xref: /linux-6.15/include/linux/pid.h (revision 8ea8814f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PID_H
3 #define _LINUX_PID_H
4 
5 #include <linux/rculist.h>
6 
7 enum pid_type
8 {
9 	PIDTYPE_PID,
10 	PIDTYPE_TGID,
11 	PIDTYPE_PGID,
12 	PIDTYPE_SID,
13 	PIDTYPE_MAX,
14 };
15 
16 /*
17  * What is struct pid?
18  *
19  * A struct pid is the kernel's internal notion of a process identifier.
20  * It refers to individual tasks, process groups, and sessions.  While
21  * there are processes attached to it the struct pid lives in a hash
22  * table, so it and then the processes that it refers to can be found
23  * quickly from the numeric pid value.  The attached processes may be
24  * quickly accessed by following pointers from struct pid.
25  *
26  * Storing pid_t values in the kernel and referring to them later has a
27  * problem.  The process originally with that pid may have exited and the
28  * pid allocator wrapped, and another process could have come along
29  * and been assigned that pid.
30  *
31  * Referring to user space processes by holding a reference to struct
32  * task_struct has a problem.  When the user space process exits
33  * the now useless task_struct is still kept.  A task_struct plus a
34  * stack consumes around 10K of low kernel memory.  More precisely
35  * this is THREAD_SIZE + sizeof(struct task_struct).  By comparison
36  * a struct pid is about 64 bytes.
37  *
38  * Holding a reference to struct pid solves both of these problems.
39  * It is small so holding a reference does not consume a lot of
40  * resources, and since a new struct pid is allocated when the numeric pid
41  * value is reused (when pids wrap around) we don't mistakenly refer to new
42  * processes.
43  */
44 
45 
46 /*
47  * struct upid is used to get the id of the struct pid, as it is
48  * seen in particular namespace. Later the struct pid is found with
49  * find_pid_ns() using the int nr and struct pid_namespace *ns.
50  */
51 
52 struct upid {
53 	int nr;
54 	struct pid_namespace *ns;
55 };
56 
57 struct pid
58 {
59 	atomic_t count;
60 	unsigned int level;
61 	/* lists of tasks that use this pid */
62 	struct hlist_head tasks[PIDTYPE_MAX];
63 	struct rcu_head rcu;
64 	struct upid numbers[1];
65 };
66 
67 extern struct pid init_struct_pid;
68 
69 static inline struct pid *get_pid(struct pid *pid)
70 {
71 	if (pid)
72 		atomic_inc(&pid->count);
73 	return pid;
74 }
75 
76 extern void put_pid(struct pid *pid);
77 extern struct task_struct *pid_task(struct pid *pid, enum pid_type);
78 extern struct task_struct *get_pid_task(struct pid *pid, enum pid_type);
79 
80 extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type);
81 
82 /*
83  * these helpers must be called with the tasklist_lock write-held.
84  */
85 extern void attach_pid(struct task_struct *task, enum pid_type);
86 extern void detach_pid(struct task_struct *task, enum pid_type);
87 extern void change_pid(struct task_struct *task, enum pid_type,
88 			struct pid *pid);
89 extern void transfer_pid(struct task_struct *old, struct task_struct *new,
90 			 enum pid_type);
91 
92 struct pid_namespace;
93 extern struct pid_namespace init_pid_ns;
94 
95 /*
96  * look up a PID in the hash table. Must be called with the tasklist_lock
97  * or rcu_read_lock() held.
98  *
99  * find_pid_ns() finds the pid in the namespace specified
100  * find_vpid() finds the pid by its virtual id, i.e. in the current namespace
101  *
102  * see also find_task_by_vpid() set in include/linux/sched.h
103  */
104 extern struct pid *find_pid_ns(int nr, struct pid_namespace *ns);
105 extern struct pid *find_vpid(int nr);
106 
107 /*
108  * Lookup a PID in the hash table, and return with it's count elevated.
109  */
110 extern struct pid *find_get_pid(int nr);
111 extern struct pid *find_ge_pid(int nr, struct pid_namespace *);
112 
113 extern struct pid *alloc_pid(struct pid_namespace *ns);
114 extern void free_pid(struct pid *pid);
115 extern void disable_pid_allocation(struct pid_namespace *ns);
116 
117 /*
118  * ns_of_pid() returns the pid namespace in which the specified pid was
119  * allocated.
120  *
121  * NOTE:
122  * 	ns_of_pid() is expected to be called for a process (task) that has
123  * 	an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid
124  * 	is expected to be non-NULL. If @pid is NULL, caller should handle
125  * 	the resulting NULL pid-ns.
126  */
127 static inline struct pid_namespace *ns_of_pid(struct pid *pid)
128 {
129 	struct pid_namespace *ns = NULL;
130 	if (pid)
131 		ns = pid->numbers[pid->level].ns;
132 	return ns;
133 }
134 
135 /*
136  * is_child_reaper returns true if the pid is the init process
137  * of the current namespace. As this one could be checked before
138  * pid_ns->child_reaper is assigned in copy_process, we check
139  * with the pid number.
140  */
141 static inline bool is_child_reaper(struct pid *pid)
142 {
143 	return pid->numbers[pid->level].nr == 1;
144 }
145 
146 /*
147  * the helpers to get the pid's id seen from different namespaces
148  *
149  * pid_nr()    : global id, i.e. the id seen from the init namespace;
150  * pid_vnr()   : virtual id, i.e. the id seen from the pid namespace of
151  *               current.
152  * pid_nr_ns() : id seen from the ns specified.
153  *
154  * see also task_xid_nr() etc in include/linux/sched.h
155  */
156 
157 static inline pid_t pid_nr(struct pid *pid)
158 {
159 	pid_t nr = 0;
160 	if (pid)
161 		nr = pid->numbers[0].nr;
162 	return nr;
163 }
164 
165 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns);
166 pid_t pid_vnr(struct pid *pid);
167 
168 #define do_each_pid_task(pid, type, task)				\
169 	do {								\
170 		if ((pid) != NULL)					\
171 			hlist_for_each_entry_rcu((task),		\
172 				&(pid)->tasks[type], pid_links[type]) {
173 
174 			/*
175 			 * Both old and new leaders may be attached to
176 			 * the same pid in the middle of de_thread().
177 			 */
178 #define while_each_pid_task(pid, type, task)				\
179 				if (type == PIDTYPE_PID)		\
180 					break;				\
181 			}						\
182 	} while (0)
183 
184 #define do_each_pid_thread(pid, type, task)				\
185 	do_each_pid_task(pid, type, task) {				\
186 		struct task_struct *tg___ = task;			\
187 		for_each_thread(tg___, task) {
188 
189 #define while_each_pid_thread(pid, type, task)				\
190 		}							\
191 		task = tg___;						\
192 	} while_each_pid_task(pid, type, task)
193 #endif /* _LINUX_PID_H */
194