock_irq(&(r)->consumer_lock); \ 442 __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \ 443 spin_unlock_irq(&(r)->consumer_lock); \ 444 __PTR_RING_PEEK_CALL_v; \ 445 }) 446 447 #define PTR_RING_PEEK_CALL_BH(r, f) ({ \ 448 typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \ 449 \ 450 spin_lock_bh(&(r)->consumer_lock); \ 451 __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \ 452 spin_unlock_bh(&(r)->consumer_lock); \ 453 __PTR_RING_PEEK_CALL_v; \ 454 }) 455 456 #define PTR_RING_PEEK_CALL_ANY(r, f) ({ \ 457 typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \ 458 unsigned long __PTR_RING_PEEK_CALL_f;\ 459 \ 460 spin_lock_irqsave(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \ 461 __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \ 462 spin_unlock_irqrestore(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \ 463 __PTR_RING_PEEK_CALL_v; \ 464 }) 465 466 static inline void **__ptr_ring_init_queue_alloc(unsigned int size, gfp_t gfp) 467 { 468 /* Allocate an extra dummy element at end of ring to avoid consumer head 469 * or produce head access past the end of the array. Possible when 470 * producer/consumer operations and __ptr_ring_peek operations run in 471 * parallel. 472 */ 473 return kcalloc(size + 1, sizeof(void *), gfp); 474 } 475 476 static inline void __ptr_ring_set_size(struct ptr_ring *r, int size) 477 { 478 r->size = size; 479 r->batch = SMP_CACHE_BYTES * 2 / sizeof(*(r->queue)); 480 /* We need to set batch at least to 1 to make logic 481 * in __ptr_ring_discard_one work correctly. 482 * Batching too much (because ring is small) would cause a lot of 483 * burstiness. Needs tuning, for now disable batching. 484 */ 485 if (r->batch > r->size / 2 || !r->batch) 486 r->batch = 1; 487 } 488 489 static inline int ptr_ring_init(struct ptr_ring *r, int size, gfp_t gfp) 490 { 491 r->queue = __ptr_ring_init_queue_alloc(size, gfp); 492 if (!r->queue) 493 return -ENOMEM; 494 495 __ptr_ring_set_size(r, size); 496 r->producer = r->consumer_head = r->consumer_tail = 0; 497 spin_lock_init(&r->producer_lock); 498 spin_lock_init(&r->consumer_lock); 499 500 return 0; 501 } 502 503 /* 504 * Return entries into ring. Destroy entries that don't fit. 505 * 506 * Note: this is expected to be a rare slow path operation. 507 * 508 * Note: producer lock is nested within consumer lock, so if you 509 * resize you must make sure all uses nest correctly. 510 * In particular if you consume ring in interrupt or BH context, you must 511 * disable interrupts/BH when doing so. 512 */ 513 static inline void ptr_ring_unconsume(struct ptr_ring *r, void **batch, int n, 514 void (*destroy)(void *)) 515 { 516 unsigned long flags; 517 int head; 518 519 spin_lock_irqsave(&r->consumer_lock, flags); 520 spin_lock(&r->producer_lock); 521 522 if (!r->size) 523 goto done; 524 525 /* 526 * Clean out buffered entries (for simplicity). This way following code 527 * can test entries for NULL and if not assume they are valid. 528 */ 529 head = r->consumer_head - 1; 530 while (likely(head >= r->consumer_tail)) 531 r->queue[head--] = NULL; 532 r->consumer_tail = r->consumer_head; 533 534 /* 535 * Go over entries in batch, start moving head back and copy entries. 536 * Stop when we run into previously unconsumed entries. 537 */ 538 while (n) { 539 head = r->consumer_head - 1; 540 if (head < 0) 541 head = r->size - 1; 542 if (r->queue[head]) { 543 /* This batch entry will have to be destroyed. */ 544 goto done; 545 } 546 r->queue[head] = batch[--n]; 547 r->consumer_tail = head; 548 /* matching READ_ONCE in __ptr_ring_empty for lockless tests */ 549 WRITE_ONCE(r->consumer_head, head); 550 } 551 552 done: 553 /* Destroy all entries left in the batch. */ 554 while (n) 555 destroy(batch[--n]); 556 spin_unlock(&r->producer_lock); 557 spin_unlock_irqrestore(&r->consumer_lock, flags); 558 } 559 560 static inline void **__ptr_ring_swap_queue(struct ptr_ring *r, void **queue, 561 int size, gfp_t gfp, 562 void (*destroy)(void *)) 563 { 564 int producer = 0; 565 void **old; 566 void *ptr; 567 568 while ((ptr = __ptr_ring_consume(r))) 569 if (producer < size) 570 queue[producer++] = ptr; 571 else if (destroy) 572 destroy(ptr); 573 574 __ptr_ring_set_size(r, size); 575 r->producer = producer; 576 r->consumer_head = 0; 577 r->consumer_tail = 0; 578 old = r->queue; 579 r->queue = queue; 580 581 return old; 582 } 583 584 /* 585 * Note: producer lock is nested within consumer lock, so if you 586 * resize you must make sure all uses nest correctly. 587 * In particular if you consume ring in interrupt or BH context, you must 588 * disable interrupts/BH when doing so. 589 */ 590 static inline int ptr_ring_resize(struct ptr_ring *r, int size, gfp_t gfp, 591 void (*destroy)(void *)) 592 { 593 unsigned long flags; 594 void **queue = __ptr_ring_init_queue_alloc(size, gfp); 595 void **old; 596 597 if (!queue) 598 return -ENOMEM; 599 600 spin_lock_irqsave(&(r)->consumer_lock, flags); 601 spin_lock(&(r)->producer_lock); 602 603 old = __ptr_ring_swap_queue(r, queue, size, gfp, destroy); 604 605 spin_unlock(&(r)->producer_lock); 606 spin_unlock_irqrestore(&(r)->consumer_lock, flags); 607 608 kfree(old); 609 610 return 0; 611 } 612 613 /* 614 * Note: producer lock is nested within consumer lock, so if you 615 * resize you must make sure all uses nest correctly. 616 * In particular if you consume ring in interrupt or BH context, you must 617 * disable interrupts/BH when doing so. 618 */ 619 static inline int ptr_ring_resize_multiple(struct ptr_ring **rings, 620 unsigned int nrings, 621 int size, 622 gfp_t gfp, void (*destroy)(void *)) 623 { 624 unsigned long flags; 625 void ***queues; 626 int i; 627 628 queues = kmalloc_array(nrings, sizeof(*queues), gfp); 629 if (!queues) 630 goto noqueues; 631 632 for (i = 0; i < nrings; ++i) { 633 queues[i] = __ptr_ring_init_queue_alloc(size, gfp); 634 if (!queues[i]) 635 goto nomem; 636 } 637 638 for (i = 0; i < nrings; ++i) { 639 spin_lock_irqsave(&(rings[i])->consumer_lock, flags); 640 spin_lock(&(rings[i])->producer_lock); 641 queues[i] = __ptr_ring_swap_queue(rings[i], queues[i], 642 size, gfp, destroy); 643 spin_unlock(&(rings[i])->producer_lock); 644 spin_unlock_irqrestore(&(rings[i])->consumer_lock, flags); 645 } 646 647 for (i = 0; i < nrings; ++i) 648 kfree(queues[i]); 649 650 kfree(queues); 651 652 return 0; 653 654 nomem: 655 while (--i >= 0) 656 kfree(queues[i]); 657 658 kfree(queues); 659 660 noqueues: 661 return -ENOMEM; 662 } 663 664 static inline void ptr_ring_cleanup(struct ptr_ring *r, void (*destroy)(void *)) 665 { 666 void *ptr; 667 668 if (destroy) 669 while ((ptr = ptr_ring_consume(r))) 670 destroy(ptr); 671 kfree(r->queue); 672 } 673 674 #endif /* _LINUX_PTR_RING_H */ 675