xref: /linux-6.15/include/linux/preempt.h (revision 3e9cc688)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_PREEMPT_H
3 #define __LINUX_PREEMPT_H
4 
5 /*
6  * include/linux/preempt.h - macros for accessing and manipulating
7  * preempt_count (used for kernel preemption, interrupt count, etc.)
8  */
9 
10 #include <linux/linkage.h>
11 #include <linux/list.h>
12 
13 /*
14  * We put the hardirq and softirq counter into the preemption
15  * counter. The bitmask has the following meaning:
16  *
17  * - bits 0-7 are the preemption count (max preemption depth: 256)
18  * - bits 8-15 are the softirq count (max # of softirqs: 256)
19  *
20  * The hardirq count could in theory be the same as the number of
21  * interrupts in the system, but we run all interrupt handlers with
22  * interrupts disabled, so we cannot have nesting interrupts. Though
23  * there are a few palaeontologic drivers which reenable interrupts in
24  * the handler, so we need more than one bit here.
25  *
26  *         PREEMPT_MASK:	0x000000ff
27  *         SOFTIRQ_MASK:	0x0000ff00
28  *         HARDIRQ_MASK:	0x000f0000
29  *             NMI_MASK:	0x00f00000
30  * PREEMPT_NEED_RESCHED:	0x80000000
31  */
32 #define PREEMPT_BITS	8
33 #define SOFTIRQ_BITS	8
34 #define HARDIRQ_BITS	4
35 #define NMI_BITS	4
36 
37 #define PREEMPT_SHIFT	0
38 #define SOFTIRQ_SHIFT	(PREEMPT_SHIFT + PREEMPT_BITS)
39 #define HARDIRQ_SHIFT	(SOFTIRQ_SHIFT + SOFTIRQ_BITS)
40 #define NMI_SHIFT	(HARDIRQ_SHIFT + HARDIRQ_BITS)
41 
42 #define __IRQ_MASK(x)	((1UL << (x))-1)
43 
44 #define PREEMPT_MASK	(__IRQ_MASK(PREEMPT_BITS) << PREEMPT_SHIFT)
45 #define SOFTIRQ_MASK	(__IRQ_MASK(SOFTIRQ_BITS) << SOFTIRQ_SHIFT)
46 #define HARDIRQ_MASK	(__IRQ_MASK(HARDIRQ_BITS) << HARDIRQ_SHIFT)
47 #define NMI_MASK	(__IRQ_MASK(NMI_BITS)     << NMI_SHIFT)
48 
49 #define PREEMPT_OFFSET	(1UL << PREEMPT_SHIFT)
50 #define SOFTIRQ_OFFSET	(1UL << SOFTIRQ_SHIFT)
51 #define HARDIRQ_OFFSET	(1UL << HARDIRQ_SHIFT)
52 #define NMI_OFFSET	(1UL << NMI_SHIFT)
53 
54 #define SOFTIRQ_DISABLE_OFFSET	(2 * SOFTIRQ_OFFSET)
55 
56 #define PREEMPT_DISABLED	(PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
57 
58 /*
59  * Disable preemption until the scheduler is running -- use an unconditional
60  * value so that it also works on !PREEMPT_COUNT kernels.
61  *
62  * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
63  */
64 #define INIT_PREEMPT_COUNT	PREEMPT_OFFSET
65 
66 /*
67  * Initial preempt_count value; reflects the preempt_count schedule invariant
68  * which states that during context switches:
69  *
70  *    preempt_count() == 2*PREEMPT_DISABLE_OFFSET
71  *
72  * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
73  * Note: See finish_task_switch().
74  */
75 #define FORK_PREEMPT_COUNT	(2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
76 
77 /* preempt_count() and related functions, depends on PREEMPT_NEED_RESCHED */
78 #include <asm/preempt.h>
79 
80 #define nmi_count()	(preempt_count() & NMI_MASK)
81 #define hardirq_count()	(preempt_count() & HARDIRQ_MASK)
82 #ifdef CONFIG_PREEMPT_RT
83 # define softirq_count()	(current->softirq_disable_cnt & SOFTIRQ_MASK)
84 #else
85 # define softirq_count()	(preempt_count() & SOFTIRQ_MASK)
86 #endif
87 #define irq_count()	(nmi_count() | hardirq_count() | softirq_count())
88 
89 /*
90  * Macros to retrieve the current execution context:
91  *
92  * in_nmi()		- We're in NMI context
93  * in_hardirq()		- We're in hard IRQ context
94  * in_serving_softirq()	- We're in softirq context
95  * in_task()		- We're in task context
96  */
97 #define in_nmi()		(nmi_count())
98 #define in_hardirq()		(hardirq_count())
99 #define in_serving_softirq()	(softirq_count() & SOFTIRQ_OFFSET)
100 #define in_task()		(!(in_nmi() | in_hardirq() | in_serving_softirq()))
101 
102 /*
103  * The following macros are deprecated and should not be used in new code:
104  * in_irq()       - Obsolete version of in_hardirq()
105  * in_softirq()   - We have BH disabled, or are processing softirqs
106  * in_interrupt() - We're in NMI,IRQ,SoftIRQ context or have BH disabled
107  */
108 #define in_irq()		(hardirq_count())
109 #define in_softirq()		(softirq_count())
110 #define in_interrupt()		(irq_count())
111 
112 /*
113  * The preempt_count offset after preempt_disable();
114  */
115 #if defined(CONFIG_PREEMPT_COUNT)
116 # define PREEMPT_DISABLE_OFFSET	PREEMPT_OFFSET
117 #else
118 # define PREEMPT_DISABLE_OFFSET	0
119 #endif
120 
121 /*
122  * The preempt_count offset after spin_lock()
123  */
124 #if !defined(CONFIG_PREEMPT_RT)
125 #define PREEMPT_LOCK_OFFSET		PREEMPT_DISABLE_OFFSET
126 #else
127 /* Locks on RT do not disable preemption */
128 #define PREEMPT_LOCK_OFFSET		0
129 #endif
130 
131 /*
132  * The preempt_count offset needed for things like:
133  *
134  *  spin_lock_bh()
135  *
136  * Which need to disable both preemption (CONFIG_PREEMPT_COUNT) and
137  * softirqs, such that unlock sequences of:
138  *
139  *  spin_unlock();
140  *  local_bh_enable();
141  *
142  * Work as expected.
143  */
144 #define SOFTIRQ_LOCK_OFFSET (SOFTIRQ_DISABLE_OFFSET + PREEMPT_LOCK_OFFSET)
145 
146 /*
147  * Are we running in atomic context?  WARNING: this macro cannot
148  * always detect atomic context; in particular, it cannot know about
149  * held spinlocks in non-preemptible kernels.  Thus it should not be
150  * used in the general case to determine whether sleeping is possible.
151  * Do not use in_atomic() in driver code.
152  */
153 #define in_atomic()	(preempt_count() != 0)
154 
155 /*
156  * Check whether we were atomic before we did preempt_disable():
157  * (used by the scheduler)
158  */
159 #define in_atomic_preempt_off() (preempt_count() != PREEMPT_DISABLE_OFFSET)
160 
161 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
162 extern void preempt_count_add(int val);
163 extern void preempt_count_sub(int val);
164 #define preempt_count_dec_and_test() \
165 	({ preempt_count_sub(1); should_resched(0); })
166 #else
167 #define preempt_count_add(val)	__preempt_count_add(val)
168 #define preempt_count_sub(val)	__preempt_count_sub(val)
169 #define preempt_count_dec_and_test() __preempt_count_dec_and_test()
170 #endif
171 
172 #define __preempt_count_inc() __preempt_count_add(1)
173 #define __preempt_count_dec() __preempt_count_sub(1)
174 
175 #define preempt_count_inc() preempt_count_add(1)
176 #define preempt_count_dec() preempt_count_sub(1)
177 
178 #ifdef CONFIG_PREEMPT_COUNT
179 
180 #define preempt_disable() \
181 do { \
182 	preempt_count_inc(); \
183 	barrier(); \
184 } while (0)
185 
186 #define sched_preempt_enable_no_resched() \
187 do { \
188 	barrier(); \
189 	preempt_count_dec(); \
190 } while (0)
191 
192 #define preempt_enable_no_resched() sched_preempt_enable_no_resched()
193 
194 #define preemptible()	(preempt_count() == 0 && !irqs_disabled())
195 
196 #ifdef CONFIG_PREEMPTION
197 #define preempt_enable() \
198 do { \
199 	barrier(); \
200 	if (unlikely(preempt_count_dec_and_test())) \
201 		__preempt_schedule(); \
202 } while (0)
203 
204 #define preempt_enable_notrace() \
205 do { \
206 	barrier(); \
207 	if (unlikely(__preempt_count_dec_and_test())) \
208 		__preempt_schedule_notrace(); \
209 } while (0)
210 
211 #define preempt_check_resched() \
212 do { \
213 	if (should_resched(0)) \
214 		__preempt_schedule(); \
215 } while (0)
216 
217 #else /* !CONFIG_PREEMPTION */
218 #define preempt_enable() \
219 do { \
220 	barrier(); \
221 	preempt_count_dec(); \
222 } while (0)
223 
224 #define preempt_enable_notrace() \
225 do { \
226 	barrier(); \
227 	__preempt_count_dec(); \
228 } while (0)
229 
230 #define preempt_check_resched() do { } while (0)
231 #endif /* CONFIG_PREEMPTION */
232 
233 #define preempt_disable_notrace() \
234 do { \
235 	__preempt_count_inc(); \
236 	barrier(); \
237 } while (0)
238 
239 #define preempt_enable_no_resched_notrace() \
240 do { \
241 	barrier(); \
242 	__preempt_count_dec(); \
243 } while (0)
244 
245 #else /* !CONFIG_PREEMPT_COUNT */
246 
247 /*
248  * Even if we don't have any preemption, we need preempt disable/enable
249  * to be barriers, so that we don't have things like get_user/put_user
250  * that can cause faults and scheduling migrate into our preempt-protected
251  * region.
252  */
253 #define preempt_disable()			barrier()
254 #define sched_preempt_enable_no_resched()	barrier()
255 #define preempt_enable_no_resched()		barrier()
256 #define preempt_enable()			barrier()
257 #define preempt_check_resched()			do { } while (0)
258 
259 #define preempt_disable_notrace()		barrier()
260 #define preempt_enable_no_resched_notrace()	barrier()
261 #define preempt_enable_notrace()		barrier()
262 #define preemptible()				0
263 
264 #endif /* CONFIG_PREEMPT_COUNT */
265 
266 #ifdef MODULE
267 /*
268  * Modules have no business playing preemption tricks.
269  */
270 #undef sched_preempt_enable_no_resched
271 #undef preempt_enable_no_resched
272 #undef preempt_enable_no_resched_notrace
273 #undef preempt_check_resched
274 #endif
275 
276 #define preempt_set_need_resched() \
277 do { \
278 	set_preempt_need_resched(); \
279 } while (0)
280 #define preempt_fold_need_resched() \
281 do { \
282 	if (tif_need_resched()) \
283 		set_preempt_need_resched(); \
284 } while (0)
285 
286 #ifdef CONFIG_PREEMPT_NOTIFIERS
287 
288 struct preempt_notifier;
289 
290 /**
291  * preempt_ops - notifiers called when a task is preempted and rescheduled
292  * @sched_in: we're about to be rescheduled:
293  *    notifier: struct preempt_notifier for the task being scheduled
294  *    cpu:  cpu we're scheduled on
295  * @sched_out: we've just been preempted
296  *    notifier: struct preempt_notifier for the task being preempted
297  *    next: the task that's kicking us out
298  *
299  * Please note that sched_in and out are called under different
300  * contexts.  sched_out is called with rq lock held and irq disabled
301  * while sched_in is called without rq lock and irq enabled.  This
302  * difference is intentional and depended upon by its users.
303  */
304 struct preempt_ops {
305 	void (*sched_in)(struct preempt_notifier *notifier, int cpu);
306 	void (*sched_out)(struct preempt_notifier *notifier,
307 			  struct task_struct *next);
308 };
309 
310 /**
311  * preempt_notifier - key for installing preemption notifiers
312  * @link: internal use
313  * @ops: defines the notifier functions to be called
314  *
315  * Usually used in conjunction with container_of().
316  */
317 struct preempt_notifier {
318 	struct hlist_node link;
319 	struct preempt_ops *ops;
320 };
321 
322 void preempt_notifier_inc(void);
323 void preempt_notifier_dec(void);
324 void preempt_notifier_register(struct preempt_notifier *notifier);
325 void preempt_notifier_unregister(struct preempt_notifier *notifier);
326 
327 static inline void preempt_notifier_init(struct preempt_notifier *notifier,
328 				     struct preempt_ops *ops)
329 {
330 	INIT_HLIST_NODE(&notifier->link);
331 	notifier->ops = ops;
332 }
333 
334 #endif
335 
336 #ifdef CONFIG_SMP
337 
338 /*
339  * Migrate-Disable and why it is undesired.
340  *
341  * When a preempted task becomes elegible to run under the ideal model (IOW it
342  * becomes one of the M highest priority tasks), it might still have to wait
343  * for the preemptee's migrate_disable() section to complete. Thereby suffering
344  * a reduction in bandwidth in the exact duration of the migrate_disable()
345  * section.
346  *
347  * Per this argument, the change from preempt_disable() to migrate_disable()
348  * gets us:
349  *
350  * - a higher priority tasks gains reduced wake-up latency; with preempt_disable()
351  *   it would have had to wait for the lower priority task.
352  *
353  * - a lower priority tasks; which under preempt_disable() could've instantly
354  *   migrated away when another CPU becomes available, is now constrained
355  *   by the ability to push the higher priority task away, which might itself be
356  *   in a migrate_disable() section, reducing it's available bandwidth.
357  *
358  * IOW it trades latency / moves the interference term, but it stays in the
359  * system, and as long as it remains unbounded, the system is not fully
360  * deterministic.
361  *
362  *
363  * The reason we have it anyway.
364  *
365  * PREEMPT_RT breaks a number of assumptions traditionally held. By forcing a
366  * number of primitives into becoming preemptible, they would also allow
367  * migration. This turns out to break a bunch of per-cpu usage. To this end,
368  * all these primitives employ migirate_disable() to restore this implicit
369  * assumption.
370  *
371  * This is a 'temporary' work-around at best. The correct solution is getting
372  * rid of the above assumptions and reworking the code to employ explicit
373  * per-cpu locking or short preempt-disable regions.
374  *
375  * The end goal must be to get rid of migrate_disable(), alternatively we need
376  * a schedulability theory that does not depend on abritrary migration.
377  *
378  *
379  * Notes on the implementation.
380  *
381  * The implementation is particularly tricky since existing code patterns
382  * dictate neither migrate_disable() nor migrate_enable() is allowed to block.
383  * This means that it cannot use cpus_read_lock() to serialize against hotplug,
384  * nor can it easily migrate itself into a pending affinity mask change on
385  * migrate_enable().
386  *
387  *
388  * Note: even non-work-conserving schedulers like semi-partitioned depends on
389  *       migration, so migrate_disable() is not only a problem for
390  *       work-conserving schedulers.
391  *
392  */
393 extern void migrate_disable(void);
394 extern void migrate_enable(void);
395 
396 #else
397 
398 static inline void migrate_disable(void) { }
399 static inline void migrate_enable(void) { }
400 
401 #endif /* CONFIG_SMP */
402 
403 #endif /* __LINUX_PREEMPT_H */
404