xref: /linux-6.15/include/linux/pid.h (revision 4745dc8a)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PID_H
3 #define _LINUX_PID_H
4 
5 #include <linux/rculist.h>
6 #include <linux/wait.h>
7 
8 enum pid_type
9 {
10 	PIDTYPE_PID,
11 	PIDTYPE_TGID,
12 	PIDTYPE_PGID,
13 	PIDTYPE_SID,
14 	PIDTYPE_MAX,
15 };
16 
17 /*
18  * What is struct pid?
19  *
20  * A struct pid is the kernel's internal notion of a process identifier.
21  * It refers to individual tasks, process groups, and sessions.  While
22  * there are processes attached to it the struct pid lives in a hash
23  * table, so it and then the processes that it refers to can be found
24  * quickly from the numeric pid value.  The attached processes may be
25  * quickly accessed by following pointers from struct pid.
26  *
27  * Storing pid_t values in the kernel and referring to them later has a
28  * problem.  The process originally with that pid may have exited and the
29  * pid allocator wrapped, and another process could have come along
30  * and been assigned that pid.
31  *
32  * Referring to user space processes by holding a reference to struct
33  * task_struct has a problem.  When the user space process exits
34  * the now useless task_struct is still kept.  A task_struct plus a
35  * stack consumes around 10K of low kernel memory.  More precisely
36  * this is THREAD_SIZE + sizeof(struct task_struct).  By comparison
37  * a struct pid is about 64 bytes.
38  *
39  * Holding a reference to struct pid solves both of these problems.
40  * It is small so holding a reference does not consume a lot of
41  * resources, and since a new struct pid is allocated when the numeric pid
42  * value is reused (when pids wrap around) we don't mistakenly refer to new
43  * processes.
44  */
45 
46 
47 /*
48  * struct upid is used to get the id of the struct pid, as it is
49  * seen in particular namespace. Later the struct pid is found with
50  * find_pid_ns() using the int nr and struct pid_namespace *ns.
51  */
52 
53 struct upid {
54 	int nr;
55 	struct pid_namespace *ns;
56 };
57 
58 struct pid
59 {
60 	atomic_t count;
61 	unsigned int level;
62 	/* lists of tasks that use this pid */
63 	struct hlist_head tasks[PIDTYPE_MAX];
64 	/* wait queue for pidfd notifications */
65 	wait_queue_head_t wait_pidfd;
66 	struct rcu_head rcu;
67 	struct upid numbers[1];
68 };
69 
70 extern struct pid init_struct_pid;
71 
72 extern const struct file_operations pidfd_fops;
73 
74 static inline struct pid *get_pid(struct pid *pid)
75 {
76 	if (pid)
77 		atomic_inc(&pid->count);
78 	return pid;
79 }
80 
81 extern void put_pid(struct pid *pid);
82 extern struct task_struct *pid_task(struct pid *pid, enum pid_type);
83 extern struct task_struct *get_pid_task(struct pid *pid, enum pid_type);
84 
85 extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type);
86 
87 /*
88  * these helpers must be called with the tasklist_lock write-held.
89  */
90 extern void attach_pid(struct task_struct *task, enum pid_type);
91 extern void detach_pid(struct task_struct *task, enum pid_type);
92 extern void change_pid(struct task_struct *task, enum pid_type,
93 			struct pid *pid);
94 extern void transfer_pid(struct task_struct *old, struct task_struct *new,
95 			 enum pid_type);
96 
97 struct pid_namespace;
98 extern struct pid_namespace init_pid_ns;
99 
100 /*
101  * look up a PID in the hash table. Must be called with the tasklist_lock
102  * or rcu_read_lock() held.
103  *
104  * find_pid_ns() finds the pid in the namespace specified
105  * find_vpid() finds the pid by its virtual id, i.e. in the current namespace
106  *
107  * see also find_task_by_vpid() set in include/linux/sched.h
108  */
109 extern struct pid *find_pid_ns(int nr, struct pid_namespace *ns);
110 extern struct pid *find_vpid(int nr);
111 
112 /*
113  * Lookup a PID in the hash table, and return with it's count elevated.
114  */
115 extern struct pid *find_get_pid(int nr);
116 extern struct pid *find_ge_pid(int nr, struct pid_namespace *);
117 
118 extern struct pid *alloc_pid(struct pid_namespace *ns);
119 extern void free_pid(struct pid *pid);
120 extern void disable_pid_allocation(struct pid_namespace *ns);
121 
122 /*
123  * ns_of_pid() returns the pid namespace in which the specified pid was
124  * allocated.
125  *
126  * NOTE:
127  * 	ns_of_pid() is expected to be called for a process (task) that has
128  * 	an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid
129  * 	is expected to be non-NULL. If @pid is NULL, caller should handle
130  * 	the resulting NULL pid-ns.
131  */
132 static inline struct pid_namespace *ns_of_pid(struct pid *pid)
133 {
134 	struct pid_namespace *ns = NULL;
135 	if (pid)
136 		ns = pid->numbers[pid->level].ns;
137 	return ns;
138 }
139 
140 /*
141  * is_child_reaper returns true if the pid is the init process
142  * of the current namespace. As this one could be checked before
143  * pid_ns->child_reaper is assigned in copy_process, we check
144  * with the pid number.
145  */
146 static inline bool is_child_reaper(struct pid *pid)
147 {
148 	return pid->numbers[pid->level].nr == 1;
149 }
150 
151 /*
152  * the helpers to get the pid's id seen from different namespaces
153  *
154  * pid_nr()    : global id, i.e. the id seen from the init namespace;
155  * pid_vnr()   : virtual id, i.e. the id seen from the pid namespace of
156  *               current.
157  * pid_nr_ns() : id seen from the ns specified.
158  *
159  * see also task_xid_nr() etc in include/linux/sched.h
160  */
161 
162 static inline pid_t pid_nr(struct pid *pid)
163 {
164 	pid_t nr = 0;
165 	if (pid)
166 		nr = pid->numbers[0].nr;
167 	return nr;
168 }
169 
170 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns);
171 pid_t pid_vnr(struct pid *pid);
172 
173 #define do_each_pid_task(pid, type, task)				\
174 	do {								\
175 		if ((pid) != NULL)					\
176 			hlist_for_each_entry_rcu((task),		\
177 				&(pid)->tasks[type], pid_links[type]) {
178 
179 			/*
180 			 * Both old and new leaders may be attached to
181 			 * the same pid in the middle of de_thread().
182 			 */
183 #define while_each_pid_task(pid, type, task)				\
184 				if (type == PIDTYPE_PID)		\
185 					break;				\
186 			}						\
187 	} while (0)
188 
189 #define do_each_pid_thread(pid, type, task)				\
190 	do_each_pid_task(pid, type, task) {				\
191 		struct task_struct *tg___ = task;			\
192 		for_each_thread(tg___, task) {
193 
194 #define while_each_pid_thread(pid, type, task)				\
195 		}							\
196 		task = tg___;						\
197 	} while_each_pid_task(pid, type, task)
198 #endif /* _LINUX_PID_H */
199