xref: /linux-6.15/include/linux/pid.h (revision 757dea93)
1 #ifndef _LINUX_PID_H
2 #define _LINUX_PID_H
3 
4 #include <linux/rcupdate.h>
5 
6 enum pid_type
7 {
8 	PIDTYPE_PID,
9 	PIDTYPE_PGID,
10 	PIDTYPE_SID,
11 	PIDTYPE_MAX
12 };
13 
14 /*
15  * What is struct pid?
16  *
17  * A struct pid is the kernel's internal notion of a process identifier.
18  * It refers to individual tasks, process groups, and sessions.  While
19  * there are processes attached to it the struct pid lives in a hash
20  * table, so it and then the processes that it refers to can be found
21  * quickly from the numeric pid value.  The attached processes may be
22  * quickly accessed by following pointers from struct pid.
23  *
24  * Storing pid_t values in the kernel and refering to them later has a
25  * problem.  The process originally with that pid may have exited and the
26  * pid allocator wrapped, and another process could have come along
27  * and been assigned that pid.
28  *
29  * Referring to user space processes by holding a reference to struct
30  * task_struct has a problem.  When the user space process exits
31  * the now useless task_struct is still kept.  A task_struct plus a
32  * stack consumes around 10K of low kernel memory.  More precisely
33  * this is THREAD_SIZE + sizeof(struct task_struct).  By comparison
34  * a struct pid is about 64 bytes.
35  *
36  * Holding a reference to struct pid solves both of these problems.
37  * It is small so holding a reference does not consume a lot of
38  * resources, and since a new struct pid is allocated when the numeric pid
39  * value is reused (when pids wrap around) we don't mistakenly refer to new
40  * processes.
41  */
42 
43 struct pid
44 {
45 	atomic_t count;
46 	/* Try to keep pid_chain in the same cacheline as nr for find_pid */
47 	int nr;
48 	struct hlist_node pid_chain;
49 	/* lists of tasks that use this pid */
50 	struct hlist_head tasks[PIDTYPE_MAX];
51 	struct rcu_head rcu;
52 };
53 
54 struct pid_link
55 {
56 	struct hlist_node node;
57 	struct pid *pid;
58 };
59 
60 static inline struct pid *get_pid(struct pid *pid)
61 {
62 	if (pid)
63 		atomic_inc(&pid->count);
64 	return pid;
65 }
66 
67 extern void FASTCALL(put_pid(struct pid *pid));
68 extern struct task_struct *FASTCALL(pid_task(struct pid *pid, enum pid_type));
69 extern struct task_struct *FASTCALL(get_pid_task(struct pid *pid,
70 						enum pid_type));
71 
72 extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type);
73 
74 /*
75  * attach_pid() and detach_pid() must be called with the tasklist_lock
76  * write-held.
77  */
78 extern int FASTCALL(attach_pid(struct task_struct *task,
79 				enum pid_type type, int nr));
80 
81 extern void FASTCALL(detach_pid(struct task_struct *task, enum pid_type));
82 extern void FASTCALL(transfer_pid(struct task_struct *old,
83 				  struct task_struct *new, enum pid_type));
84 
85 /*
86  * look up a PID in the hash table. Must be called with the tasklist_lock
87  * or rcu_read_lock() held.
88  */
89 extern struct pid *FASTCALL(find_pid(int nr));
90 
91 /*
92  * Lookup a PID in the hash table, and return with it's count elevated.
93  */
94 extern struct pid *find_get_pid(int nr);
95 extern struct pid *find_ge_pid(int nr);
96 
97 extern struct pid *alloc_pid(void);
98 extern void FASTCALL(free_pid(struct pid *pid));
99 
100 static inline pid_t pid_nr(struct pid *pid)
101 {
102 	pid_t nr = 0;
103 	if (pid)
104 		nr = pid->nr;
105 	return nr;
106 }
107 
108 #define do_each_pid_task(pid, type, task)				\
109 	do {								\
110 		struct hlist_node *pos___;				\
111 		if (pid != NULL)					\
112 			hlist_for_each_entry_rcu((task), pos___,	\
113 				&pid->tasks[type], pids[type].node) {
114 
115 #define while_each_pid_task(pid, type, task)				\
116 			}						\
117 	} while (0)
118 
119 #endif /* _LINUX_PID_H */
120