xref: /linux-6.15/include/linux/pid.h (revision 2b8232ce)
1 #ifndef _LINUX_PID_H
2 #define _LINUX_PID_H
3 
4 #include <linux/rcupdate.h>
5 
6 enum pid_type
7 {
8 	PIDTYPE_PID,
9 	PIDTYPE_PGID,
10 	PIDTYPE_SID,
11 	PIDTYPE_MAX
12 };
13 
14 /*
15  * What is struct pid?
16  *
17  * A struct pid is the kernel's internal notion of a process identifier.
18  * It refers to individual tasks, process groups, and sessions.  While
19  * there are processes attached to it the struct pid lives in a hash
20  * table, so it and then the processes that it refers to can be found
21  * quickly from the numeric pid value.  The attached processes may be
22  * quickly accessed by following pointers from struct pid.
23  *
24  * Storing pid_t values in the kernel and refering to them later has a
25  * problem.  The process originally with that pid may have exited and the
26  * pid allocator wrapped, and another process could have come along
27  * and been assigned that pid.
28  *
29  * Referring to user space processes by holding a reference to struct
30  * task_struct has a problem.  When the user space process exits
31  * the now useless task_struct is still kept.  A task_struct plus a
32  * stack consumes around 10K of low kernel memory.  More precisely
33  * this is THREAD_SIZE + sizeof(struct task_struct).  By comparison
34  * a struct pid is about 64 bytes.
35  *
36  * Holding a reference to struct pid solves both of these problems.
37  * It is small so holding a reference does not consume a lot of
38  * resources, and since a new struct pid is allocated when the numeric pid
39  * value is reused (when pids wrap around) we don't mistakenly refer to new
40  * processes.
41  */
42 
43 struct pid
44 {
45 	atomic_t count;
46 	/* Try to keep pid_chain in the same cacheline as nr for find_pid */
47 	int nr;
48 	struct hlist_node pid_chain;
49 	/* lists of tasks that use this pid */
50 	struct hlist_head tasks[PIDTYPE_MAX];
51 	struct rcu_head rcu;
52 };
53 
54 extern struct pid init_struct_pid;
55 
56 struct pid_link
57 {
58 	struct hlist_node node;
59 	struct pid *pid;
60 };
61 
62 static inline struct pid *get_pid(struct pid *pid)
63 {
64 	if (pid)
65 		atomic_inc(&pid->count);
66 	return pid;
67 }
68 
69 extern void FASTCALL(put_pid(struct pid *pid));
70 extern struct task_struct *FASTCALL(pid_task(struct pid *pid, enum pid_type));
71 extern struct task_struct *FASTCALL(get_pid_task(struct pid *pid,
72 						enum pid_type));
73 
74 extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type);
75 
76 /*
77  * attach_pid() and detach_pid() must be called with the tasklist_lock
78  * write-held.
79  */
80 extern int FASTCALL(attach_pid(struct task_struct *task,
81 				enum pid_type type, struct pid *pid));
82 extern void FASTCALL(detach_pid(struct task_struct *task, enum pid_type));
83 extern void FASTCALL(transfer_pid(struct task_struct *old,
84 				  struct task_struct *new, enum pid_type));
85 
86 /*
87  * look up a PID in the hash table. Must be called with the tasklist_lock
88  * or rcu_read_lock() held.
89  */
90 extern struct pid *FASTCALL(find_pid(int nr));
91 
92 /*
93  * Lookup a PID in the hash table, and return with it's count elevated.
94  */
95 extern struct pid *find_get_pid(int nr);
96 extern struct pid *find_ge_pid(int nr);
97 
98 extern struct pid *alloc_pid(void);
99 extern void FASTCALL(free_pid(struct pid *pid));
100 
101 static inline pid_t pid_nr(struct pid *pid)
102 {
103 	pid_t nr = 0;
104 	if (pid)
105 		nr = pid->nr;
106 	return nr;
107 }
108 
109 #define do_each_pid_task(pid, type, task)				\
110 	do {								\
111 		struct hlist_node *pos___;				\
112 		if (pid != NULL)					\
113 			hlist_for_each_entry_rcu((task), pos___,	\
114 				&pid->tasks[type], pids[type].node) {
115 
116 #define while_each_pid_task(pid, type, task)				\
117 			}						\
118 	} while (0)
119 
120 #endif /* _LINUX_PID_H */
121