xref: /linux-6.15/include/linux/pid.h (revision ccea15f4)
1 #ifndef _LINUX_PID_H
2 #define _LINUX_PID_H
3 
4 #include <linux/rcupdate.h>
5 
6 enum pid_type
7 {
8 	PIDTYPE_PID,
9 	PIDTYPE_PGID,
10 	PIDTYPE_SID,
11 	PIDTYPE_MAX
12 };
13 
14 /*
15  * What is struct pid?
16  *
17  * A struct pid is the kernel's internal notion of a process identifier.
18  * It refers to individual tasks, process groups, and sessions.  While
19  * there are processes attached to it the struct pid lives in a hash
20  * table, so it and then the processes that it refers to can be found
21  * quickly from the numeric pid value.  The attached processes may be
22  * quickly accessed by following pointers from struct pid.
23  *
24  * Storing pid_t values in the kernel and refering to them later has a
25  * problem.  The process originally with that pid may have exited and the
26  * pid allocator wrapped, and another process could have come along
27  * and been assigned that pid.
28  *
29  * Referring to user space processes by holding a reference to struct
30  * task_struct has a problem.  When the user space process exits
31  * the now useless task_struct is still kept.  A task_struct plus a
32  * stack consumes around 10K of low kernel memory.  More precisely
33  * this is THREAD_SIZE + sizeof(struct task_struct).  By comparison
34  * a struct pid is about 64 bytes.
35  *
36  * Holding a reference to struct pid solves both of these problems.
37  * It is small so holding a reference does not consume a lot of
38  * resources, and since a new struct pid is allocated when the numeric
39  * pid value is reused we don't mistakenly refer to new processes.
40  */
41 
42 struct pid
43 {
44 	atomic_t count;
45 	/* Try to keep pid_chain in the same cacheline as nr for find_pid */
46 	int nr;
47 	struct hlist_node pid_chain;
48 	/* lists of tasks that use this pid */
49 	struct hlist_head tasks[PIDTYPE_MAX];
50 	struct rcu_head rcu;
51 };
52 
53 struct pid_link
54 {
55 	struct hlist_node node;
56 	struct pid *pid;
57 };
58 
59 static inline struct pid *get_pid(struct pid *pid)
60 {
61 	if (pid)
62 		atomic_inc(&pid->count);
63 	return pid;
64 }
65 
66 extern void FASTCALL(put_pid(struct pid *pid));
67 extern struct task_struct *FASTCALL(pid_task(struct pid *pid, enum pid_type));
68 extern struct task_struct *FASTCALL(get_pid_task(struct pid *pid,
69 						enum pid_type));
70 
71 /*
72  * attach_pid() and detach_pid() must be called with the tasklist_lock
73  * write-held.
74  */
75 extern int FASTCALL(attach_pid(struct task_struct *task,
76 				enum pid_type type, int nr));
77 
78 extern void FASTCALL(detach_pid(struct task_struct *task, enum pid_type));
79 
80 /*
81  * look up a PID in the hash table. Must be called with the tasklist_lock
82  * or rcu_read_lock() held.
83  */
84 extern struct pid *FASTCALL(find_pid(int nr));
85 
86 /*
87  * Lookup a PID in the hash table, and return with it's count elevated.
88  */
89 extern struct pid *find_get_pid(int nr);
90 
91 extern struct pid *alloc_pid(void);
92 extern void FASTCALL(free_pid(struct pid *pid));
93 
94 #define pid_next(task, type)					\
95 	((task)->pids[(type)].node.next)
96 
97 #define pid_next_task(task, type) 				\
98 	hlist_entry(pid_next(task, type), struct task_struct,	\
99 			pids[(type)].node)
100 
101 
102 /* We could use hlist_for_each_entry_rcu here but it takes more arguments
103  * than the do_each_task_pid/while_each_task_pid.  So we roll our own
104  * to preserve the existing interface.
105  */
106 #define do_each_task_pid(who, type, task)				\
107 	if ((task = find_task_by_pid_type(type, who))) {		\
108 		prefetch(pid_next(task, type));				\
109 		do {
110 
111 #define while_each_task_pid(who, type, task)				\
112 		} while (pid_next(task, type) &&  ({			\
113 				task = pid_next_task(task, type);	\
114 				rcu_dereference(task);			\
115 				prefetch(pid_next(task, type));		\
116 				1; }) );				\
117 	}
118 
119 #endif /* _LINUX_PID_H */
120