1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Universal power supply monitor class 4 * 5 * Copyright © 2007 Anton Vorontsov <[email protected]> 6 * Copyright © 2004 Szabolcs Gyurko 7 * Copyright © 2003 Ian Molton <[email protected]> 8 * 9 * Modified: 2004, Oct Szabolcs Gyurko 10 */ 11 12 #ifndef __LINUX_POWER_SUPPLY_H__ 13 #define __LINUX_POWER_SUPPLY_H__ 14 15 #include <linux/device.h> 16 #include <linux/workqueue.h> 17 #include <linux/leds.h> 18 #include <linux/rwsem.h> 19 #include <linux/list.h> 20 #include <linux/spinlock.h> 21 #include <linux/notifier.h> 22 23 /* 24 * All voltages, currents, charges, energies, time and temperatures in uV, 25 * µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise 26 * stated. It's driver's job to convert its raw values to units in which 27 * this class operates. 28 */ 29 30 /* 31 * For systems where the charger determines the maximum battery capacity 32 * the min and max fields should be used to present these values to user 33 * space. Unused/unknown fields will not appear in sysfs. 34 */ 35 36 enum { 37 POWER_SUPPLY_STATUS_UNKNOWN = 0, 38 POWER_SUPPLY_STATUS_CHARGING, 39 POWER_SUPPLY_STATUS_DISCHARGING, 40 POWER_SUPPLY_STATUS_NOT_CHARGING, 41 POWER_SUPPLY_STATUS_FULL, 42 }; 43 44 /* What algorithm is the charger using? */ 45 enum power_supply_charge_type { 46 POWER_SUPPLY_CHARGE_TYPE_UNKNOWN = 0, 47 POWER_SUPPLY_CHARGE_TYPE_NONE, 48 POWER_SUPPLY_CHARGE_TYPE_TRICKLE, /* slow speed */ 49 POWER_SUPPLY_CHARGE_TYPE_FAST, /* fast speed */ 50 POWER_SUPPLY_CHARGE_TYPE_STANDARD, /* normal speed */ 51 POWER_SUPPLY_CHARGE_TYPE_ADAPTIVE, /* dynamically adjusted speed */ 52 POWER_SUPPLY_CHARGE_TYPE_CUSTOM, /* use CHARGE_CONTROL_* props */ 53 POWER_SUPPLY_CHARGE_TYPE_LONGLIFE, /* slow speed, longer life */ 54 POWER_SUPPLY_CHARGE_TYPE_BYPASS, /* bypassing the charger */ 55 }; 56 57 enum { 58 POWER_SUPPLY_HEALTH_UNKNOWN = 0, 59 POWER_SUPPLY_HEALTH_GOOD, 60 POWER_SUPPLY_HEALTH_OVERHEAT, 61 POWER_SUPPLY_HEALTH_DEAD, 62 POWER_SUPPLY_HEALTH_OVERVOLTAGE, 63 POWER_SUPPLY_HEALTH_UNDERVOLTAGE, 64 POWER_SUPPLY_HEALTH_UNSPEC_FAILURE, 65 POWER_SUPPLY_HEALTH_COLD, 66 POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE, 67 POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE, 68 POWER_SUPPLY_HEALTH_OVERCURRENT, 69 POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED, 70 POWER_SUPPLY_HEALTH_WARM, 71 POWER_SUPPLY_HEALTH_COOL, 72 POWER_SUPPLY_HEALTH_HOT, 73 POWER_SUPPLY_HEALTH_NO_BATTERY, 74 }; 75 76 enum { 77 POWER_SUPPLY_TECHNOLOGY_UNKNOWN = 0, 78 POWER_SUPPLY_TECHNOLOGY_NiMH, 79 POWER_SUPPLY_TECHNOLOGY_LION, 80 POWER_SUPPLY_TECHNOLOGY_LIPO, 81 POWER_SUPPLY_TECHNOLOGY_LiFe, 82 POWER_SUPPLY_TECHNOLOGY_NiCd, 83 POWER_SUPPLY_TECHNOLOGY_LiMn, 84 }; 85 86 enum { 87 POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN = 0, 88 POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL, 89 POWER_SUPPLY_CAPACITY_LEVEL_LOW, 90 POWER_SUPPLY_CAPACITY_LEVEL_NORMAL, 91 POWER_SUPPLY_CAPACITY_LEVEL_HIGH, 92 POWER_SUPPLY_CAPACITY_LEVEL_FULL, 93 }; 94 95 enum { 96 POWER_SUPPLY_SCOPE_UNKNOWN = 0, 97 POWER_SUPPLY_SCOPE_SYSTEM, 98 POWER_SUPPLY_SCOPE_DEVICE, 99 }; 100 101 enum power_supply_property { 102 /* Properties of type `int' */ 103 POWER_SUPPLY_PROP_STATUS = 0, 104 POWER_SUPPLY_PROP_CHARGE_TYPE, 105 POWER_SUPPLY_PROP_CHARGE_TYPES, 106 POWER_SUPPLY_PROP_HEALTH, 107 POWER_SUPPLY_PROP_PRESENT, 108 POWER_SUPPLY_PROP_ONLINE, 109 POWER_SUPPLY_PROP_AUTHENTIC, 110 POWER_SUPPLY_PROP_TECHNOLOGY, 111 POWER_SUPPLY_PROP_CYCLE_COUNT, 112 POWER_SUPPLY_PROP_VOLTAGE_MAX, 113 POWER_SUPPLY_PROP_VOLTAGE_MIN, 114 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, 115 POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, 116 POWER_SUPPLY_PROP_VOLTAGE_NOW, 117 POWER_SUPPLY_PROP_VOLTAGE_AVG, 118 POWER_SUPPLY_PROP_VOLTAGE_OCV, 119 POWER_SUPPLY_PROP_VOLTAGE_BOOT, 120 POWER_SUPPLY_PROP_CURRENT_MAX, 121 POWER_SUPPLY_PROP_CURRENT_NOW, 122 POWER_SUPPLY_PROP_CURRENT_AVG, 123 POWER_SUPPLY_PROP_CURRENT_BOOT, 124 POWER_SUPPLY_PROP_POWER_NOW, 125 POWER_SUPPLY_PROP_POWER_AVG, 126 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 127 POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN, 128 POWER_SUPPLY_PROP_CHARGE_FULL, 129 POWER_SUPPLY_PROP_CHARGE_EMPTY, 130 POWER_SUPPLY_PROP_CHARGE_NOW, 131 POWER_SUPPLY_PROP_CHARGE_AVG, 132 POWER_SUPPLY_PROP_CHARGE_COUNTER, 133 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, 134 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, 135 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, 136 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, 137 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, 138 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX, 139 POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD, /* in percents! */ 140 POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD, /* in percents! */ 141 POWER_SUPPLY_PROP_CHARGE_BEHAVIOUR, 142 POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, 143 POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT, 144 POWER_SUPPLY_PROP_INPUT_POWER_LIMIT, 145 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, 146 POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN, 147 POWER_SUPPLY_PROP_ENERGY_FULL, 148 POWER_SUPPLY_PROP_ENERGY_EMPTY, 149 POWER_SUPPLY_PROP_ENERGY_NOW, 150 POWER_SUPPLY_PROP_ENERGY_AVG, 151 POWER_SUPPLY_PROP_CAPACITY, /* in percents! */ 152 POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, /* in percents! */ 153 POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX, /* in percents! */ 154 POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, /* in percents! */ 155 POWER_SUPPLY_PROP_CAPACITY_LEVEL, 156 POWER_SUPPLY_PROP_TEMP, 157 POWER_SUPPLY_PROP_TEMP_MAX, 158 POWER_SUPPLY_PROP_TEMP_MIN, 159 POWER_SUPPLY_PROP_TEMP_ALERT_MIN, 160 POWER_SUPPLY_PROP_TEMP_ALERT_MAX, 161 POWER_SUPPLY_PROP_TEMP_AMBIENT, 162 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN, 163 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX, 164 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, 165 POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, 166 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, 167 POWER_SUPPLY_PROP_TIME_TO_FULL_AVG, 168 POWER_SUPPLY_PROP_TYPE, /* use power_supply.type instead */ 169 POWER_SUPPLY_PROP_USB_TYPE, 170 POWER_SUPPLY_PROP_SCOPE, 171 POWER_SUPPLY_PROP_PRECHARGE_CURRENT, 172 POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, 173 POWER_SUPPLY_PROP_CALIBRATE, 174 POWER_SUPPLY_PROP_MANUFACTURE_YEAR, 175 POWER_SUPPLY_PROP_MANUFACTURE_MONTH, 176 POWER_SUPPLY_PROP_MANUFACTURE_DAY, 177 /* Properties of type `const char *' */ 178 POWER_SUPPLY_PROP_MODEL_NAME, 179 POWER_SUPPLY_PROP_MANUFACTURER, 180 POWER_SUPPLY_PROP_SERIAL_NUMBER, 181 }; 182 183 enum power_supply_type { 184 POWER_SUPPLY_TYPE_UNKNOWN = 0, 185 POWER_SUPPLY_TYPE_BATTERY, 186 POWER_SUPPLY_TYPE_UPS, 187 POWER_SUPPLY_TYPE_MAINS, 188 POWER_SUPPLY_TYPE_USB, /* Standard Downstream Port */ 189 POWER_SUPPLY_TYPE_USB_DCP, /* Dedicated Charging Port */ 190 POWER_SUPPLY_TYPE_USB_CDP, /* Charging Downstream Port */ 191 POWER_SUPPLY_TYPE_USB_ACA, /* Accessory Charger Adapters */ 192 POWER_SUPPLY_TYPE_USB_TYPE_C, /* Type C Port */ 193 POWER_SUPPLY_TYPE_USB_PD, /* Power Delivery Port */ 194 POWER_SUPPLY_TYPE_USB_PD_DRP, /* PD Dual Role Port */ 195 POWER_SUPPLY_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */ 196 POWER_SUPPLY_TYPE_WIRELESS, /* Wireless */ 197 }; 198 199 enum power_supply_usb_type { 200 POWER_SUPPLY_USB_TYPE_UNKNOWN = 0, 201 POWER_SUPPLY_USB_TYPE_SDP, /* Standard Downstream Port */ 202 POWER_SUPPLY_USB_TYPE_DCP, /* Dedicated Charging Port */ 203 POWER_SUPPLY_USB_TYPE_CDP, /* Charging Downstream Port */ 204 POWER_SUPPLY_USB_TYPE_ACA, /* Accessory Charger Adapters */ 205 POWER_SUPPLY_USB_TYPE_C, /* Type C Port */ 206 POWER_SUPPLY_USB_TYPE_PD, /* Power Delivery Port */ 207 POWER_SUPPLY_USB_TYPE_PD_DRP, /* PD Dual Role Port */ 208 POWER_SUPPLY_USB_TYPE_PD_PPS, /* PD Programmable Power Supply */ 209 POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */ 210 }; 211 212 enum power_supply_charge_behaviour { 213 POWER_SUPPLY_CHARGE_BEHAVIOUR_AUTO = 0, 214 POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE, 215 POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE, 216 }; 217 218 enum power_supply_notifier_events { 219 PSY_EVENT_PROP_CHANGED, 220 }; 221 222 union power_supply_propval { 223 int intval; 224 const char *strval; 225 }; 226 227 struct device_node; 228 struct power_supply; 229 230 /* Run-time specific power supply configuration */ 231 struct power_supply_config { 232 struct device_node *of_node; 233 struct fwnode_handle *fwnode; 234 235 /* Driver private data */ 236 void *drv_data; 237 238 /* Device specific sysfs attributes */ 239 const struct attribute_group **attr_grp; 240 241 char **supplied_to; 242 size_t num_supplicants; 243 244 bool no_wakeup_source; 245 }; 246 247 /* Description of power supply */ 248 struct power_supply_desc { 249 const char *name; 250 enum power_supply_type type; 251 u8 charge_behaviours; 252 u32 charge_types; 253 u32 usb_types; 254 const enum power_supply_property *properties; 255 size_t num_properties; 256 257 /* 258 * Functions for drivers implementing power supply class. 259 * These shouldn't be called directly by other drivers for accessing 260 * this power supply. Instead use power_supply_*() functions (for 261 * example power_supply_get_property()). 262 */ 263 int (*get_property)(struct power_supply *psy, 264 enum power_supply_property psp, 265 union power_supply_propval *val); 266 int (*set_property)(struct power_supply *psy, 267 enum power_supply_property psp, 268 const union power_supply_propval *val); 269 /* 270 * property_is_writeable() will be called during registration 271 * of power supply. If this happens during device probe then it must 272 * not access internal data of device (because probe did not end). 273 */ 274 int (*property_is_writeable)(struct power_supply *psy, 275 enum power_supply_property psp); 276 void (*external_power_changed)(struct power_supply *psy); 277 278 /* 279 * Set if thermal zone should not be created for this power supply. 280 * For example for virtual supplies forwarding calls to actual 281 * sensors or other supplies. 282 */ 283 bool no_thermal; 284 /* For APM emulation, think legacy userspace. */ 285 int use_for_apm; 286 }; 287 288 struct power_supply_ext { 289 const char *const name; 290 u8 charge_behaviours; 291 const enum power_supply_property *properties; 292 size_t num_properties; 293 294 int (*get_property)(struct power_supply *psy, 295 const struct power_supply_ext *ext, 296 void *data, 297 enum power_supply_property psp, 298 union power_supply_propval *val); 299 int (*set_property)(struct power_supply *psy, 300 const struct power_supply_ext *ext, 301 void *data, 302 enum power_supply_property psp, 303 const union power_supply_propval *val); 304 int (*property_is_writeable)(struct power_supply *psy, 305 const struct power_supply_ext *ext, 306 void *data, 307 enum power_supply_property psp); 308 }; 309 310 struct power_supply { 311 const struct power_supply_desc *desc; 312 313 char **supplied_to; 314 size_t num_supplicants; 315 316 char **supplied_from; 317 size_t num_supplies; 318 319 /* Driver private data */ 320 void *drv_data; 321 322 /* private */ 323 struct device dev; 324 struct work_struct changed_work; 325 struct delayed_work deferred_register_work; 326 spinlock_t changed_lock; 327 bool changed; 328 bool update_groups; 329 bool initialized; 330 bool removing; 331 atomic_t use_cnt; 332 struct power_supply_battery_info *battery_info; 333 struct rw_semaphore extensions_sem; /* protects "extensions" */ 334 struct list_head extensions; 335 #ifdef CONFIG_THERMAL 336 struct thermal_zone_device *tzd; 337 struct thermal_cooling_device *tcd; 338 #endif 339 340 #ifdef CONFIG_LEDS_TRIGGERS 341 struct led_trigger *trig; 342 struct led_trigger *charging_trig; 343 struct led_trigger *full_trig; 344 struct led_trigger *charging_blink_full_solid_trig; 345 struct led_trigger *charging_orange_full_green_trig; 346 #endif 347 }; 348 349 #define dev_to_psy(__dev) container_of_const(__dev, struct power_supply, dev) 350 351 /* 352 * This is recommended structure to specify static power supply parameters. 353 * Generic one, parametrizable for different power supplies. Power supply 354 * class itself does not use it, but that's what implementing most platform 355 * drivers, should try reuse for consistency. 356 */ 357 358 struct power_supply_info { 359 const char *name; 360 int technology; 361 int voltage_max_design; 362 int voltage_min_design; 363 int charge_full_design; 364 int charge_empty_design; 365 int energy_full_design; 366 int energy_empty_design; 367 int use_for_apm; 368 }; 369 370 struct power_supply_battery_ocv_table { 371 int ocv; /* microVolts */ 372 int capacity; /* percent */ 373 }; 374 375 struct power_supply_resistance_temp_table { 376 int temp; /* celsius */ 377 int resistance; /* internal resistance percent */ 378 }; 379 380 struct power_supply_vbat_ri_table { 381 int vbat_uv; /* Battery voltage in microvolt */ 382 int ri_uohm; /* Internal resistance in microohm */ 383 }; 384 385 /** 386 * struct power_supply_maintenance_charge_table - setting for maintenace charging 387 * @charge_current_max_ua: maintenance charging current that is used to keep 388 * the charge of the battery full as current is consumed after full charging. 389 * The corresponding charge_voltage_max_uv is used as a safeguard: when we 390 * reach this voltage the maintenance charging current is turned off. It is 391 * turned back on if we fall below this voltage. 392 * @charge_voltage_max_uv: maintenance charging voltage that is usually a bit 393 * lower than the constant_charge_voltage_max_uv. We can apply this settings 394 * charge_current_max_ua until we get back up to this voltage. 395 * @safety_timer_minutes: maintenance charging safety timer, with an expiry 396 * time in minutes. We will only use maintenance charging in this setting 397 * for a certain amount of time, then we will first move to the next 398 * maintenance charge current and voltage pair in respective array and wait 399 * for the next safety timer timeout, or, if we reached the last maintencance 400 * charging setting, disable charging until we reach 401 * charge_restart_voltage_uv and restart ordinary CC/CV charging from there. 402 * These timers should be chosen to align with the typical discharge curve 403 * for the battery. 404 * 405 * Ordinary CC/CV charging will stop charging when the charge current goes 406 * below charge_term_current_ua, and then restart it (if the device is still 407 * plugged into the charger) at charge_restart_voltage_uv. This happens in most 408 * consumer products because the power usage while connected to a charger is 409 * not zero, and devices are not manufactured to draw power directly from the 410 * charger: instead they will at all times dissipate the battery a little, like 411 * the power used in standby mode. This will over time give a charge graph 412 * such as this: 413 * 414 * Energy 415 * ^ ... ... ... ... ... ... ... 416 * | . . . . . . . . . . . . . 417 * | .. . .. . .. . .. . .. . .. . .. 418 * |. .. .. .. .. .. .. 419 * +-------------------------------------------------------------------> t 420 * 421 * Practically this means that the Li-ions are wandering back and forth in the 422 * battery and this causes degeneration of the battery anode and cathode. 423 * To prolong the life of the battery, maintenance charging is applied after 424 * reaching charge_term_current_ua to hold up the charge in the battery while 425 * consuming power, thus lowering the wear on the battery: 426 * 427 * Energy 428 * ^ ....................................... 429 * | . ...................... 430 * | .. 431 * |. 432 * +-------------------------------------------------------------------> t 433 * 434 * Maintenance charging uses the voltages from this table: a table of settings 435 * is traversed using a slightly lower current and voltage than what is used for 436 * CC/CV charging. The maintenance charging will for safety reasons not go on 437 * indefinately: we lower the current and voltage with successive maintenance 438 * settings, then disable charging completely after we reach the last one, 439 * and after that we do not restart charging until we reach 440 * charge_restart_voltage_uv (see struct power_supply_battery_info) and restart 441 * ordinary CC/CV charging from there. 442 * 443 * As an example, a Samsung EB425161LA Lithium-Ion battery is CC/CV charged 444 * at 900mA to 4340mV, then maintenance charged at 600mA and 4150mV for up to 445 * 60 hours, then maintenance charged at 600mA and 4100mV for up to 200 hours. 446 * After this the charge cycle is restarted waiting for 447 * charge_restart_voltage_uv. 448 * 449 * For most mobile electronics this type of maintenance charging is enough for 450 * the user to disconnect the device and make use of it before both maintenance 451 * charging cycles are complete, if the current and voltage has been chosen 452 * appropriately. These need to be determined from battery discharge curves 453 * and expected standby current. 454 * 455 * If the voltage anyway drops to charge_restart_voltage_uv during maintenance 456 * charging, ordinary CC/CV charging is restarted. This can happen if the 457 * device is e.g. actively used during charging, so more current is drawn than 458 * the expected stand-by current. Also overvoltage protection will be applied 459 * as usual. 460 */ 461 struct power_supply_maintenance_charge_table { 462 int charge_current_max_ua; 463 int charge_voltage_max_uv; 464 int charge_safety_timer_minutes; 465 }; 466 467 #define POWER_SUPPLY_OCV_TEMP_MAX 20 468 469 /** 470 * struct power_supply_battery_info - information about batteries 471 * @technology: from the POWER_SUPPLY_TECHNOLOGY_* enum 472 * @energy_full_design_uwh: energy content when fully charged in microwatt 473 * hours 474 * @charge_full_design_uah: charge content when fully charged in microampere 475 * hours 476 * @voltage_min_design_uv: minimum voltage across the poles when the battery 477 * is at minimum voltage level in microvolts. If the voltage drops below this 478 * level the battery will need precharging when using CC/CV charging. 479 * @voltage_max_design_uv: voltage across the poles when the battery is fully 480 * charged in microvolts. This is the "nominal voltage" i.e. the voltage 481 * printed on the label of the battery. 482 * @tricklecharge_current_ua: the tricklecharge current used when trickle 483 * charging the battery in microamperes. This is the charging phase when the 484 * battery is completely empty and we need to carefully trickle in some 485 * charge until we reach the precharging voltage. 486 * @precharge_current_ua: current to use in the precharge phase in microamperes, 487 * the precharge rate is limited by limiting the current to this value. 488 * @precharge_voltage_max_uv: the maximum voltage allowed when precharging in 489 * microvolts. When we pass this voltage we will nominally switch over to the 490 * CC (constant current) charging phase defined by constant_charge_current_ua 491 * and constant_charge_voltage_max_uv. 492 * @charge_term_current_ua: when the current in the CV (constant voltage) 493 * charging phase drops below this value in microamperes the charging will 494 * terminate completely and not restart until the voltage over the battery 495 * poles reach charge_restart_voltage_uv unless we use maintenance charging. 496 * @charge_restart_voltage_uv: when the battery has been fully charged by 497 * CC/CV charging and charging has been disabled, and the voltage subsequently 498 * drops below this value in microvolts, the charging will be restarted 499 * (typically using CV charging). 500 * @overvoltage_limit_uv: If the voltage exceeds the nominal voltage 501 * voltage_max_design_uv and we reach this voltage level, all charging must 502 * stop and emergency procedures take place, such as shutting down the system 503 * in some cases. 504 * @constant_charge_current_max_ua: current in microamperes to use in the CC 505 * (constant current) charging phase. The charging rate is limited 506 * by this current. This is the main charging phase and as the current is 507 * constant into the battery the voltage slowly ascends to 508 * constant_charge_voltage_max_uv. 509 * @constant_charge_voltage_max_uv: voltage in microvolts signifying the end of 510 * the CC (constant current) charging phase and the beginning of the CV 511 * (constant voltage) charging phase. 512 * @maintenance_charge: an array of maintenance charging settings to be used 513 * after the main CC/CV charging phase is complete. 514 * @maintenance_charge_size: the number of maintenance charging settings in 515 * maintenance_charge. 516 * @alert_low_temp_charge_current_ua: The charging current to use if the battery 517 * enters low alert temperature, i.e. if the internal temperature is between 518 * temp_alert_min and temp_min. No matter the charging phase, this 519 * and alert_high_temp_charge_voltage_uv will be applied. 520 * @alert_low_temp_charge_voltage_uv: Same as alert_low_temp_charge_current_ua, 521 * but for the charging voltage. 522 * @alert_high_temp_charge_current_ua: The charging current to use if the 523 * battery enters high alert temperature, i.e. if the internal temperature is 524 * between temp_alert_max and temp_max. No matter the charging phase, this 525 * and alert_high_temp_charge_voltage_uv will be applied, usually lowering 526 * the charging current as an evasive manouver. 527 * @alert_high_temp_charge_voltage_uv: Same as 528 * alert_high_temp_charge_current_ua, but for the charging voltage. 529 * @factory_internal_resistance_uohm: the internal resistance of the battery 530 * at fabrication time, expressed in microohms. This resistance will vary 531 * depending on the lifetime and charge of the battery, so this is just a 532 * nominal ballpark figure. This internal resistance is given for the state 533 * when the battery is discharging. 534 * @factory_internal_resistance_charging_uohm: the internal resistance of the 535 * battery at fabrication time while charging, expressed in microohms. 536 * The charging process will affect the internal resistance of the battery 537 * so this value provides a better resistance under these circumstances. 538 * This resistance will vary depending on the lifetime and charge of the 539 * battery, so this is just a nominal ballpark figure. 540 * @ocv_temp: array indicating the open circuit voltage (OCV) capacity 541 * temperature indices. This is an array of temperatures in degrees Celsius 542 * indicating which capacity table to use for a certain temperature, since 543 * the capacity for reasons of chemistry will be different at different 544 * temperatures. Determining capacity is a multivariate problem and the 545 * temperature is the first variable we determine. 546 * @temp_ambient_alert_min: the battery will go outside of operating conditions 547 * when the ambient temperature goes below this temperature in degrees 548 * Celsius. 549 * @temp_ambient_alert_max: the battery will go outside of operating conditions 550 * when the ambient temperature goes above this temperature in degrees 551 * Celsius. 552 * @temp_alert_min: the battery should issue an alert if the internal 553 * temperature goes below this temperature in degrees Celsius. 554 * @temp_alert_max: the battery should issue an alert if the internal 555 * temperature goes above this temperature in degrees Celsius. 556 * @temp_min: the battery will go outside of operating conditions when 557 * the internal temperature goes below this temperature in degrees Celsius. 558 * Normally this means the system should shut down. 559 * @temp_max: the battery will go outside of operating conditions when 560 * the internal temperature goes above this temperature in degrees Celsius. 561 * Normally this means the system should shut down. 562 * @ocv_table: for each entry in ocv_temp there is a corresponding entry in 563 * ocv_table and a size for each entry in ocv_table_size. These arrays 564 * determine the capacity in percent in relation to the voltage in microvolts 565 * at the indexed temperature. 566 * @ocv_table_size: for each entry in ocv_temp this array is giving the size of 567 * each entry in the array of capacity arrays in ocv_table. 568 * @resist_table: this is a table that correlates a battery temperature to the 569 * expected internal resistance at this temperature. The resistance is given 570 * as a percentage of factory_internal_resistance_uohm. Knowing the 571 * resistance of the battery is usually necessary for calculating the open 572 * circuit voltage (OCV) that is then used with the ocv_table to calculate 573 * the capacity of the battery. The resist_table must be ordered descending 574 * by temperature: highest temperature with lowest resistance first, lowest 575 * temperature with highest resistance last. 576 * @resist_table_size: the number of items in the resist_table. 577 * @vbat2ri_discharging: this is a table that correlates Battery voltage (VBAT) 578 * to internal resistance (Ri). The resistance is given in microohm for the 579 * corresponding voltage in microvolts. The internal resistance is used to 580 * determine the open circuit voltage so that we can determine the capacity 581 * of the battery. These voltages to resistance tables apply when the battery 582 * is discharging. The table must be ordered descending by voltage: highest 583 * voltage first. 584 * @vbat2ri_discharging_size: the number of items in the vbat2ri_discharging 585 * table. 586 * @vbat2ri_charging: same function as vbat2ri_discharging but for the state 587 * when the battery is charging. Being under charge changes the battery's 588 * internal resistance characteristics so a separate table is needed.* 589 * The table must be ordered descending by voltage: highest voltage first. 590 * @vbat2ri_charging_size: the number of items in the vbat2ri_charging 591 * table. 592 * @bti_resistance_ohm: The Battery Type Indicator (BIT) nominal resistance 593 * in ohms for this battery, if an identification resistor is mounted 594 * between a third battery terminal and ground. This scheme is used by a lot 595 * of mobile device batteries. 596 * @bti_resistance_tolerance: The tolerance in percent of the BTI resistance, 597 * for example 10 for +/- 10%, if the bti_resistance is set to 7000 and the 598 * tolerance is 10% we will detect a proper battery if the BTI resistance 599 * is between 6300 and 7700 Ohm. 600 * 601 * This is the recommended struct to manage static battery parameters, 602 * populated by power_supply_get_battery_info(). Most platform drivers should 603 * use these for consistency. 604 * 605 * Its field names must correspond to elements in enum power_supply_property. 606 * The default field value is -EINVAL or NULL for pointers. 607 * 608 * CC/CV CHARGING: 609 * 610 * The charging parameters here assume a CC/CV charging scheme. This method 611 * is most common with Lithium Ion batteries (other methods are possible) and 612 * looks as follows: 613 * 614 * ^ Battery voltage 615 * | --- overvoltage_limit_uv 616 * | 617 * | ................................................... 618 * | .. constant_charge_voltage_max_uv 619 * | .. 620 * | . 621 * | . 622 * | . 623 * | . 624 * | . 625 * | .. precharge_voltage_max_uv 626 * | .. 627 * |. (trickle charging) 628 * +------------------------------------------------------------------> time 629 * 630 * ^ Current into the battery 631 * | 632 * | ............. constant_charge_current_max_ua 633 * | . . 634 * | . . 635 * | . . 636 * | . . 637 * | . .. 638 * | . .... 639 * | . ..... 640 * | ... precharge_current_ua ....... charge_term_current_ua 641 * | . . 642 * | . . 643 * |.... tricklecharge_current_ua . 644 * | . 645 * +-----------------------------------------------------------------> time 646 * 647 * These diagrams are synchronized on time and the voltage and current 648 * follow each other. 649 * 650 * With CC/CV charging commence over time like this for an empty battery: 651 * 652 * 1. When the battery is completely empty it may need to be charged with 653 * an especially small current so that electrons just "trickle in", 654 * this is the tricklecharge_current_ua. 655 * 656 * 2. Next a small initial pre-charge current (precharge_current_ua) 657 * is applied if the voltage is below precharge_voltage_max_uv until we 658 * reach precharge_voltage_max_uv. CAUTION: in some texts this is referred 659 * to as "trickle charging" but the use in the Linux kernel is different 660 * see below! 661 * 662 * 3. Then the main charging current is applied, which is called the constant 663 * current (CC) phase. A current regulator is set up to allow 664 * constant_charge_current_max_ua of current to flow into the battery. 665 * The chemical reaction in the battery will make the voltage go up as 666 * charge goes into the battery. This current is applied until we reach 667 * the constant_charge_voltage_max_uv voltage. 668 * 669 * 4. At this voltage we switch over to the constant voltage (CV) phase. This 670 * means we allow current to go into the battery, but we keep the voltage 671 * fixed. This current will continue to charge the battery while keeping 672 * the voltage the same. A chemical reaction in the battery goes on 673 * storing energy without affecting the voltage. Over time the current 674 * will slowly drop and when we reach charge_term_current_ua we will 675 * end the constant voltage phase. 676 * 677 * After this the battery is fully charged, and if we do not support maintenance 678 * charging, the charging will not restart until power dissipation makes the 679 * voltage fall so that we reach charge_restart_voltage_uv and at this point 680 * we restart charging at the appropriate phase, usually this will be inside 681 * the CV phase. 682 * 683 * If we support maintenance charging the voltage is however kept high after 684 * the CV phase with a very low current. This is meant to let the same charge 685 * go in for usage while the charger is still connected, mainly for 686 * dissipation for the power consuming entity while connected to the 687 * charger. 688 * 689 * All charging MUST terminate if the overvoltage_limit_uv is ever reached. 690 * Overcharging Lithium Ion cells can be DANGEROUS and lead to fire or 691 * explosions. 692 * 693 * DETERMINING BATTERY CAPACITY: 694 * 695 * Several members of the struct deal with trying to determine the remaining 696 * capacity in the battery, usually as a percentage of charge. In practice 697 * many chargers uses a so-called fuel gauge or coloumb counter that measure 698 * how much charge goes into the battery and how much goes out (+/- leak 699 * consumption). This does not help if we do not know how much capacity the 700 * battery has to begin with, such as when it is first used or was taken out 701 * and charged in a separate charger. Therefore many capacity algorithms use 702 * the open circuit voltage with a look-up table to determine the rough 703 * capacity of the battery. The open circuit voltage can be conceptualized 704 * with an ideal voltage source (V) in series with an internal resistance (Ri) 705 * like this: 706 * 707 * +-------> IBAT >----------------+ 708 * | ^ | 709 * [ ] Ri | | 710 * | | VBAT | 711 * o <---------- | | 712 * +| ^ | [ ] Rload 713 * .---. | | | 714 * | V | | OCV | | 715 * '---' | | | 716 * | | | | 717 * GND +-------------------------------+ 718 * 719 * If we disconnect the load (here simplified as a fixed resistance Rload) 720 * and measure VBAT with a infinite impedance voltage meter we will get 721 * VBAT = OCV and this assumption is sometimes made even under load, assuming 722 * Rload is insignificant. However this will be of dubious quality because the 723 * load is rarely that small and Ri is strongly nonlinear depending on 724 * temperature and how much capacity is left in the battery due to the 725 * chemistry involved. 726 * 727 * In many practical applications we cannot just disconnect the battery from 728 * the load, so instead we often try to measure the instantaneous IBAT (the 729 * current out from the battery), estimate the Ri and thus calculate the 730 * voltage drop over Ri and compensate like this: 731 * 732 * OCV = VBAT - (IBAT * Ri) 733 * 734 * The tables vbat2ri_discharging and vbat2ri_charging are used to determine 735 * (by interpolation) the Ri from the VBAT under load. These curves are highly 736 * nonlinear and may need many datapoints but can be found in datasheets for 737 * some batteries. This gives the compensated open circuit voltage (OCV) for 738 * the battery even under load. Using this method will also compensate for 739 * temperature changes in the environment: this will also make the internal 740 * resistance change, and it will affect the VBAT under load, so correlating 741 * VBAT to Ri takes both remaining capacity and temperature into consideration. 742 * 743 * Alternatively a manufacturer can specify how the capacity of the battery 744 * is dependent on the battery temperature which is the main factor affecting 745 * Ri. As we know all checmical reactions are faster when it is warm and slower 746 * when it is cold. You can put in 1500mAh and only get 800mAh out before the 747 * voltage drops too low for example. This effect is also highly nonlinear and 748 * the purpose of the table resist_table: this will take a temperature and 749 * tell us how big percentage of Ri the specified temperature correlates to. 750 * Usually we have 100% of the factory_internal_resistance_uohm at 25 degrees 751 * Celsius. 752 * 753 * The power supply class itself doesn't use this struct as of now. 754 */ 755 756 struct power_supply_battery_info { 757 unsigned int technology; 758 int energy_full_design_uwh; 759 int charge_full_design_uah; 760 int voltage_min_design_uv; 761 int voltage_max_design_uv; 762 int tricklecharge_current_ua; 763 int precharge_current_ua; 764 int precharge_voltage_max_uv; 765 int charge_term_current_ua; 766 int charge_restart_voltage_uv; 767 int overvoltage_limit_uv; 768 int constant_charge_current_max_ua; 769 int constant_charge_voltage_max_uv; 770 const struct power_supply_maintenance_charge_table *maintenance_charge; 771 int maintenance_charge_size; 772 int alert_low_temp_charge_current_ua; 773 int alert_low_temp_charge_voltage_uv; 774 int alert_high_temp_charge_current_ua; 775 int alert_high_temp_charge_voltage_uv; 776 int factory_internal_resistance_uohm; 777 int factory_internal_resistance_charging_uohm; 778 int ocv_temp[POWER_SUPPLY_OCV_TEMP_MAX]; 779 int temp_ambient_alert_min; 780 int temp_ambient_alert_max; 781 int temp_alert_min; 782 int temp_alert_max; 783 int temp_min; 784 int temp_max; 785 const struct power_supply_battery_ocv_table *ocv_table[POWER_SUPPLY_OCV_TEMP_MAX]; 786 int ocv_table_size[POWER_SUPPLY_OCV_TEMP_MAX]; 787 const struct power_supply_resistance_temp_table *resist_table; 788 int resist_table_size; 789 const struct power_supply_vbat_ri_table *vbat2ri_discharging; 790 int vbat2ri_discharging_size; 791 const struct power_supply_vbat_ri_table *vbat2ri_charging; 792 int vbat2ri_charging_size; 793 int bti_resistance_ohm; 794 int bti_resistance_tolerance; 795 }; 796 797 extern int power_supply_reg_notifier(struct notifier_block *nb); 798 extern void power_supply_unreg_notifier(struct notifier_block *nb); 799 #if IS_ENABLED(CONFIG_POWER_SUPPLY) 800 extern struct power_supply *power_supply_get_by_name(const char *name); 801 extern void power_supply_put(struct power_supply *psy); 802 #else 803 static inline void power_supply_put(struct power_supply *psy) {} 804 static inline struct power_supply *power_supply_get_by_name(const char *name) 805 { return NULL; } 806 #endif 807 #ifdef CONFIG_OF 808 extern struct power_supply *power_supply_get_by_phandle(struct device_node *np, 809 const char *property); 810 extern struct power_supply *devm_power_supply_get_by_phandle( 811 struct device *dev, const char *property); 812 #else /* !CONFIG_OF */ 813 static inline struct power_supply * 814 power_supply_get_by_phandle(struct device_node *np, const char *property) 815 { return NULL; } 816 static inline struct power_supply * 817 devm_power_supply_get_by_phandle(struct device *dev, const char *property) 818 { return NULL; } 819 #endif /* CONFIG_OF */ 820 821 extern const enum power_supply_property power_supply_battery_info_properties[]; 822 extern const size_t power_supply_battery_info_properties_size; 823 extern int power_supply_get_battery_info(struct power_supply *psy, 824 struct power_supply_battery_info **info_out); 825 extern void power_supply_put_battery_info(struct power_supply *psy, 826 struct power_supply_battery_info *info); 827 extern bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info, 828 enum power_supply_property psp); 829 extern int power_supply_battery_info_get_prop(struct power_supply_battery_info *info, 830 enum power_supply_property psp, 831 union power_supply_propval *val); 832 extern int power_supply_ocv2cap_simple(const struct power_supply_battery_ocv_table *table, 833 int table_len, int ocv); 834 extern const struct power_supply_battery_ocv_table * 835 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info, 836 int temp, int *table_len); 837 extern int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info, 838 int ocv, int temp); 839 extern int 840 power_supply_temp2resist_simple(const struct power_supply_resistance_temp_table *table, 841 int table_len, int temp); 842 extern int power_supply_vbat2ri(struct power_supply_battery_info *info, 843 int vbat_uv, bool charging); 844 extern const struct power_supply_maintenance_charge_table * 845 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, int index); 846 extern bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info, 847 int resistance); 848 extern void power_supply_changed(struct power_supply *psy); 849 extern int power_supply_am_i_supplied(struct power_supply *psy); 850 int power_supply_get_property_from_supplier(struct power_supply *psy, 851 enum power_supply_property psp, 852 union power_supply_propval *val); 853 854 static inline bool 855 power_supply_supports_maintenance_charging(struct power_supply_battery_info *info) 856 { 857 const struct power_supply_maintenance_charge_table *mt; 858 859 mt = power_supply_get_maintenance_charging_setting(info, 0); 860 861 return (mt != NULL); 862 } 863 864 static inline bool 865 power_supply_supports_vbat2ri(struct power_supply_battery_info *info) 866 { 867 return ((info->vbat2ri_discharging != NULL) && 868 info->vbat2ri_discharging_size > 0); 869 } 870 871 static inline bool 872 power_supply_supports_temp2ri(struct power_supply_battery_info *info) 873 { 874 return ((info->resist_table != NULL) && 875 info->resist_table_size > 0); 876 } 877 878 #ifdef CONFIG_POWER_SUPPLY 879 extern int power_supply_is_system_supplied(void); 880 #else 881 static inline int power_supply_is_system_supplied(void) { return -ENOSYS; } 882 #endif 883 884 extern int power_supply_get_property(struct power_supply *psy, 885 enum power_supply_property psp, 886 union power_supply_propval *val); 887 #if IS_ENABLED(CONFIG_POWER_SUPPLY) 888 extern int power_supply_set_property(struct power_supply *psy, 889 enum power_supply_property psp, 890 const union power_supply_propval *val); 891 #else 892 static inline int power_supply_set_property(struct power_supply *psy, 893 enum power_supply_property psp, 894 const union power_supply_propval *val) 895 { return 0; } 896 #endif 897 extern void power_supply_external_power_changed(struct power_supply *psy); 898 899 extern struct power_supply *__must_check 900 power_supply_register(struct device *parent, 901 const struct power_supply_desc *desc, 902 const struct power_supply_config *cfg); 903 extern struct power_supply *__must_check 904 devm_power_supply_register(struct device *parent, 905 const struct power_supply_desc *desc, 906 const struct power_supply_config *cfg); 907 extern void power_supply_unregister(struct power_supply *psy); 908 extern int power_supply_powers(struct power_supply *psy, struct device *dev); 909 910 extern int __must_check 911 power_supply_register_extension(struct power_supply *psy, 912 const struct power_supply_ext *ext, 913 struct device *dev, 914 void *data); 915 extern void power_supply_unregister_extension(struct power_supply *psy, 916 const struct power_supply_ext *ext); 917 918 #define to_power_supply(device) container_of(device, struct power_supply, dev) 919 920 extern void *power_supply_get_drvdata(struct power_supply *psy); 921 extern int power_supply_for_each_psy(void *data, int (*fn)(struct power_supply *psy, void *data)); 922 923 static inline bool power_supply_is_amp_property(enum power_supply_property psp) 924 { 925 switch (psp) { 926 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: 927 case POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN: 928 case POWER_SUPPLY_PROP_CHARGE_FULL: 929 case POWER_SUPPLY_PROP_CHARGE_EMPTY: 930 case POWER_SUPPLY_PROP_CHARGE_NOW: 931 case POWER_SUPPLY_PROP_CHARGE_AVG: 932 case POWER_SUPPLY_PROP_CHARGE_COUNTER: 933 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: 934 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: 935 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: 936 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: 937 case POWER_SUPPLY_PROP_CURRENT_MAX: 938 case POWER_SUPPLY_PROP_CURRENT_NOW: 939 case POWER_SUPPLY_PROP_CURRENT_AVG: 940 case POWER_SUPPLY_PROP_CURRENT_BOOT: 941 return true; 942 default: 943 break; 944 } 945 946 return false; 947 } 948 949 static inline bool power_supply_is_watt_property(enum power_supply_property psp) 950 { 951 switch (psp) { 952 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: 953 case POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN: 954 case POWER_SUPPLY_PROP_ENERGY_FULL: 955 case POWER_SUPPLY_PROP_ENERGY_EMPTY: 956 case POWER_SUPPLY_PROP_ENERGY_NOW: 957 case POWER_SUPPLY_PROP_ENERGY_AVG: 958 case POWER_SUPPLY_PROP_VOLTAGE_MAX: 959 case POWER_SUPPLY_PROP_VOLTAGE_MIN: 960 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: 961 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: 962 case POWER_SUPPLY_PROP_VOLTAGE_NOW: 963 case POWER_SUPPLY_PROP_VOLTAGE_AVG: 964 case POWER_SUPPLY_PROP_VOLTAGE_OCV: 965 case POWER_SUPPLY_PROP_VOLTAGE_BOOT: 966 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: 967 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: 968 case POWER_SUPPLY_PROP_POWER_NOW: 969 return true; 970 default: 971 break; 972 } 973 974 return false; 975 } 976 977 #ifdef CONFIG_SYSFS 978 ssize_t power_supply_charge_behaviour_show(struct device *dev, 979 unsigned int available_behaviours, 980 enum power_supply_charge_behaviour behaviour, 981 char *buf); 982 983 int power_supply_charge_behaviour_parse(unsigned int available_behaviours, const char *buf); 984 ssize_t power_supply_charge_types_show(struct device *dev, 985 unsigned int available_types, 986 enum power_supply_charge_type current_type, 987 char *buf); 988 int power_supply_charge_types_parse(unsigned int available_types, const char *buf); 989 #else 990 static inline 991 ssize_t power_supply_charge_behaviour_show(struct device *dev, 992 unsigned int available_behaviours, 993 enum power_supply_charge_behaviour behaviour, 994 char *buf) 995 { 996 return -EOPNOTSUPP; 997 } 998 999 static inline int power_supply_charge_behaviour_parse(unsigned int available_behaviours, 1000 const char *buf) 1001 { 1002 return -EOPNOTSUPP; 1003 } 1004 1005 static inline 1006 ssize_t power_supply_charge_types_show(struct device *dev, 1007 unsigned int available_types, 1008 enum power_supply_charge_type current_type, 1009 char *buf) 1010 { 1011 return -EOPNOTSUPP; 1012 } 1013 1014 static inline int power_supply_charge_types_parse(unsigned int available_types, const char *buf) 1015 { 1016 return -EOPNOTSUPP; 1017 } 1018 #endif 1019 1020 #endif /* __LINUX_POWER_SUPPLY_H__ */ 1021