1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Universal power supply monitor class 4 * 5 * Copyright © 2007 Anton Vorontsov <[email protected]> 6 * Copyright © 2004 Szabolcs Gyurko 7 * Copyright © 2003 Ian Molton <[email protected]> 8 * 9 * Modified: 2004, Oct Szabolcs Gyurko 10 */ 11 12 #ifndef __LINUX_POWER_SUPPLY_H__ 13 #define __LINUX_POWER_SUPPLY_H__ 14 15 #include <linux/device.h> 16 #include <linux/workqueue.h> 17 #include <linux/leds.h> 18 #include <linux/rwsem.h> 19 #include <linux/list.h> 20 #include <linux/spinlock.h> 21 #include <linux/notifier.h> 22 23 /* 24 * All voltages, currents, charges, energies, time and temperatures in uV, 25 * µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise 26 * stated. It's driver's job to convert its raw values to units in which 27 * this class operates. 28 */ 29 30 /* 31 * For systems where the charger determines the maximum battery capacity 32 * the min and max fields should be used to present these values to user 33 * space. Unused/unknown fields will not appear in sysfs. 34 */ 35 36 enum { 37 POWER_SUPPLY_STATUS_UNKNOWN = 0, 38 POWER_SUPPLY_STATUS_CHARGING, 39 POWER_SUPPLY_STATUS_DISCHARGING, 40 POWER_SUPPLY_STATUS_NOT_CHARGING, 41 POWER_SUPPLY_STATUS_FULL, 42 }; 43 44 /* What algorithm is the charger using? */ 45 enum power_supply_charge_type { 46 POWER_SUPPLY_CHARGE_TYPE_UNKNOWN = 0, 47 POWER_SUPPLY_CHARGE_TYPE_NONE, 48 POWER_SUPPLY_CHARGE_TYPE_TRICKLE, /* slow speed */ 49 POWER_SUPPLY_CHARGE_TYPE_FAST, /* fast speed */ 50 POWER_SUPPLY_CHARGE_TYPE_STANDARD, /* normal speed */ 51 POWER_SUPPLY_CHARGE_TYPE_ADAPTIVE, /* dynamically adjusted speed */ 52 POWER_SUPPLY_CHARGE_TYPE_CUSTOM, /* use CHARGE_CONTROL_* props */ 53 POWER_SUPPLY_CHARGE_TYPE_LONGLIFE, /* slow speed, longer life */ 54 POWER_SUPPLY_CHARGE_TYPE_BYPASS, /* bypassing the charger */ 55 }; 56 57 enum { 58 POWER_SUPPLY_HEALTH_UNKNOWN = 0, 59 POWER_SUPPLY_HEALTH_GOOD, 60 POWER_SUPPLY_HEALTH_OVERHEAT, 61 POWER_SUPPLY_HEALTH_DEAD, 62 POWER_SUPPLY_HEALTH_OVERVOLTAGE, 63 POWER_SUPPLY_HEALTH_UNDERVOLTAGE, 64 POWER_SUPPLY_HEALTH_UNSPEC_FAILURE, 65 POWER_SUPPLY_HEALTH_COLD, 66 POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE, 67 POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE, 68 POWER_SUPPLY_HEALTH_OVERCURRENT, 69 POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED, 70 POWER_SUPPLY_HEALTH_WARM, 71 POWER_SUPPLY_HEALTH_COOL, 72 POWER_SUPPLY_HEALTH_HOT, 73 POWER_SUPPLY_HEALTH_NO_BATTERY, 74 }; 75 76 enum { 77 POWER_SUPPLY_TECHNOLOGY_UNKNOWN = 0, 78 POWER_SUPPLY_TECHNOLOGY_NiMH, 79 POWER_SUPPLY_TECHNOLOGY_LION, 80 POWER_SUPPLY_TECHNOLOGY_LIPO, 81 POWER_SUPPLY_TECHNOLOGY_LiFe, 82 POWER_SUPPLY_TECHNOLOGY_NiCd, 83 POWER_SUPPLY_TECHNOLOGY_LiMn, 84 }; 85 86 enum { 87 POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN = 0, 88 POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL, 89 POWER_SUPPLY_CAPACITY_LEVEL_LOW, 90 POWER_SUPPLY_CAPACITY_LEVEL_NORMAL, 91 POWER_SUPPLY_CAPACITY_LEVEL_HIGH, 92 POWER_SUPPLY_CAPACITY_LEVEL_FULL, 93 }; 94 95 enum { 96 POWER_SUPPLY_SCOPE_UNKNOWN = 0, 97 POWER_SUPPLY_SCOPE_SYSTEM, 98 POWER_SUPPLY_SCOPE_DEVICE, 99 }; 100 101 enum power_supply_property { 102 /* Properties of type `int' */ 103 POWER_SUPPLY_PROP_STATUS = 0, 104 POWER_SUPPLY_PROP_CHARGE_TYPE, 105 POWER_SUPPLY_PROP_CHARGE_TYPES, 106 POWER_SUPPLY_PROP_HEALTH, 107 POWER_SUPPLY_PROP_PRESENT, 108 POWER_SUPPLY_PROP_ONLINE, 109 POWER_SUPPLY_PROP_AUTHENTIC, 110 POWER_SUPPLY_PROP_TECHNOLOGY, 111 POWER_SUPPLY_PROP_CYCLE_COUNT, 112 POWER_SUPPLY_PROP_VOLTAGE_MAX, 113 POWER_SUPPLY_PROP_VOLTAGE_MIN, 114 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, 115 POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, 116 POWER_SUPPLY_PROP_VOLTAGE_NOW, 117 POWER_SUPPLY_PROP_VOLTAGE_AVG, 118 POWER_SUPPLY_PROP_VOLTAGE_OCV, 119 POWER_SUPPLY_PROP_VOLTAGE_BOOT, 120 POWER_SUPPLY_PROP_CURRENT_MAX, 121 POWER_SUPPLY_PROP_CURRENT_NOW, 122 POWER_SUPPLY_PROP_CURRENT_AVG, 123 POWER_SUPPLY_PROP_CURRENT_BOOT, 124 POWER_SUPPLY_PROP_POWER_NOW, 125 POWER_SUPPLY_PROP_POWER_AVG, 126 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 127 POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN, 128 POWER_SUPPLY_PROP_CHARGE_FULL, 129 POWER_SUPPLY_PROP_CHARGE_EMPTY, 130 POWER_SUPPLY_PROP_CHARGE_NOW, 131 POWER_SUPPLY_PROP_CHARGE_AVG, 132 POWER_SUPPLY_PROP_CHARGE_COUNTER, 133 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, 134 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, 135 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, 136 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, 137 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, 138 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX, 139 POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD, /* in percents! */ 140 POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD, /* in percents! */ 141 POWER_SUPPLY_PROP_CHARGE_BEHAVIOUR, 142 POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, 143 POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT, 144 POWER_SUPPLY_PROP_INPUT_POWER_LIMIT, 145 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, 146 POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN, 147 POWER_SUPPLY_PROP_ENERGY_FULL, 148 POWER_SUPPLY_PROP_ENERGY_EMPTY, 149 POWER_SUPPLY_PROP_ENERGY_NOW, 150 POWER_SUPPLY_PROP_ENERGY_AVG, 151 POWER_SUPPLY_PROP_CAPACITY, /* in percents! */ 152 POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, /* in percents! */ 153 POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX, /* in percents! */ 154 POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, /* in percents! */ 155 POWER_SUPPLY_PROP_CAPACITY_LEVEL, 156 POWER_SUPPLY_PROP_TEMP, 157 POWER_SUPPLY_PROP_TEMP_MAX, 158 POWER_SUPPLY_PROP_TEMP_MIN, 159 POWER_SUPPLY_PROP_TEMP_ALERT_MIN, 160 POWER_SUPPLY_PROP_TEMP_ALERT_MAX, 161 POWER_SUPPLY_PROP_TEMP_AMBIENT, 162 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN, 163 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX, 164 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, 165 POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, 166 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, 167 POWER_SUPPLY_PROP_TIME_TO_FULL_AVG, 168 POWER_SUPPLY_PROP_TYPE, /* use power_supply.type instead */ 169 POWER_SUPPLY_PROP_USB_TYPE, 170 POWER_SUPPLY_PROP_SCOPE, 171 POWER_SUPPLY_PROP_PRECHARGE_CURRENT, 172 POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, 173 POWER_SUPPLY_PROP_CALIBRATE, 174 POWER_SUPPLY_PROP_MANUFACTURE_YEAR, 175 POWER_SUPPLY_PROP_MANUFACTURE_MONTH, 176 POWER_SUPPLY_PROP_MANUFACTURE_DAY, 177 /* Properties of type `const char *' */ 178 POWER_SUPPLY_PROP_MODEL_NAME, 179 POWER_SUPPLY_PROP_MANUFACTURER, 180 POWER_SUPPLY_PROP_SERIAL_NUMBER, 181 }; 182 183 enum power_supply_type { 184 POWER_SUPPLY_TYPE_UNKNOWN = 0, 185 POWER_SUPPLY_TYPE_BATTERY, 186 POWER_SUPPLY_TYPE_UPS, 187 POWER_SUPPLY_TYPE_MAINS, 188 POWER_SUPPLY_TYPE_USB, /* Standard Downstream Port */ 189 POWER_SUPPLY_TYPE_USB_DCP, /* Dedicated Charging Port */ 190 POWER_SUPPLY_TYPE_USB_CDP, /* Charging Downstream Port */ 191 POWER_SUPPLY_TYPE_USB_ACA, /* Accessory Charger Adapters */ 192 POWER_SUPPLY_TYPE_USB_TYPE_C, /* Type C Port */ 193 POWER_SUPPLY_TYPE_USB_PD, /* Power Delivery Port */ 194 POWER_SUPPLY_TYPE_USB_PD_DRP, /* PD Dual Role Port */ 195 POWER_SUPPLY_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */ 196 POWER_SUPPLY_TYPE_WIRELESS, /* Wireless */ 197 }; 198 199 enum power_supply_usb_type { 200 POWER_SUPPLY_USB_TYPE_UNKNOWN = 0, 201 POWER_SUPPLY_USB_TYPE_SDP, /* Standard Downstream Port */ 202 POWER_SUPPLY_USB_TYPE_DCP, /* Dedicated Charging Port */ 203 POWER_SUPPLY_USB_TYPE_CDP, /* Charging Downstream Port */ 204 POWER_SUPPLY_USB_TYPE_ACA, /* Accessory Charger Adapters */ 205 POWER_SUPPLY_USB_TYPE_C, /* Type C Port */ 206 POWER_SUPPLY_USB_TYPE_PD, /* Power Delivery Port */ 207 POWER_SUPPLY_USB_TYPE_PD_DRP, /* PD Dual Role Port */ 208 POWER_SUPPLY_USB_TYPE_PD_PPS, /* PD Programmable Power Supply */ 209 POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */ 210 }; 211 212 enum power_supply_charge_behaviour { 213 POWER_SUPPLY_CHARGE_BEHAVIOUR_AUTO = 0, 214 POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE, 215 POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE, 216 }; 217 218 enum power_supply_notifier_events { 219 PSY_EVENT_PROP_CHANGED, 220 }; 221 222 union power_supply_propval { 223 int intval; 224 const char *strval; 225 }; 226 227 struct device_node; 228 struct power_supply; 229 230 /* Run-time specific power supply configuration */ 231 struct power_supply_config { 232 struct device_node *of_node; 233 struct fwnode_handle *fwnode; 234 235 /* Driver private data */ 236 void *drv_data; 237 238 /* Device specific sysfs attributes */ 239 const struct attribute_group **attr_grp; 240 241 char **supplied_to; 242 size_t num_supplicants; 243 244 bool no_wakeup_source; 245 }; 246 247 /* Description of power supply */ 248 struct power_supply_desc { 249 const char *name; 250 enum power_supply_type type; 251 u8 charge_behaviours; 252 u32 charge_types; 253 u32 usb_types; 254 const enum power_supply_property *properties; 255 size_t num_properties; 256 257 /* 258 * Functions for drivers implementing power supply class. 259 * These shouldn't be called directly by other drivers for accessing 260 * this power supply. Instead use power_supply_*() functions (for 261 * example power_supply_get_property()). 262 */ 263 int (*get_property)(struct power_supply *psy, 264 enum power_supply_property psp, 265 union power_supply_propval *val); 266 int (*set_property)(struct power_supply *psy, 267 enum power_supply_property psp, 268 const union power_supply_propval *val); 269 /* 270 * property_is_writeable() will be called during registration 271 * of power supply. If this happens during device probe then it must 272 * not access internal data of device (because probe did not end). 273 */ 274 int (*property_is_writeable)(struct power_supply *psy, 275 enum power_supply_property psp); 276 void (*external_power_changed)(struct power_supply *psy); 277 void (*set_charged)(struct power_supply *psy); 278 279 /* 280 * Set if thermal zone should not be created for this power supply. 281 * For example for virtual supplies forwarding calls to actual 282 * sensors or other supplies. 283 */ 284 bool no_thermal; 285 /* For APM emulation, think legacy userspace. */ 286 int use_for_apm; 287 }; 288 289 struct power_supply_ext { 290 const char *const name; 291 u8 charge_behaviours; 292 const enum power_supply_property *properties; 293 size_t num_properties; 294 295 int (*get_property)(struct power_supply *psy, 296 const struct power_supply_ext *ext, 297 void *data, 298 enum power_supply_property psp, 299 union power_supply_propval *val); 300 int (*set_property)(struct power_supply *psy, 301 const struct power_supply_ext *ext, 302 void *data, 303 enum power_supply_property psp, 304 const union power_supply_propval *val); 305 int (*property_is_writeable)(struct power_supply *psy, 306 const struct power_supply_ext *ext, 307 void *data, 308 enum power_supply_property psp); 309 }; 310 311 struct power_supply { 312 const struct power_supply_desc *desc; 313 314 char **supplied_to; 315 size_t num_supplicants; 316 317 char **supplied_from; 318 size_t num_supplies; 319 struct device_node *of_node; 320 321 /* Driver private data */ 322 void *drv_data; 323 324 /* private */ 325 struct device dev; 326 struct work_struct changed_work; 327 struct delayed_work deferred_register_work; 328 spinlock_t changed_lock; 329 bool changed; 330 bool update_groups; 331 bool initialized; 332 bool removing; 333 atomic_t use_cnt; 334 struct power_supply_battery_info *battery_info; 335 struct rw_semaphore extensions_sem; /* protects "extensions" */ 336 struct list_head extensions; 337 #ifdef CONFIG_THERMAL 338 struct thermal_zone_device *tzd; 339 struct thermal_cooling_device *tcd; 340 #endif 341 342 #ifdef CONFIG_LEDS_TRIGGERS 343 struct led_trigger *trig; 344 struct led_trigger *charging_trig; 345 struct led_trigger *full_trig; 346 struct led_trigger *charging_blink_full_solid_trig; 347 struct led_trigger *charging_orange_full_green_trig; 348 #endif 349 }; 350 351 #define dev_to_psy(__dev) container_of_const(__dev, struct power_supply, dev) 352 353 /* 354 * This is recommended structure to specify static power supply parameters. 355 * Generic one, parametrizable for different power supplies. Power supply 356 * class itself does not use it, but that's what implementing most platform 357 * drivers, should try reuse for consistency. 358 */ 359 360 struct power_supply_info { 361 const char *name; 362 int technology; 363 int voltage_max_design; 364 int voltage_min_design; 365 int charge_full_design; 366 int charge_empty_design; 367 int energy_full_design; 368 int energy_empty_design; 369 int use_for_apm; 370 }; 371 372 struct power_supply_battery_ocv_table { 373 int ocv; /* microVolts */ 374 int capacity; /* percent */ 375 }; 376 377 struct power_supply_resistance_temp_table { 378 int temp; /* celsius */ 379 int resistance; /* internal resistance percent */ 380 }; 381 382 struct power_supply_vbat_ri_table { 383 int vbat_uv; /* Battery voltage in microvolt */ 384 int ri_uohm; /* Internal resistance in microohm */ 385 }; 386 387 /** 388 * struct power_supply_maintenance_charge_table - setting for maintenace charging 389 * @charge_current_max_ua: maintenance charging current that is used to keep 390 * the charge of the battery full as current is consumed after full charging. 391 * The corresponding charge_voltage_max_uv is used as a safeguard: when we 392 * reach this voltage the maintenance charging current is turned off. It is 393 * turned back on if we fall below this voltage. 394 * @charge_voltage_max_uv: maintenance charging voltage that is usually a bit 395 * lower than the constant_charge_voltage_max_uv. We can apply this settings 396 * charge_current_max_ua until we get back up to this voltage. 397 * @safety_timer_minutes: maintenance charging safety timer, with an expiry 398 * time in minutes. We will only use maintenance charging in this setting 399 * for a certain amount of time, then we will first move to the next 400 * maintenance charge current and voltage pair in respective array and wait 401 * for the next safety timer timeout, or, if we reached the last maintencance 402 * charging setting, disable charging until we reach 403 * charge_restart_voltage_uv and restart ordinary CC/CV charging from there. 404 * These timers should be chosen to align with the typical discharge curve 405 * for the battery. 406 * 407 * Ordinary CC/CV charging will stop charging when the charge current goes 408 * below charge_term_current_ua, and then restart it (if the device is still 409 * plugged into the charger) at charge_restart_voltage_uv. This happens in most 410 * consumer products because the power usage while connected to a charger is 411 * not zero, and devices are not manufactured to draw power directly from the 412 * charger: instead they will at all times dissipate the battery a little, like 413 * the power used in standby mode. This will over time give a charge graph 414 * such as this: 415 * 416 * Energy 417 * ^ ... ... ... ... ... ... ... 418 * | . . . . . . . . . . . . . 419 * | .. . .. . .. . .. . .. . .. . .. 420 * |. .. .. .. .. .. .. 421 * +-------------------------------------------------------------------> t 422 * 423 * Practically this means that the Li-ions are wandering back and forth in the 424 * battery and this causes degeneration of the battery anode and cathode. 425 * To prolong the life of the battery, maintenance charging is applied after 426 * reaching charge_term_current_ua to hold up the charge in the battery while 427 * consuming power, thus lowering the wear on the battery: 428 * 429 * Energy 430 * ^ ....................................... 431 * | . ...................... 432 * | .. 433 * |. 434 * +-------------------------------------------------------------------> t 435 * 436 * Maintenance charging uses the voltages from this table: a table of settings 437 * is traversed using a slightly lower current and voltage than what is used for 438 * CC/CV charging. The maintenance charging will for safety reasons not go on 439 * indefinately: we lower the current and voltage with successive maintenance 440 * settings, then disable charging completely after we reach the last one, 441 * and after that we do not restart charging until we reach 442 * charge_restart_voltage_uv (see struct power_supply_battery_info) and restart 443 * ordinary CC/CV charging from there. 444 * 445 * As an example, a Samsung EB425161LA Lithium-Ion battery is CC/CV charged 446 * at 900mA to 4340mV, then maintenance charged at 600mA and 4150mV for up to 447 * 60 hours, then maintenance charged at 600mA and 4100mV for up to 200 hours. 448 * After this the charge cycle is restarted waiting for 449 * charge_restart_voltage_uv. 450 * 451 * For most mobile electronics this type of maintenance charging is enough for 452 * the user to disconnect the device and make use of it before both maintenance 453 * charging cycles are complete, if the current and voltage has been chosen 454 * appropriately. These need to be determined from battery discharge curves 455 * and expected standby current. 456 * 457 * If the voltage anyway drops to charge_restart_voltage_uv during maintenance 458 * charging, ordinary CC/CV charging is restarted. This can happen if the 459 * device is e.g. actively used during charging, so more current is drawn than 460 * the expected stand-by current. Also overvoltage protection will be applied 461 * as usual. 462 */ 463 struct power_supply_maintenance_charge_table { 464 int charge_current_max_ua; 465 int charge_voltage_max_uv; 466 int charge_safety_timer_minutes; 467 }; 468 469 #define POWER_SUPPLY_OCV_TEMP_MAX 20 470 471 /** 472 * struct power_supply_battery_info - information about batteries 473 * @technology: from the POWER_SUPPLY_TECHNOLOGY_* enum 474 * @energy_full_design_uwh: energy content when fully charged in microwatt 475 * hours 476 * @charge_full_design_uah: charge content when fully charged in microampere 477 * hours 478 * @voltage_min_design_uv: minimum voltage across the poles when the battery 479 * is at minimum voltage level in microvolts. If the voltage drops below this 480 * level the battery will need precharging when using CC/CV charging. 481 * @voltage_max_design_uv: voltage across the poles when the battery is fully 482 * charged in microvolts. This is the "nominal voltage" i.e. the voltage 483 * printed on the label of the battery. 484 * @tricklecharge_current_ua: the tricklecharge current used when trickle 485 * charging the battery in microamperes. This is the charging phase when the 486 * battery is completely empty and we need to carefully trickle in some 487 * charge until we reach the precharging voltage. 488 * @precharge_current_ua: current to use in the precharge phase in microamperes, 489 * the precharge rate is limited by limiting the current to this value. 490 * @precharge_voltage_max_uv: the maximum voltage allowed when precharging in 491 * microvolts. When we pass this voltage we will nominally switch over to the 492 * CC (constant current) charging phase defined by constant_charge_current_ua 493 * and constant_charge_voltage_max_uv. 494 * @charge_term_current_ua: when the current in the CV (constant voltage) 495 * charging phase drops below this value in microamperes the charging will 496 * terminate completely and not restart until the voltage over the battery 497 * poles reach charge_restart_voltage_uv unless we use maintenance charging. 498 * @charge_restart_voltage_uv: when the battery has been fully charged by 499 * CC/CV charging and charging has been disabled, and the voltage subsequently 500 * drops below this value in microvolts, the charging will be restarted 501 * (typically using CV charging). 502 * @overvoltage_limit_uv: If the voltage exceeds the nominal voltage 503 * voltage_max_design_uv and we reach this voltage level, all charging must 504 * stop and emergency procedures take place, such as shutting down the system 505 * in some cases. 506 * @constant_charge_current_max_ua: current in microamperes to use in the CC 507 * (constant current) charging phase. The charging rate is limited 508 * by this current. This is the main charging phase and as the current is 509 * constant into the battery the voltage slowly ascends to 510 * constant_charge_voltage_max_uv. 511 * @constant_charge_voltage_max_uv: voltage in microvolts signifying the end of 512 * the CC (constant current) charging phase and the beginning of the CV 513 * (constant voltage) charging phase. 514 * @maintenance_charge: an array of maintenance charging settings to be used 515 * after the main CC/CV charging phase is complete. 516 * @maintenance_charge_size: the number of maintenance charging settings in 517 * maintenance_charge. 518 * @alert_low_temp_charge_current_ua: The charging current to use if the battery 519 * enters low alert temperature, i.e. if the internal temperature is between 520 * temp_alert_min and temp_min. No matter the charging phase, this 521 * and alert_high_temp_charge_voltage_uv will be applied. 522 * @alert_low_temp_charge_voltage_uv: Same as alert_low_temp_charge_current_ua, 523 * but for the charging voltage. 524 * @alert_high_temp_charge_current_ua: The charging current to use if the 525 * battery enters high alert temperature, i.e. if the internal temperature is 526 * between temp_alert_max and temp_max. No matter the charging phase, this 527 * and alert_high_temp_charge_voltage_uv will be applied, usually lowering 528 * the charging current as an evasive manouver. 529 * @alert_high_temp_charge_voltage_uv: Same as 530 * alert_high_temp_charge_current_ua, but for the charging voltage. 531 * @factory_internal_resistance_uohm: the internal resistance of the battery 532 * at fabrication time, expressed in microohms. This resistance will vary 533 * depending on the lifetime and charge of the battery, so this is just a 534 * nominal ballpark figure. This internal resistance is given for the state 535 * when the battery is discharging. 536 * @factory_internal_resistance_charging_uohm: the internal resistance of the 537 * battery at fabrication time while charging, expressed in microohms. 538 * The charging process will affect the internal resistance of the battery 539 * so this value provides a better resistance under these circumstances. 540 * This resistance will vary depending on the lifetime and charge of the 541 * battery, so this is just a nominal ballpark figure. 542 * @ocv_temp: array indicating the open circuit voltage (OCV) capacity 543 * temperature indices. This is an array of temperatures in degrees Celsius 544 * indicating which capacity table to use for a certain temperature, since 545 * the capacity for reasons of chemistry will be different at different 546 * temperatures. Determining capacity is a multivariate problem and the 547 * temperature is the first variable we determine. 548 * @temp_ambient_alert_min: the battery will go outside of operating conditions 549 * when the ambient temperature goes below this temperature in degrees 550 * Celsius. 551 * @temp_ambient_alert_max: the battery will go outside of operating conditions 552 * when the ambient temperature goes above this temperature in degrees 553 * Celsius. 554 * @temp_alert_min: the battery should issue an alert if the internal 555 * temperature goes below this temperature in degrees Celsius. 556 * @temp_alert_max: the battery should issue an alert if the internal 557 * temperature goes above this temperature in degrees Celsius. 558 * @temp_min: the battery will go outside of operating conditions when 559 * the internal temperature goes below this temperature in degrees Celsius. 560 * Normally this means the system should shut down. 561 * @temp_max: the battery will go outside of operating conditions when 562 * the internal temperature goes above this temperature in degrees Celsius. 563 * Normally this means the system should shut down. 564 * @ocv_table: for each entry in ocv_temp there is a corresponding entry in 565 * ocv_table and a size for each entry in ocv_table_size. These arrays 566 * determine the capacity in percent in relation to the voltage in microvolts 567 * at the indexed temperature. 568 * @ocv_table_size: for each entry in ocv_temp this array is giving the size of 569 * each entry in the array of capacity arrays in ocv_table. 570 * @resist_table: this is a table that correlates a battery temperature to the 571 * expected internal resistance at this temperature. The resistance is given 572 * as a percentage of factory_internal_resistance_uohm. Knowing the 573 * resistance of the battery is usually necessary for calculating the open 574 * circuit voltage (OCV) that is then used with the ocv_table to calculate 575 * the capacity of the battery. The resist_table must be ordered descending 576 * by temperature: highest temperature with lowest resistance first, lowest 577 * temperature with highest resistance last. 578 * @resist_table_size: the number of items in the resist_table. 579 * @vbat2ri_discharging: this is a table that correlates Battery voltage (VBAT) 580 * to internal resistance (Ri). The resistance is given in microohm for the 581 * corresponding voltage in microvolts. The internal resistance is used to 582 * determine the open circuit voltage so that we can determine the capacity 583 * of the battery. These voltages to resistance tables apply when the battery 584 * is discharging. The table must be ordered descending by voltage: highest 585 * voltage first. 586 * @vbat2ri_discharging_size: the number of items in the vbat2ri_discharging 587 * table. 588 * @vbat2ri_charging: same function as vbat2ri_discharging but for the state 589 * when the battery is charging. Being under charge changes the battery's 590 * internal resistance characteristics so a separate table is needed.* 591 * The table must be ordered descending by voltage: highest voltage first. 592 * @vbat2ri_charging_size: the number of items in the vbat2ri_charging 593 * table. 594 * @bti_resistance_ohm: The Battery Type Indicator (BIT) nominal resistance 595 * in ohms for this battery, if an identification resistor is mounted 596 * between a third battery terminal and ground. This scheme is used by a lot 597 * of mobile device batteries. 598 * @bti_resistance_tolerance: The tolerance in percent of the BTI resistance, 599 * for example 10 for +/- 10%, if the bti_resistance is set to 7000 and the 600 * tolerance is 10% we will detect a proper battery if the BTI resistance 601 * is between 6300 and 7700 Ohm. 602 * 603 * This is the recommended struct to manage static battery parameters, 604 * populated by power_supply_get_battery_info(). Most platform drivers should 605 * use these for consistency. 606 * 607 * Its field names must correspond to elements in enum power_supply_property. 608 * The default field value is -EINVAL or NULL for pointers. 609 * 610 * CC/CV CHARGING: 611 * 612 * The charging parameters here assume a CC/CV charging scheme. This method 613 * is most common with Lithium Ion batteries (other methods are possible) and 614 * looks as follows: 615 * 616 * ^ Battery voltage 617 * | --- overvoltage_limit_uv 618 * | 619 * | ................................................... 620 * | .. constant_charge_voltage_max_uv 621 * | .. 622 * | . 623 * | . 624 * | . 625 * | . 626 * | . 627 * | .. precharge_voltage_max_uv 628 * | .. 629 * |. (trickle charging) 630 * +------------------------------------------------------------------> time 631 * 632 * ^ Current into the battery 633 * | 634 * | ............. constant_charge_current_max_ua 635 * | . . 636 * | . . 637 * | . . 638 * | . . 639 * | . .. 640 * | . .... 641 * | . ..... 642 * | ... precharge_current_ua ....... charge_term_current_ua 643 * | . . 644 * | . . 645 * |.... tricklecharge_current_ua . 646 * | . 647 * +-----------------------------------------------------------------> time 648 * 649 * These diagrams are synchronized on time and the voltage and current 650 * follow each other. 651 * 652 * With CC/CV charging commence over time like this for an empty battery: 653 * 654 * 1. When the battery is completely empty it may need to be charged with 655 * an especially small current so that electrons just "trickle in", 656 * this is the tricklecharge_current_ua. 657 * 658 * 2. Next a small initial pre-charge current (precharge_current_ua) 659 * is applied if the voltage is below precharge_voltage_max_uv until we 660 * reach precharge_voltage_max_uv. CAUTION: in some texts this is referred 661 * to as "trickle charging" but the use in the Linux kernel is different 662 * see below! 663 * 664 * 3. Then the main charging current is applied, which is called the constant 665 * current (CC) phase. A current regulator is set up to allow 666 * constant_charge_current_max_ua of current to flow into the battery. 667 * The chemical reaction in the battery will make the voltage go up as 668 * charge goes into the battery. This current is applied until we reach 669 * the constant_charge_voltage_max_uv voltage. 670 * 671 * 4. At this voltage we switch over to the constant voltage (CV) phase. This 672 * means we allow current to go into the battery, but we keep the voltage 673 * fixed. This current will continue to charge the battery while keeping 674 * the voltage the same. A chemical reaction in the battery goes on 675 * storing energy without affecting the voltage. Over time the current 676 * will slowly drop and when we reach charge_term_current_ua we will 677 * end the constant voltage phase. 678 * 679 * After this the battery is fully charged, and if we do not support maintenance 680 * charging, the charging will not restart until power dissipation makes the 681 * voltage fall so that we reach charge_restart_voltage_uv and at this point 682 * we restart charging at the appropriate phase, usually this will be inside 683 * the CV phase. 684 * 685 * If we support maintenance charging the voltage is however kept high after 686 * the CV phase with a very low current. This is meant to let the same charge 687 * go in for usage while the charger is still connected, mainly for 688 * dissipation for the power consuming entity while connected to the 689 * charger. 690 * 691 * All charging MUST terminate if the overvoltage_limit_uv is ever reached. 692 * Overcharging Lithium Ion cells can be DANGEROUS and lead to fire or 693 * explosions. 694 * 695 * DETERMINING BATTERY CAPACITY: 696 * 697 * Several members of the struct deal with trying to determine the remaining 698 * capacity in the battery, usually as a percentage of charge. In practice 699 * many chargers uses a so-called fuel gauge or coloumb counter that measure 700 * how much charge goes into the battery and how much goes out (+/- leak 701 * consumption). This does not help if we do not know how much capacity the 702 * battery has to begin with, such as when it is first used or was taken out 703 * and charged in a separate charger. Therefore many capacity algorithms use 704 * the open circuit voltage with a look-up table to determine the rough 705 * capacity of the battery. The open circuit voltage can be conceptualized 706 * with an ideal voltage source (V) in series with an internal resistance (Ri) 707 * like this: 708 * 709 * +-------> IBAT >----------------+ 710 * | ^ | 711 * [ ] Ri | | 712 * | | VBAT | 713 * o <---------- | | 714 * +| ^ | [ ] Rload 715 * .---. | | | 716 * | V | | OCV | | 717 * '---' | | | 718 * | | | | 719 * GND +-------------------------------+ 720 * 721 * If we disconnect the load (here simplified as a fixed resistance Rload) 722 * and measure VBAT with a infinite impedance voltage meter we will get 723 * VBAT = OCV and this assumption is sometimes made even under load, assuming 724 * Rload is insignificant. However this will be of dubious quality because the 725 * load is rarely that small and Ri is strongly nonlinear depending on 726 * temperature and how much capacity is left in the battery due to the 727 * chemistry involved. 728 * 729 * In many practical applications we cannot just disconnect the battery from 730 * the load, so instead we often try to measure the instantaneous IBAT (the 731 * current out from the battery), estimate the Ri and thus calculate the 732 * voltage drop over Ri and compensate like this: 733 * 734 * OCV = VBAT - (IBAT * Ri) 735 * 736 * The tables vbat2ri_discharging and vbat2ri_charging are used to determine 737 * (by interpolation) the Ri from the VBAT under load. These curves are highly 738 * nonlinear and may need many datapoints but can be found in datasheets for 739 * some batteries. This gives the compensated open circuit voltage (OCV) for 740 * the battery even under load. Using this method will also compensate for 741 * temperature changes in the environment: this will also make the internal 742 * resistance change, and it will affect the VBAT under load, so correlating 743 * VBAT to Ri takes both remaining capacity and temperature into consideration. 744 * 745 * Alternatively a manufacturer can specify how the capacity of the battery 746 * is dependent on the battery temperature which is the main factor affecting 747 * Ri. As we know all checmical reactions are faster when it is warm and slower 748 * when it is cold. You can put in 1500mAh and only get 800mAh out before the 749 * voltage drops too low for example. This effect is also highly nonlinear and 750 * the purpose of the table resist_table: this will take a temperature and 751 * tell us how big percentage of Ri the specified temperature correlates to. 752 * Usually we have 100% of the factory_internal_resistance_uohm at 25 degrees 753 * Celsius. 754 * 755 * The power supply class itself doesn't use this struct as of now. 756 */ 757 758 struct power_supply_battery_info { 759 unsigned int technology; 760 int energy_full_design_uwh; 761 int charge_full_design_uah; 762 int voltage_min_design_uv; 763 int voltage_max_design_uv; 764 int tricklecharge_current_ua; 765 int precharge_current_ua; 766 int precharge_voltage_max_uv; 767 int charge_term_current_ua; 768 int charge_restart_voltage_uv; 769 int overvoltage_limit_uv; 770 int constant_charge_current_max_ua; 771 int constant_charge_voltage_max_uv; 772 const struct power_supply_maintenance_charge_table *maintenance_charge; 773 int maintenance_charge_size; 774 int alert_low_temp_charge_current_ua; 775 int alert_low_temp_charge_voltage_uv; 776 int alert_high_temp_charge_current_ua; 777 int alert_high_temp_charge_voltage_uv; 778 int factory_internal_resistance_uohm; 779 int factory_internal_resistance_charging_uohm; 780 int ocv_temp[POWER_SUPPLY_OCV_TEMP_MAX]; 781 int temp_ambient_alert_min; 782 int temp_ambient_alert_max; 783 int temp_alert_min; 784 int temp_alert_max; 785 int temp_min; 786 int temp_max; 787 const struct power_supply_battery_ocv_table *ocv_table[POWER_SUPPLY_OCV_TEMP_MAX]; 788 int ocv_table_size[POWER_SUPPLY_OCV_TEMP_MAX]; 789 const struct power_supply_resistance_temp_table *resist_table; 790 int resist_table_size; 791 const struct power_supply_vbat_ri_table *vbat2ri_discharging; 792 int vbat2ri_discharging_size; 793 const struct power_supply_vbat_ri_table *vbat2ri_charging; 794 int vbat2ri_charging_size; 795 int bti_resistance_ohm; 796 int bti_resistance_tolerance; 797 }; 798 799 extern int power_supply_reg_notifier(struct notifier_block *nb); 800 extern void power_supply_unreg_notifier(struct notifier_block *nb); 801 #if IS_ENABLED(CONFIG_POWER_SUPPLY) 802 extern struct power_supply *power_supply_get_by_name(const char *name); 803 extern void power_supply_put(struct power_supply *psy); 804 #else 805 static inline void power_supply_put(struct power_supply *psy) {} 806 static inline struct power_supply *power_supply_get_by_name(const char *name) 807 { return NULL; } 808 #endif 809 #ifdef CONFIG_OF 810 extern struct power_supply *power_supply_get_by_phandle(struct device_node *np, 811 const char *property); 812 extern struct power_supply *devm_power_supply_get_by_phandle( 813 struct device *dev, const char *property); 814 #else /* !CONFIG_OF */ 815 static inline struct power_supply * 816 power_supply_get_by_phandle(struct device_node *np, const char *property) 817 { return NULL; } 818 static inline struct power_supply * 819 devm_power_supply_get_by_phandle(struct device *dev, const char *property) 820 { return NULL; } 821 #endif /* CONFIG_OF */ 822 823 extern const enum power_supply_property power_supply_battery_info_properties[]; 824 extern const size_t power_supply_battery_info_properties_size; 825 extern int power_supply_get_battery_info(struct power_supply *psy, 826 struct power_supply_battery_info **info_out); 827 extern void power_supply_put_battery_info(struct power_supply *psy, 828 struct power_supply_battery_info *info); 829 extern bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info, 830 enum power_supply_property psp); 831 extern int power_supply_battery_info_get_prop(struct power_supply_battery_info *info, 832 enum power_supply_property psp, 833 union power_supply_propval *val); 834 extern int power_supply_ocv2cap_simple(const struct power_supply_battery_ocv_table *table, 835 int table_len, int ocv); 836 extern const struct power_supply_battery_ocv_table * 837 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info, 838 int temp, int *table_len); 839 extern int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info, 840 int ocv, int temp); 841 extern int 842 power_supply_temp2resist_simple(const struct power_supply_resistance_temp_table *table, 843 int table_len, int temp); 844 extern int power_supply_vbat2ri(struct power_supply_battery_info *info, 845 int vbat_uv, bool charging); 846 extern const struct power_supply_maintenance_charge_table * 847 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, int index); 848 extern bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info, 849 int resistance); 850 extern void power_supply_changed(struct power_supply *psy); 851 extern int power_supply_am_i_supplied(struct power_supply *psy); 852 int power_supply_get_property_from_supplier(struct power_supply *psy, 853 enum power_supply_property psp, 854 union power_supply_propval *val); 855 extern int power_supply_set_battery_charged(struct power_supply *psy); 856 857 static inline bool 858 power_supply_supports_maintenance_charging(struct power_supply_battery_info *info) 859 { 860 const struct power_supply_maintenance_charge_table *mt; 861 862 mt = power_supply_get_maintenance_charging_setting(info, 0); 863 864 return (mt != NULL); 865 } 866 867 static inline bool 868 power_supply_supports_vbat2ri(struct power_supply_battery_info *info) 869 { 870 return ((info->vbat2ri_discharging != NULL) && 871 info->vbat2ri_discharging_size > 0); 872 } 873 874 static inline bool 875 power_supply_supports_temp2ri(struct power_supply_battery_info *info) 876 { 877 return ((info->resist_table != NULL) && 878 info->resist_table_size > 0); 879 } 880 881 #ifdef CONFIG_POWER_SUPPLY 882 extern int power_supply_is_system_supplied(void); 883 #else 884 static inline int power_supply_is_system_supplied(void) { return -ENOSYS; } 885 #endif 886 887 extern int power_supply_get_property(struct power_supply *psy, 888 enum power_supply_property psp, 889 union power_supply_propval *val); 890 #if IS_ENABLED(CONFIG_POWER_SUPPLY) 891 extern int power_supply_set_property(struct power_supply *psy, 892 enum power_supply_property psp, 893 const union power_supply_propval *val); 894 #else 895 static inline int power_supply_set_property(struct power_supply *psy, 896 enum power_supply_property psp, 897 const union power_supply_propval *val) 898 { return 0; } 899 #endif 900 extern void power_supply_external_power_changed(struct power_supply *psy); 901 902 extern struct power_supply *__must_check 903 power_supply_register(struct device *parent, 904 const struct power_supply_desc *desc, 905 const struct power_supply_config *cfg); 906 extern struct power_supply *__must_check 907 devm_power_supply_register(struct device *parent, 908 const struct power_supply_desc *desc, 909 const struct power_supply_config *cfg); 910 extern void power_supply_unregister(struct power_supply *psy); 911 extern int power_supply_powers(struct power_supply *psy, struct device *dev); 912 913 extern int __must_check 914 power_supply_register_extension(struct power_supply *psy, 915 const struct power_supply_ext *ext, 916 struct device *dev, 917 void *data); 918 extern void power_supply_unregister_extension(struct power_supply *psy, 919 const struct power_supply_ext *ext); 920 921 #define to_power_supply(device) container_of(device, struct power_supply, dev) 922 923 extern void *power_supply_get_drvdata(struct power_supply *psy); 924 extern int power_supply_for_each_psy(void *data, int (*fn)(struct power_supply *psy, void *data)); 925 926 static inline bool power_supply_is_amp_property(enum power_supply_property psp) 927 { 928 switch (psp) { 929 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: 930 case POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN: 931 case POWER_SUPPLY_PROP_CHARGE_FULL: 932 case POWER_SUPPLY_PROP_CHARGE_EMPTY: 933 case POWER_SUPPLY_PROP_CHARGE_NOW: 934 case POWER_SUPPLY_PROP_CHARGE_AVG: 935 case POWER_SUPPLY_PROP_CHARGE_COUNTER: 936 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: 937 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: 938 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: 939 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: 940 case POWER_SUPPLY_PROP_CURRENT_MAX: 941 case POWER_SUPPLY_PROP_CURRENT_NOW: 942 case POWER_SUPPLY_PROP_CURRENT_AVG: 943 case POWER_SUPPLY_PROP_CURRENT_BOOT: 944 return true; 945 default: 946 break; 947 } 948 949 return false; 950 } 951 952 static inline bool power_supply_is_watt_property(enum power_supply_property psp) 953 { 954 switch (psp) { 955 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: 956 case POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN: 957 case POWER_SUPPLY_PROP_ENERGY_FULL: 958 case POWER_SUPPLY_PROP_ENERGY_EMPTY: 959 case POWER_SUPPLY_PROP_ENERGY_NOW: 960 case POWER_SUPPLY_PROP_ENERGY_AVG: 961 case POWER_SUPPLY_PROP_VOLTAGE_MAX: 962 case POWER_SUPPLY_PROP_VOLTAGE_MIN: 963 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: 964 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: 965 case POWER_SUPPLY_PROP_VOLTAGE_NOW: 966 case POWER_SUPPLY_PROP_VOLTAGE_AVG: 967 case POWER_SUPPLY_PROP_VOLTAGE_OCV: 968 case POWER_SUPPLY_PROP_VOLTAGE_BOOT: 969 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: 970 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: 971 case POWER_SUPPLY_PROP_POWER_NOW: 972 return true; 973 default: 974 break; 975 } 976 977 return false; 978 } 979 980 #ifdef CONFIG_SYSFS 981 ssize_t power_supply_charge_behaviour_show(struct device *dev, 982 unsigned int available_behaviours, 983 enum power_supply_charge_behaviour behaviour, 984 char *buf); 985 986 int power_supply_charge_behaviour_parse(unsigned int available_behaviours, const char *buf); 987 ssize_t power_supply_charge_types_show(struct device *dev, 988 unsigned int available_types, 989 enum power_supply_charge_type current_type, 990 char *buf); 991 int power_supply_charge_types_parse(unsigned int available_types, const char *buf); 992 #else 993 static inline 994 ssize_t power_supply_charge_behaviour_show(struct device *dev, 995 unsigned int available_behaviours, 996 enum power_supply_charge_behaviour behaviour, 997 char *buf) 998 { 999 return -EOPNOTSUPP; 1000 } 1001 1002 static inline int power_supply_charge_behaviour_parse(unsigned int available_behaviours, 1003 const char *buf) 1004 { 1005 return -EOPNOTSUPP; 1006 } 1007 1008 static inline 1009 ssize_t power_supply_charge_types_show(struct device *dev, 1010 unsigned int available_types, 1011 enum power_supply_charge_type current_type, 1012 char *buf) 1013 { 1014 return -EOPNOTSUPP; 1015 } 1016 1017 static inline int power_supply_charge_types_parse(unsigned int available_types, const char *buf) 1018 { 1019 return -EOPNOTSUPP; 1020 } 1021 #endif 1022 1023 #endif /* __LINUX_POWER_SUPPLY_H__ */ 1024