xref: /linux-6.15/include/linux/pid.h (revision 16ecd47c)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PID_H
3 #define _LINUX_PID_H
4 
5 #include <linux/pid_types.h>
6 #include <linux/rculist.h>
7 #include <linux/rcupdate.h>
8 #include <linux/refcount.h>
9 #include <linux/sched.h>
10 #include <linux/wait.h>
11 
12 /*
13  * What is struct pid?
14  *
15  * A struct pid is the kernel's internal notion of a process identifier.
16  * It refers to individual tasks, process groups, and sessions.  While
17  * there are processes attached to it the struct pid lives in a hash
18  * table, so it and then the processes that it refers to can be found
19  * quickly from the numeric pid value.  The attached processes may be
20  * quickly accessed by following pointers from struct pid.
21  *
22  * Storing pid_t values in the kernel and referring to them later has a
23  * problem.  The process originally with that pid may have exited and the
24  * pid allocator wrapped, and another process could have come along
25  * and been assigned that pid.
26  *
27  * Referring to user space processes by holding a reference to struct
28  * task_struct has a problem.  When the user space process exits
29  * the now useless task_struct is still kept.  A task_struct plus a
30  * stack consumes around 10K of low kernel memory.  More precisely
31  * this is THREAD_SIZE + sizeof(struct task_struct).  By comparison
32  * a struct pid is about 64 bytes.
33  *
34  * Holding a reference to struct pid solves both of these problems.
35  * It is small so holding a reference does not consume a lot of
36  * resources, and since a new struct pid is allocated when the numeric pid
37  * value is reused (when pids wrap around) we don't mistakenly refer to new
38  * processes.
39  */
40 
41 
42 /*
43  * struct upid is used to get the id of the struct pid, as it is
44  * seen in particular namespace. Later the struct pid is found with
45  * find_pid_ns() using the int nr and struct pid_namespace *ns.
46  */
47 
48 #define RESERVED_PIDS 300
49 
50 struct upid {
51 	int nr;
52 	struct pid_namespace *ns;
53 };
54 
55 struct pid
56 {
57 	refcount_t count;
58 	unsigned int level;
59 	spinlock_t lock;
60 	struct dentry *stashed;
61 	u64 ino;
62 	struct rb_node pidfs_node;
63 	/* lists of tasks that use this pid */
64 	struct hlist_head tasks[PIDTYPE_MAX];
65 	struct hlist_head inodes;
66 	/* wait queue for pidfd notifications */
67 	wait_queue_head_t wait_pidfd;
68 	struct rcu_head rcu;
69 	struct upid numbers[];
70 };
71 
72 extern seqcount_spinlock_t pidmap_lock_seq;
73 extern struct pid init_struct_pid;
74 
75 struct file;
76 
77 struct pid *pidfd_pid(const struct file *file);
78 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags);
79 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags);
80 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret);
81 void do_notify_pidfd(struct task_struct *task);
82 
83 static inline struct pid *get_pid(struct pid *pid)
84 {
85 	if (pid)
86 		refcount_inc(&pid->count);
87 	return pid;
88 }
89 
90 extern void put_pid(struct pid *pid);
91 extern struct task_struct *pid_task(struct pid *pid, enum pid_type);
92 static inline bool pid_has_task(struct pid *pid, enum pid_type type)
93 {
94 	return !hlist_empty(&pid->tasks[type]);
95 }
96 extern struct task_struct *get_pid_task(struct pid *pid, enum pid_type);
97 
98 extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type);
99 
100 /*
101  * these helpers must be called with the tasklist_lock write-held.
102  */
103 extern void attach_pid(struct task_struct *task, enum pid_type);
104 extern void detach_pid(struct task_struct *task, enum pid_type);
105 extern void change_pid(struct task_struct *task, enum pid_type,
106 			struct pid *pid);
107 extern void exchange_tids(struct task_struct *task, struct task_struct *old);
108 extern void transfer_pid(struct task_struct *old, struct task_struct *new,
109 			 enum pid_type);
110 
111 extern int pid_max;
112 extern int pid_max_min, pid_max_max;
113 
114 /*
115  * look up a PID in the hash table. Must be called with the tasklist_lock
116  * or rcu_read_lock() held.
117  *
118  * find_pid_ns() finds the pid in the namespace specified
119  * find_vpid() finds the pid by its virtual id, i.e. in the current namespace
120  *
121  * see also find_task_by_vpid() set in include/linux/sched.h
122  */
123 extern struct pid *find_pid_ns(int nr, struct pid_namespace *ns);
124 extern struct pid *find_vpid(int nr);
125 
126 /*
127  * Lookup a PID in the hash table, and return with it's count elevated.
128  */
129 extern struct pid *find_get_pid(int nr);
130 extern struct pid *find_ge_pid(int nr, struct pid_namespace *);
131 
132 extern struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
133 			     size_t set_tid_size);
134 extern void free_pid(struct pid *pid);
135 extern void disable_pid_allocation(struct pid_namespace *ns);
136 
137 /*
138  * ns_of_pid() returns the pid namespace in which the specified pid was
139  * allocated.
140  *
141  * NOTE:
142  * 	ns_of_pid() is expected to be called for a process (task) that has
143  * 	an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid
144  * 	is expected to be non-NULL. If @pid is NULL, caller should handle
145  * 	the resulting NULL pid-ns.
146  */
147 static inline struct pid_namespace *ns_of_pid(struct pid *pid)
148 {
149 	struct pid_namespace *ns = NULL;
150 	if (pid)
151 		ns = pid->numbers[pid->level].ns;
152 	return ns;
153 }
154 
155 /*
156  * is_child_reaper returns true if the pid is the init process
157  * of the current namespace. As this one could be checked before
158  * pid_ns->child_reaper is assigned in copy_process, we check
159  * with the pid number.
160  */
161 static inline bool is_child_reaper(struct pid *pid)
162 {
163 	return pid->numbers[pid->level].nr == 1;
164 }
165 
166 /*
167  * the helpers to get the pid's id seen from different namespaces
168  *
169  * pid_nr()    : global id, i.e. the id seen from the init namespace;
170  * pid_vnr()   : virtual id, i.e. the id seen from the pid namespace of
171  *               current.
172  * pid_nr_ns() : id seen from the ns specified.
173  *
174  * see also task_xid_nr() etc in include/linux/sched.h
175  */
176 
177 static inline pid_t pid_nr(struct pid *pid)
178 {
179 	pid_t nr = 0;
180 	if (pid)
181 		nr = pid->numbers[0].nr;
182 	return nr;
183 }
184 
185 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns);
186 pid_t pid_vnr(struct pid *pid);
187 
188 #define do_each_pid_task(pid, type, task)				\
189 	do {								\
190 		if ((pid) != NULL)					\
191 			hlist_for_each_entry_rcu((task),		\
192 				&(pid)->tasks[type], pid_links[type]) {
193 
194 			/*
195 			 * Both old and new leaders may be attached to
196 			 * the same pid in the middle of de_thread().
197 			 */
198 #define while_each_pid_task(pid, type, task)				\
199 				if (type == PIDTYPE_PID)		\
200 					break;				\
201 			}						\
202 	} while (0)
203 
204 #define do_each_pid_thread(pid, type, task)				\
205 	do_each_pid_task(pid, type, task) {				\
206 		struct task_struct *tg___ = task;			\
207 		for_each_thread(tg___, task) {
208 
209 #define while_each_pid_thread(pid, type, task)				\
210 		}							\
211 		task = tg___;						\
212 	} while_each_pid_task(pid, type, task)
213 
214 static inline struct pid *task_pid(struct task_struct *task)
215 {
216 	return task->thread_pid;
217 }
218 
219 /*
220  * the helpers to get the task's different pids as they are seen
221  * from various namespaces
222  *
223  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
224  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
225  *                     current.
226  * task_xid_nr_ns()  : id seen from the ns specified;
227  *
228  * see also pid_nr() etc in include/linux/pid.h
229  */
230 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
231 
232 static inline pid_t task_pid_nr(struct task_struct *tsk)
233 {
234 	return tsk->pid;
235 }
236 
237 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
238 {
239 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
240 }
241 
242 static inline pid_t task_pid_vnr(struct task_struct *tsk)
243 {
244 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
245 }
246 
247 
248 static inline pid_t task_tgid_nr(struct task_struct *tsk)
249 {
250 	return tsk->tgid;
251 }
252 
253 /**
254  * pid_alive - check that a task structure is not stale
255  * @p: Task structure to be checked.
256  *
257  * Test if a process is not yet dead (at most zombie state)
258  * If pid_alive fails, then pointers within the task structure
259  * can be stale and must not be dereferenced.
260  *
261  * Return: 1 if the process is alive. 0 otherwise.
262  */
263 static inline int pid_alive(const struct task_struct *p)
264 {
265 	return p->thread_pid != NULL;
266 }
267 
268 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
269 {
270 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
271 }
272 
273 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
274 {
275 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
276 }
277 
278 
279 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
280 {
281 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
282 }
283 
284 static inline pid_t task_session_vnr(struct task_struct *tsk)
285 {
286 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
287 }
288 
289 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
290 {
291 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
292 }
293 
294 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
295 {
296 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
297 }
298 
299 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
300 {
301 	pid_t pid = 0;
302 
303 	rcu_read_lock();
304 	if (pid_alive(tsk))
305 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
306 	rcu_read_unlock();
307 
308 	return pid;
309 }
310 
311 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
312 {
313 	return task_ppid_nr_ns(tsk, &init_pid_ns);
314 }
315 
316 /* Obsolete, do not use: */
317 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
318 {
319 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
320 }
321 
322 /**
323  * is_global_init - check if a task structure is init. Since init
324  * is free to have sub-threads we need to check tgid.
325  * @tsk: Task structure to be checked.
326  *
327  * Check if a task structure is the first user space task the kernel created.
328  *
329  * Return: 1 if the task structure is init. 0 otherwise.
330  */
331 static inline int is_global_init(struct task_struct *tsk)
332 {
333 	return task_tgid_nr(tsk) == 1;
334 }
335 
336 #endif /* _LINUX_PID_H */
337