xref: /linux-6.15/include/linux/ptr_ring.h (revision 406de755)
1 /*
2  *	Definitions for the 'struct ptr_ring' datastructure.
3  *
4  *	Author:
5  *		Michael S. Tsirkin <[email protected]>
6  *
7  *	Copyright (C) 2016 Red Hat, Inc.
8  *
9  *	This program is free software; you can redistribute it and/or modify it
10  *	under the terms of the GNU General Public License as published by the
11  *	Free Software Foundation; either version 2 of the License, or (at your
12  *	option) any later version.
13  *
14  *	This is a limited-size FIFO maintaining pointers in FIFO order, with
15  *	one CPU producing entries and another consuming entries from a FIFO.
16  *
17  *	This implementation tries to minimize cache-contention when there is a
18  *	single producer and a single consumer CPU.
19  */
20 
21 #ifndef _LINUX_PTR_RING_H
22 #define _LINUX_PTR_RING_H 1
23 
24 #ifdef __KERNEL__
25 #include <linux/spinlock.h>
26 #include <linux/cache.h>
27 #include <linux/types.h>
28 #include <linux/compiler.h>
29 #include <linux/cache.h>
30 #include <linux/slab.h>
31 #include <asm/errno.h>
32 #endif
33 
34 struct ptr_ring {
35 	int producer ____cacheline_aligned_in_smp;
36 	spinlock_t producer_lock;
37 	int consumer_head ____cacheline_aligned_in_smp; /* next valid entry */
38 	int consumer_tail; /* next entry to invalidate */
39 	spinlock_t consumer_lock;
40 	/* Shared consumer/producer data */
41 	/* Read-only by both the producer and the consumer */
42 	int size ____cacheline_aligned_in_smp; /* max entries in queue */
43 	int batch; /* number of entries to consume in a batch */
44 	void **queue;
45 };
46 
47 /* Note: callers invoking this in a loop must use a compiler barrier,
48  * for example cpu_relax().  If ring is ever resized, callers must hold
49  * producer_lock - see e.g. ptr_ring_full.  Otherwise, if callers don't hold
50  * producer_lock, the next call to __ptr_ring_produce may fail.
51  */
52 static inline bool __ptr_ring_full(struct ptr_ring *r)
53 {
54 	return r->queue[r->producer];
55 }
56 
57 static inline bool ptr_ring_full(struct ptr_ring *r)
58 {
59 	bool ret;
60 
61 	spin_lock(&r->producer_lock);
62 	ret = __ptr_ring_full(r);
63 	spin_unlock(&r->producer_lock);
64 
65 	return ret;
66 }
67 
68 static inline bool ptr_ring_full_irq(struct ptr_ring *r)
69 {
70 	bool ret;
71 
72 	spin_lock_irq(&r->producer_lock);
73 	ret = __ptr_ring_full(r);
74 	spin_unlock_irq(&r->producer_lock);
75 
76 	return ret;
77 }
78 
79 static inline bool ptr_ring_full_any(struct ptr_ring *r)
80 {
81 	unsigned long flags;
82 	bool ret;
83 
84 	spin_lock_irqsave(&r->producer_lock, flags);
85 	ret = __ptr_ring_full(r);
86 	spin_unlock_irqrestore(&r->producer_lock, flags);
87 
88 	return ret;
89 }
90 
91 static inline bool ptr_ring_full_bh(struct ptr_ring *r)
92 {
93 	bool ret;
94 
95 	spin_lock_bh(&r->producer_lock);
96 	ret = __ptr_ring_full(r);
97 	spin_unlock_bh(&r->producer_lock);
98 
99 	return ret;
100 }
101 
102 /* Note: callers invoking this in a loop must use a compiler barrier,
103  * for example cpu_relax(). Callers must hold producer_lock.
104  * Callers are responsible for making sure pointer that is being queued
105  * points to a valid data.
106  */
107 static inline int __ptr_ring_produce(struct ptr_ring *r, void *ptr)
108 {
109 	if (unlikely(!r->size) || r->queue[r->producer])
110 		return -ENOSPC;
111 
112 	/* Make sure the pointer we are storing points to a valid data. */
113 	/* Pairs with smp_read_barrier_depends in __ptr_ring_consume. */
114 	smp_wmb();
115 
116 	r->queue[r->producer++] = ptr;
117 	if (unlikely(r->producer >= r->size))
118 		r->producer = 0;
119 	return 0;
120 }
121 
122 /*
123  * Note: resize (below) nests producer lock within consumer lock, so if you
124  * consume in interrupt or BH context, you must disable interrupts/BH when
125  * calling this.
126  */
127 static inline int ptr_ring_produce(struct ptr_ring *r, void *ptr)
128 {
129 	int ret;
130 
131 	spin_lock(&r->producer_lock);
132 	ret = __ptr_ring_produce(r, ptr);
133 	spin_unlock(&r->producer_lock);
134 
135 	return ret;
136 }
137 
138 static inline int ptr_ring_produce_irq(struct ptr_ring *r, void *ptr)
139 {
140 	int ret;
141 
142 	spin_lock_irq(&r->producer_lock);
143 	ret = __ptr_ring_produce(r, ptr);
144 	spin_unlock_irq(&r->producer_lock);
145 
146 	return ret;
147 }
148 
149 static inline int ptr_ring_produce_any(struct ptr_ring *r, void *ptr)
150 {
151 	unsigned long flags;
152 	int ret;
153 
154 	spin_lock_irqsave(&r->producer_lock, flags);
155 	ret = __ptr_ring_produce(r, ptr);
156 	spin_unlock_irqrestore(&r->producer_lock, flags);
157 
158 	return ret;
159 }
160 
161 static inline int ptr_ring_produce_bh(struct ptr_ring *r, void *ptr)
162 {
163 	int ret;
164 
165 	spin_lock_bh(&r->producer_lock);
166 	ret = __ptr_ring_produce(r, ptr);
167 	spin_unlock_bh(&r->producer_lock);
168 
169 	return ret;
170 }
171 
172 /* Note: callers invoking this in a loop must use a compiler barrier,
173  * for example cpu_relax(). Callers must take consumer_lock
174  * if they dereference the pointer - see e.g. PTR_RING_PEEK_CALL.
175  * If ring is never resized, and if the pointer is merely
176  * tested, there's no need to take the lock - see e.g.  __ptr_ring_empty.
177  * However, if called outside the lock, and if some other CPU
178  * consumes ring entries at the same time, the value returned
179  * is not guaranteed to be correct.
180  * In this case - to avoid incorrectly detecting the ring
181  * as empty - the CPU consuming the ring entries is responsible
182  * for either consuming all ring entries until the ring is empty,
183  * or synchronizing with some other CPU and causing it to
184  * execute __ptr_ring_peek and/or consume the ring enteries
185  * after the synchronization point.
186  */
187 static inline void *__ptr_ring_peek(struct ptr_ring *r)
188 {
189 	if (likely(r->size))
190 		return r->queue[r->consumer_head];
191 	return NULL;
192 }
193 
194 /* See __ptr_ring_peek above for locking rules. */
195 static inline bool __ptr_ring_empty(struct ptr_ring *r)
196 {
197 	return !__ptr_ring_peek(r);
198 }
199 
200 static inline bool ptr_ring_empty(struct ptr_ring *r)
201 {
202 	bool ret;
203 
204 	spin_lock(&r->consumer_lock);
205 	ret = __ptr_ring_empty(r);
206 	spin_unlock(&r->consumer_lock);
207 
208 	return ret;
209 }
210 
211 static inline bool ptr_ring_empty_irq(struct ptr_ring *r)
212 {
213 	bool ret;
214 
215 	spin_lock_irq(&r->consumer_lock);
216 	ret = __ptr_ring_empty(r);
217 	spin_unlock_irq(&r->consumer_lock);
218 
219 	return ret;
220 }
221 
222 static inline bool ptr_ring_empty_any(struct ptr_ring *r)
223 {
224 	unsigned long flags;
225 	bool ret;
226 
227 	spin_lock_irqsave(&r->consumer_lock, flags);
228 	ret = __ptr_ring_empty(r);
229 	spin_unlock_irqrestore(&r->consumer_lock, flags);
230 
231 	return ret;
232 }
233 
234 static inline bool ptr_ring_empty_bh(struct ptr_ring *r)
235 {
236 	bool ret;
237 
238 	spin_lock_bh(&r->consumer_lock);
239 	ret = __ptr_ring_empty(r);
240 	spin_unlock_bh(&r->consumer_lock);
241 
242 	return ret;
243 }
244 
245 /* Must only be called after __ptr_ring_peek returned !NULL */
246 static inline void __ptr_ring_discard_one(struct ptr_ring *r)
247 {
248 	/* Fundamentally, what we want to do is update consumer
249 	 * index and zero out the entry so producer can reuse it.
250 	 * Doing it naively at each consume would be as simple as:
251 	 *       consumer = r->consumer;
252 	 *       r->queue[consumer++] = NULL;
253 	 *       if (unlikely(consumer >= r->size))
254 	 *               consumer = 0;
255 	 *       r->consumer = consumer;
256 	 * but that is suboptimal when the ring is full as producer is writing
257 	 * out new entries in the same cache line.  Defer these updates until a
258 	 * batch of entries has been consumed.
259 	 */
260 	/* Note: we must keep consumer_head valid at all times for __ptr_ring_empty
261 	 * to work correctly.
262 	 */
263 	int consumer_head = r->consumer_head;
264 	int head = consumer_head++;
265 
266 	/* Once we have processed enough entries invalidate them in
267 	 * the ring all at once so producer can reuse their space in the ring.
268 	 * We also do this when we reach end of the ring - not mandatory
269 	 * but helps keep the implementation simple.
270 	 */
271 	if (unlikely(consumer_head - r->consumer_tail >= r->batch ||
272 		     consumer_head >= r->size)) {
273 		/* Zero out entries in the reverse order: this way we touch the
274 		 * cache line that producer might currently be reading the last;
275 		 * producer won't make progress and touch other cache lines
276 		 * besides the first one until we write out all entries.
277 		 */
278 		while (likely(head >= r->consumer_tail))
279 			r->queue[head--] = NULL;
280 		r->consumer_tail = consumer_head;
281 	}
282 	if (unlikely(consumer_head >= r->size)) {
283 		consumer_head = 0;
284 		r->consumer_tail = 0;
285 	}
286 	r->consumer_head = consumer_head;
287 }
288 
289 static inline void *__ptr_ring_consume(struct ptr_ring *r)
290 {
291 	void *ptr;
292 
293 	ptr = __ptr_ring_peek(r);
294 	if (ptr)
295 		__ptr_ring_discard_one(r);
296 
297 	/* Make sure anyone accessing data through the pointer is up to date. */
298 	/* Pairs with smp_wmb in __ptr_ring_produce. */
299 	smp_read_barrier_depends();
300 	return ptr;
301 }
302 
303 static inline int __ptr_ring_consume_batched(struct ptr_ring *r,
304 					     void **array, int n)
305 {
306 	void *ptr;
307 	int i;
308 
309 	for (i = 0; i < n; i++) {
310 		ptr = __ptr_ring_consume(r);
311 		if (!ptr)
312 			break;
313 		array[i] = ptr;
314 	}
315 
316 	return i;
317 }
318 
319 /*
320  * Note: resize (below) nests producer lock within consumer lock, so if you
321  * call this in interrupt or BH context, you must disable interrupts/BH when
322  * producing.
323  */
324 static inline void *ptr_ring_consume(struct ptr_ring *r)
325 {
326 	void *ptr;
327 
328 	spin_lock(&r->consumer_lock);
329 	ptr = __ptr_ring_consume(r);
330 	spin_unlock(&r->consumer_lock);
331 
332 	return ptr;
333 }
334 
335 static inline void *ptr_ring_consume_irq(struct ptr_ring *r)
336 {
337 	void *ptr;
338 
339 	spin_lock_irq(&r->consumer_lock);
340 	ptr = __ptr_ring_consume(r);
341 	spin_unlock_irq(&r->consumer_lock);
342 
343 	return ptr;
344 }
345 
346 static inline void *ptr_ring_consume_any(struct ptr_ring *r)
347 {
348 	unsigned long flags;
349 	void *ptr;
350 
351 	spin_lock_irqsave(&r->consumer_lock, flags);
352 	ptr = __ptr_ring_consume(r);
353 	spin_unlock_irqrestore(&r->consumer_lock, flags);
354 
355 	return ptr;
356 }
357 
358 static inline void *ptr_ring_consume_bh(struct ptr_ring *r)
359 {
360 	void *ptr;
361 
362 	spin_lock_bh(&r->consumer_lock);
363 	ptr = __ptr_ring_consume(r);
364 	spin_unlock_bh(&r->consumer_lock);
365 
366 	return ptr;
367 }
368 
369 static inline int ptr_ring_consume_batched(struct ptr_ring *r,
370 					   void **array, int n)
371 {
372 	int ret;
373 
374 	spin_lock(&r->consumer_lock);
375 	ret = __ptr_ring_consume_batched(r, array, n);
376 	spin_unlock(&r->consumer_lock);
377 
378 	return ret;
379 }
380 
381 static inline int ptr_ring_consume_batched_irq(struct ptr_ring *r,
382 					       void **array, int n)
383 {
384 	int ret;
385 
386 	spin_lock_irq(&r->consumer_lock);
387 	ret = __ptr_ring_consume_batched(r, array, n);
388 	spin_unlock_irq(&r->consumer_lock);
389 
390 	return ret;
391 }
392 
393 static inline int ptr_ring_consume_batched_any(struct ptr_ring *r,
394 					       void **array, int n)
395 {
396 	unsigned long flags;
397 	int ret;
398 
399 	spin_lock_irqsave(&r->consumer_lock, flags);
400 	ret = __ptr_ring_consume_batched(r, array, n);
401 	spin_unlock_irqrestore(&r->consumer_lock, flags);
402 
403 	return ret;
404 }
405 
406 static inline int ptr_ring_consume_batched_bh(struct ptr_ring *r,
407 					      void **array, int n)
408 {
409 	int ret;
410 
411 	spin_lock_bh(&r->consumer_lock);
412 	ret = __ptr_ring_consume_batched(r, array, n);
413 	spin_unlock_bh(&r->consumer_lock);
414 
415 	return ret;
416 }
417 
418 /* Cast to structure type and call a function without discarding from FIFO.
419  * Function must return a value.
420  * Callers must take consumer_lock.
421  */
422 #define __PTR_RING_PEEK_CALL(r, f) ((f)(__ptr_ring_peek(r)))
423 
424 #define PTR_RING_PEEK_CALL(r, f) ({ \
425 	typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
426 	\
427 	spin_lock(&(r)->consumer_lock); \
428 	__PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
429 	spin_unlock(&(r)->consumer_lock); \
430 	__PTR_RING_PEEK_CALL_v; \
431 })
432 
433 #define PTR_RING_PEEK_CALL_IRQ(r, f) ({ \
434 	typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
435 	\
436 	spin_lock_irq(&(r)->consumer_lock); \
437 	__PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
438 	spin_unlock_irq(&(r)->consumer_lock); \
439 	__PTR_RING_PEEK_CALL_v; \
440 })
441 
442 #define PTR_RING_PEEK_CALL_BH(r, f) ({ \
443 	typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
444 	\
445 	spin_lock_bh(&(r)->consumer_lock); \
446 	__PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
447 	spin_unlock_bh(&(r)->consumer_lock); \
448 	__PTR_RING_PEEK_CALL_v; \
449 })
450 
451 #define PTR_RING_PEEK_CALL_ANY(r, f) ({ \
452 	typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
453 	unsigned long __PTR_RING_PEEK_CALL_f;\
454 	\
455 	spin_lock_irqsave(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \
456 	__PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
457 	spin_unlock_irqrestore(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \
458 	__PTR_RING_PEEK_CALL_v; \
459 })
460 
461 static inline void **__ptr_ring_init_queue_alloc(unsigned int size, gfp_t gfp)
462 {
463 	/* Allocate an extra dummy element at end of ring to avoid consumer head
464 	 * or produce head access past the end of the array. Possible when
465 	 * producer/consumer operations and __ptr_ring_peek operations run in
466 	 * parallel.
467 	 */
468 	return kcalloc(size + 1, sizeof(void *), gfp);
469 }
470 
471 static inline void __ptr_ring_set_size(struct ptr_ring *r, int size)
472 {
473 	r->size = size;
474 	r->batch = SMP_CACHE_BYTES * 2 / sizeof(*(r->queue));
475 	/* We need to set batch at least to 1 to make logic
476 	 * in __ptr_ring_discard_one work correctly.
477 	 * Batching too much (because ring is small) would cause a lot of
478 	 * burstiness. Needs tuning, for now disable batching.
479 	 */
480 	if (r->batch > r->size / 2 || !r->batch)
481 		r->batch = 1;
482 }
483 
484 static inline int ptr_ring_init(struct ptr_ring *r, int size, gfp_t gfp)
485 {
486 	r->queue = __ptr_ring_init_queue_alloc(size, gfp);
487 	if (!r->queue)
488 		return -ENOMEM;
489 
490 	__ptr_ring_set_size(r, size);
491 	r->producer = r->consumer_head = r->consumer_tail = 0;
492 	spin_lock_init(&r->producer_lock);
493 	spin_lock_init(&r->consumer_lock);
494 
495 	return 0;
496 }
497 
498 /*
499  * Return entries into ring. Destroy entries that don't fit.
500  *
501  * Note: this is expected to be a rare slow path operation.
502  *
503  * Note: producer lock is nested within consumer lock, so if you
504  * resize you must make sure all uses nest correctly.
505  * In particular if you consume ring in interrupt or BH context, you must
506  * disable interrupts/BH when doing so.
507  */
508 static inline void ptr_ring_unconsume(struct ptr_ring *r, void **batch, int n,
509 				      void (*destroy)(void *))
510 {
511 	unsigned long flags;
512 	int head;
513 
514 	spin_lock_irqsave(&r->consumer_lock, flags);
515 	spin_lock(&r->producer_lock);
516 
517 	if (!r->size)
518 		goto done;
519 
520 	/*
521 	 * Clean out buffered entries (for simplicity). This way following code
522 	 * can test entries for NULL and if not assume they are valid.
523 	 */
524 	head = r->consumer_head - 1;
525 	while (likely(head >= r->consumer_tail))
526 		r->queue[head--] = NULL;
527 	r->consumer_tail = r->consumer_head;
528 
529 	/*
530 	 * Go over entries in batch, start moving head back and copy entries.
531 	 * Stop when we run into previously unconsumed entries.
532 	 */
533 	while (n) {
534 		head = r->consumer_head - 1;
535 		if (head < 0)
536 			head = r->size - 1;
537 		if (r->queue[head]) {
538 			/* This batch entry will have to be destroyed. */
539 			goto done;
540 		}
541 		r->queue[head] = batch[--n];
542 		r->consumer_tail = r->consumer_head = head;
543 	}
544 
545 done:
546 	/* Destroy all entries left in the batch. */
547 	while (n)
548 		destroy(batch[--n]);
549 	spin_unlock(&r->producer_lock);
550 	spin_unlock_irqrestore(&r->consumer_lock, flags);
551 }
552 
553 static inline void **__ptr_ring_swap_queue(struct ptr_ring *r, void **queue,
554 					   int size, gfp_t gfp,
555 					   void (*destroy)(void *))
556 {
557 	int producer = 0;
558 	void **old;
559 	void *ptr;
560 
561 	while ((ptr = __ptr_ring_consume(r)))
562 		if (producer < size)
563 			queue[producer++] = ptr;
564 		else if (destroy)
565 			destroy(ptr);
566 
567 	__ptr_ring_set_size(r, size);
568 	r->producer = producer;
569 	r->consumer_head = 0;
570 	r->consumer_tail = 0;
571 	old = r->queue;
572 	r->queue = queue;
573 
574 	return old;
575 }
576 
577 /*
578  * Note: producer lock is nested within consumer lock, so if you
579  * resize you must make sure all uses nest correctly.
580  * In particular if you consume ring in interrupt or BH context, you must
581  * disable interrupts/BH when doing so.
582  */
583 static inline int ptr_ring_resize(struct ptr_ring *r, int size, gfp_t gfp,
584 				  void (*destroy)(void *))
585 {
586 	unsigned long flags;
587 	void **queue = __ptr_ring_init_queue_alloc(size, gfp);
588 	void **old;
589 
590 	if (!queue)
591 		return -ENOMEM;
592 
593 	spin_lock_irqsave(&(r)->consumer_lock, flags);
594 	spin_lock(&(r)->producer_lock);
595 
596 	old = __ptr_ring_swap_queue(r, queue, size, gfp, destroy);
597 
598 	spin_unlock(&(r)->producer_lock);
599 	spin_unlock_irqrestore(&(r)->consumer_lock, flags);
600 
601 	kfree(old);
602 
603 	return 0;
604 }
605 
606 /*
607  * Note: producer lock is nested within consumer lock, so if you
608  * resize you must make sure all uses nest correctly.
609  * In particular if you consume ring in interrupt or BH context, you must
610  * disable interrupts/BH when doing so.
611  */
612 static inline int ptr_ring_resize_multiple(struct ptr_ring **rings,
613 					   unsigned int nrings,
614 					   int size,
615 					   gfp_t gfp, void (*destroy)(void *))
616 {
617 	unsigned long flags;
618 	void ***queues;
619 	int i;
620 
621 	queues = kmalloc_array(nrings, sizeof(*queues), gfp);
622 	if (!queues)
623 		goto noqueues;
624 
625 	for (i = 0; i < nrings; ++i) {
626 		queues[i] = __ptr_ring_init_queue_alloc(size, gfp);
627 		if (!queues[i])
628 			goto nomem;
629 	}
630 
631 	for (i = 0; i < nrings; ++i) {
632 		spin_lock_irqsave(&(rings[i])->consumer_lock, flags);
633 		spin_lock(&(rings[i])->producer_lock);
634 		queues[i] = __ptr_ring_swap_queue(rings[i], queues[i],
635 						  size, gfp, destroy);
636 		spin_unlock(&(rings[i])->producer_lock);
637 		spin_unlock_irqrestore(&(rings[i])->consumer_lock, flags);
638 	}
639 
640 	for (i = 0; i < nrings; ++i)
641 		kfree(queues[i]);
642 
643 	kfree(queues);
644 
645 	return 0;
646 
647 nomem:
648 	while (--i >= 0)
649 		kfree(queues[i]);
650 
651 	kfree(queues);
652 
653 noqueues:
654 	return -ENOMEM;
655 }
656 
657 static inline void ptr_ring_cleanup(struct ptr_ring *r, void (*destroy)(void *))
658 {
659 	void *ptr;
660 
661 	if (destroy)
662 		while ((ptr = ptr_ring_consume(r)))
663 			destroy(ptr);
664 	kfree(r->queue);
665 }
666 
667 #endif /* _LINUX_PTR_RING_H  */
668