xref: /linux-6.15/include/linux/pid.h (revision 6d5e9d63)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PID_H
3 #define _LINUX_PID_H
4 
5 #include <linux/pid_types.h>
6 #include <linux/rculist.h>
7 #include <linux/refcount.h>
8 #include <linux/wait.h>
9 
10 /*
11  * What is struct pid?
12  *
13  * A struct pid is the kernel's internal notion of a process identifier.
14  * It refers to individual tasks, process groups, and sessions.  While
15  * there are processes attached to it the struct pid lives in a hash
16  * table, so it and then the processes that it refers to can be found
17  * quickly from the numeric pid value.  The attached processes may be
18  * quickly accessed by following pointers from struct pid.
19  *
20  * Storing pid_t values in the kernel and referring to them later has a
21  * problem.  The process originally with that pid may have exited and the
22  * pid allocator wrapped, and another process could have come along
23  * and been assigned that pid.
24  *
25  * Referring to user space processes by holding a reference to struct
26  * task_struct has a problem.  When the user space process exits
27  * the now useless task_struct is still kept.  A task_struct plus a
28  * stack consumes around 10K of low kernel memory.  More precisely
29  * this is THREAD_SIZE + sizeof(struct task_struct).  By comparison
30  * a struct pid is about 64 bytes.
31  *
32  * Holding a reference to struct pid solves both of these problems.
33  * It is small so holding a reference does not consume a lot of
34  * resources, and since a new struct pid is allocated when the numeric pid
35  * value is reused (when pids wrap around) we don't mistakenly refer to new
36  * processes.
37  */
38 
39 
40 /*
41  * struct upid is used to get the id of the struct pid, as it is
42  * seen in particular namespace. Later the struct pid is found with
43  * find_pid_ns() using the int nr and struct pid_namespace *ns.
44  */
45 
46 struct upid {
47 	int nr;
48 	struct pid_namespace *ns;
49 };
50 
51 struct pid
52 {
53 	refcount_t count;
54 	unsigned int level;
55 	spinlock_t lock;
56 	/* lists of tasks that use this pid */
57 	struct hlist_head tasks[PIDTYPE_MAX];
58 	struct hlist_head inodes;
59 	/* wait queue for pidfd notifications */
60 	wait_queue_head_t wait_pidfd;
61 	struct rcu_head rcu;
62 	struct upid numbers[];
63 };
64 
65 extern struct pid init_struct_pid;
66 
67 extern const struct file_operations pidfd_fops;
68 
69 struct file;
70 
71 extern struct pid *pidfd_pid(const struct file *file);
72 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags);
73 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags);
74 int pidfd_create(struct pid *pid, unsigned int flags);
75 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret);
76 
77 static inline struct pid *get_pid(struct pid *pid)
78 {
79 	if (pid)
80 		refcount_inc(&pid->count);
81 	return pid;
82 }
83 
84 extern void put_pid(struct pid *pid);
85 extern struct task_struct *pid_task(struct pid *pid, enum pid_type);
86 static inline bool pid_has_task(struct pid *pid, enum pid_type type)
87 {
88 	return !hlist_empty(&pid->tasks[type]);
89 }
90 extern struct task_struct *get_pid_task(struct pid *pid, enum pid_type);
91 
92 extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type);
93 
94 /*
95  * these helpers must be called with the tasklist_lock write-held.
96  */
97 extern void attach_pid(struct task_struct *task, enum pid_type);
98 extern void detach_pid(struct task_struct *task, enum pid_type);
99 extern void change_pid(struct task_struct *task, enum pid_type,
100 			struct pid *pid);
101 extern void exchange_tids(struct task_struct *task, struct task_struct *old);
102 extern void transfer_pid(struct task_struct *old, struct task_struct *new,
103 			 enum pid_type);
104 
105 extern int pid_max;
106 extern int pid_max_min, pid_max_max;
107 
108 /*
109  * look up a PID in the hash table. Must be called with the tasklist_lock
110  * or rcu_read_lock() held.
111  *
112  * find_pid_ns() finds the pid in the namespace specified
113  * find_vpid() finds the pid by its virtual id, i.e. in the current namespace
114  *
115  * see also find_task_by_vpid() set in include/linux/sched.h
116  */
117 extern struct pid *find_pid_ns(int nr, struct pid_namespace *ns);
118 extern struct pid *find_vpid(int nr);
119 
120 /*
121  * Lookup a PID in the hash table, and return with it's count elevated.
122  */
123 extern struct pid *find_get_pid(int nr);
124 extern struct pid *find_ge_pid(int nr, struct pid_namespace *);
125 
126 extern struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
127 			     size_t set_tid_size);
128 extern void free_pid(struct pid *pid);
129 extern void disable_pid_allocation(struct pid_namespace *ns);
130 
131 /*
132  * ns_of_pid() returns the pid namespace in which the specified pid was
133  * allocated.
134  *
135  * NOTE:
136  * 	ns_of_pid() is expected to be called for a process (task) that has
137  * 	an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid
138  * 	is expected to be non-NULL. If @pid is NULL, caller should handle
139  * 	the resulting NULL pid-ns.
140  */
141 static inline struct pid_namespace *ns_of_pid(struct pid *pid)
142 {
143 	struct pid_namespace *ns = NULL;
144 	if (pid)
145 		ns = pid->numbers[pid->level].ns;
146 	return ns;
147 }
148 
149 /*
150  * is_child_reaper returns true if the pid is the init process
151  * of the current namespace. As this one could be checked before
152  * pid_ns->child_reaper is assigned in copy_process, we check
153  * with the pid number.
154  */
155 static inline bool is_child_reaper(struct pid *pid)
156 {
157 	return pid->numbers[pid->level].nr == 1;
158 }
159 
160 /*
161  * the helpers to get the pid's id seen from different namespaces
162  *
163  * pid_nr()    : global id, i.e. the id seen from the init namespace;
164  * pid_vnr()   : virtual id, i.e. the id seen from the pid namespace of
165  *               current.
166  * pid_nr_ns() : id seen from the ns specified.
167  *
168  * see also task_xid_nr() etc in include/linux/sched.h
169  */
170 
171 static inline pid_t pid_nr(struct pid *pid)
172 {
173 	pid_t nr = 0;
174 	if (pid)
175 		nr = pid->numbers[0].nr;
176 	return nr;
177 }
178 
179 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns);
180 pid_t pid_vnr(struct pid *pid);
181 
182 #define do_each_pid_task(pid, type, task)				\
183 	do {								\
184 		if ((pid) != NULL)					\
185 			hlist_for_each_entry_rcu((task),		\
186 				&(pid)->tasks[type], pid_links[type]) {
187 
188 			/*
189 			 * Both old and new leaders may be attached to
190 			 * the same pid in the middle of de_thread().
191 			 */
192 #define while_each_pid_task(pid, type, task)				\
193 				if (type == PIDTYPE_PID)		\
194 					break;				\
195 			}						\
196 	} while (0)
197 
198 #define do_each_pid_thread(pid, type, task)				\
199 	do_each_pid_task(pid, type, task) {				\
200 		struct task_struct *tg___ = task;			\
201 		for_each_thread(tg___, task) {
202 
203 #define while_each_pid_thread(pid, type, task)				\
204 		}							\
205 		task = tg___;						\
206 	} while_each_pid_task(pid, type, task)
207 #endif /* _LINUX_PID_H */
208