xref: /linux-6.15/include/linux/pgtable.h (revision f9bff0e3)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PGTABLE_H
3 #define _LINUX_PGTABLE_H
4 
5 #include <linux/pfn.h>
6 #include <asm/pgtable.h>
7 
8 #ifndef __ASSEMBLY__
9 #ifdef CONFIG_MMU
10 
11 #include <linux/mm_types.h>
12 #include <linux/bug.h>
13 #include <linux/errno.h>
14 #include <asm-generic/pgtable_uffd.h>
15 #include <linux/page_table_check.h>
16 
17 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
18 	defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
19 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
20 #endif
21 
22 /*
23  * On almost all architectures and configurations, 0 can be used as the
24  * upper ceiling to free_pgtables(): on many architectures it has the same
25  * effect as using TASK_SIZE.  However, there is one configuration which
26  * must impose a more careful limit, to avoid freeing kernel pgtables.
27  */
28 #ifndef USER_PGTABLES_CEILING
29 #define USER_PGTABLES_CEILING	0UL
30 #endif
31 
32 /*
33  * This defines the first usable user address. Platforms
34  * can override its value with custom FIRST_USER_ADDRESS
35  * defined in their respective <asm/pgtable.h>.
36  */
37 #ifndef FIRST_USER_ADDRESS
38 #define FIRST_USER_ADDRESS	0UL
39 #endif
40 
41 /*
42  * This defines the generic helper for accessing PMD page
43  * table page. Although platforms can still override this
44  * via their respective <asm/pgtable.h>.
45  */
46 #ifndef pmd_pgtable
47 #define pmd_pgtable(pmd) pmd_page(pmd)
48 #endif
49 
50 /*
51  * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
52  *
53  * The pXx_index() functions return the index of the entry in the page
54  * table page which would control the given virtual address
55  *
56  * As these functions may be used by the same code for different levels of
57  * the page table folding, they are always available, regardless of
58  * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
59  * because in such cases PTRS_PER_PxD equals 1.
60  */
61 
62 static inline unsigned long pte_index(unsigned long address)
63 {
64 	return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
65 }
66 #define pte_index pte_index
67 
68 #ifndef pmd_index
69 static inline unsigned long pmd_index(unsigned long address)
70 {
71 	return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
72 }
73 #define pmd_index pmd_index
74 #endif
75 
76 #ifndef pud_index
77 static inline unsigned long pud_index(unsigned long address)
78 {
79 	return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
80 }
81 #define pud_index pud_index
82 #endif
83 
84 #ifndef pgd_index
85 /* Must be a compile-time constant, so implement it as a macro */
86 #define pgd_index(a)  (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
87 #endif
88 
89 #ifndef pte_offset_kernel
90 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
91 {
92 	return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
93 }
94 #define pte_offset_kernel pte_offset_kernel
95 #endif
96 
97 #ifdef CONFIG_HIGHPTE
98 #define __pte_map(pmd, address) \
99 	((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address)))
100 #define pte_unmap(pte)	do {	\
101 	kunmap_local((pte));	\
102 	rcu_read_unlock();	\
103 } while (0)
104 #else
105 static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address)
106 {
107 	return pte_offset_kernel(pmd, address);
108 }
109 static inline void pte_unmap(pte_t *pte)
110 {
111 	rcu_read_unlock();
112 }
113 #endif
114 
115 void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable);
116 
117 /* Find an entry in the second-level page table.. */
118 #ifndef pmd_offset
119 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
120 {
121 	return pud_pgtable(*pud) + pmd_index(address);
122 }
123 #define pmd_offset pmd_offset
124 #endif
125 
126 #ifndef pud_offset
127 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
128 {
129 	return p4d_pgtable(*p4d) + pud_index(address);
130 }
131 #define pud_offset pud_offset
132 #endif
133 
134 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
135 {
136 	return (pgd + pgd_index(address));
137 };
138 
139 /*
140  * a shortcut to get a pgd_t in a given mm
141  */
142 #ifndef pgd_offset
143 #define pgd_offset(mm, address)		pgd_offset_pgd((mm)->pgd, (address))
144 #endif
145 
146 /*
147  * a shortcut which implies the use of the kernel's pgd, instead
148  * of a process's
149  */
150 #ifndef pgd_offset_k
151 #define pgd_offset_k(address)		pgd_offset(&init_mm, (address))
152 #endif
153 
154 /*
155  * In many cases it is known that a virtual address is mapped at PMD or PTE
156  * level, so instead of traversing all the page table levels, we can get a
157  * pointer to the PMD entry in user or kernel page table or translate a virtual
158  * address to the pointer in the PTE in the kernel page tables with simple
159  * helpers.
160  */
161 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
162 {
163 	return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
164 }
165 
166 static inline pmd_t *pmd_off_k(unsigned long va)
167 {
168 	return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
169 }
170 
171 static inline pte_t *virt_to_kpte(unsigned long vaddr)
172 {
173 	pmd_t *pmd = pmd_off_k(vaddr);
174 
175 	return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
176 }
177 
178 #ifndef pmd_young
179 static inline int pmd_young(pmd_t pmd)
180 {
181 	return 0;
182 }
183 #endif
184 
185 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
186 extern int ptep_set_access_flags(struct vm_area_struct *vma,
187 				 unsigned long address, pte_t *ptep,
188 				 pte_t entry, int dirty);
189 #endif
190 
191 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
192 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
193 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
194 				 unsigned long address, pmd_t *pmdp,
195 				 pmd_t entry, int dirty);
196 extern int pudp_set_access_flags(struct vm_area_struct *vma,
197 				 unsigned long address, pud_t *pudp,
198 				 pud_t entry, int dirty);
199 #else
200 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
201 					unsigned long address, pmd_t *pmdp,
202 					pmd_t entry, int dirty)
203 {
204 	BUILD_BUG();
205 	return 0;
206 }
207 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
208 					unsigned long address, pud_t *pudp,
209 					pud_t entry, int dirty)
210 {
211 	BUILD_BUG();
212 	return 0;
213 }
214 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
215 #endif
216 
217 #ifndef ptep_get
218 static inline pte_t ptep_get(pte_t *ptep)
219 {
220 	return READ_ONCE(*ptep);
221 }
222 #endif
223 
224 #ifndef pmdp_get
225 static inline pmd_t pmdp_get(pmd_t *pmdp)
226 {
227 	return READ_ONCE(*pmdp);
228 }
229 #endif
230 
231 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
232 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
233 					    unsigned long address,
234 					    pte_t *ptep)
235 {
236 	pte_t pte = ptep_get(ptep);
237 	int r = 1;
238 	if (!pte_young(pte))
239 		r = 0;
240 	else
241 		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
242 	return r;
243 }
244 #endif
245 
246 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
247 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
248 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
249 					    unsigned long address,
250 					    pmd_t *pmdp)
251 {
252 	pmd_t pmd = *pmdp;
253 	int r = 1;
254 	if (!pmd_young(pmd))
255 		r = 0;
256 	else
257 		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
258 	return r;
259 }
260 #else
261 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
262 					    unsigned long address,
263 					    pmd_t *pmdp)
264 {
265 	BUILD_BUG();
266 	return 0;
267 }
268 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
269 #endif
270 
271 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
272 int ptep_clear_flush_young(struct vm_area_struct *vma,
273 			   unsigned long address, pte_t *ptep);
274 #endif
275 
276 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
277 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
278 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
279 				  unsigned long address, pmd_t *pmdp);
280 #else
281 /*
282  * Despite relevant to THP only, this API is called from generic rmap code
283  * under PageTransHuge(), hence needs a dummy implementation for !THP
284  */
285 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
286 					 unsigned long address, pmd_t *pmdp)
287 {
288 	BUILD_BUG();
289 	return 0;
290 }
291 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
292 #endif
293 
294 #ifndef arch_has_hw_nonleaf_pmd_young
295 /*
296  * Return whether the accessed bit in non-leaf PMD entries is supported on the
297  * local CPU.
298  */
299 static inline bool arch_has_hw_nonleaf_pmd_young(void)
300 {
301 	return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
302 }
303 #endif
304 
305 #ifndef arch_has_hw_pte_young
306 /*
307  * Return whether the accessed bit is supported on the local CPU.
308  *
309  * This stub assumes accessing through an old PTE triggers a page fault.
310  * Architectures that automatically set the access bit should overwrite it.
311  */
312 static inline bool arch_has_hw_pte_young(void)
313 {
314 	return false;
315 }
316 #endif
317 
318 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
319 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
320 				       unsigned long address,
321 				       pte_t *ptep)
322 {
323 	pte_t pte = ptep_get(ptep);
324 	pte_clear(mm, address, ptep);
325 	page_table_check_pte_clear(mm, pte);
326 	return pte;
327 }
328 #endif
329 
330 static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
331 			      pte_t *ptep)
332 {
333 	ptep_get_and_clear(mm, addr, ptep);
334 }
335 
336 #ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
337 /*
338  * For walking the pagetables without holding any locks.  Some architectures
339  * (eg x86-32 PAE) cannot load the entries atomically without using expensive
340  * instructions.  We are guaranteed that a PTE will only either go from not
341  * present to present, or present to not present -- it will not switch to a
342  * completely different present page without a TLB flush inbetween; which we
343  * are blocking by holding interrupts off.
344  *
345  * Setting ptes from not present to present goes:
346  *
347  *   ptep->pte_high = h;
348  *   smp_wmb();
349  *   ptep->pte_low = l;
350  *
351  * And present to not present goes:
352  *
353  *   ptep->pte_low = 0;
354  *   smp_wmb();
355  *   ptep->pte_high = 0;
356  *
357  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
358  * We load pte_high *after* loading pte_low, which ensures we don't see an older
359  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
360  * picked up a changed pte high. We might have gotten rubbish values from
361  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
362  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
363  * operates on present ptes we're safe.
364  */
365 static inline pte_t ptep_get_lockless(pte_t *ptep)
366 {
367 	pte_t pte;
368 
369 	do {
370 		pte.pte_low = ptep->pte_low;
371 		smp_rmb();
372 		pte.pte_high = ptep->pte_high;
373 		smp_rmb();
374 	} while (unlikely(pte.pte_low != ptep->pte_low));
375 
376 	return pte;
377 }
378 #define ptep_get_lockless ptep_get_lockless
379 
380 #if CONFIG_PGTABLE_LEVELS > 2
381 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
382 {
383 	pmd_t pmd;
384 
385 	do {
386 		pmd.pmd_low = pmdp->pmd_low;
387 		smp_rmb();
388 		pmd.pmd_high = pmdp->pmd_high;
389 		smp_rmb();
390 	} while (unlikely(pmd.pmd_low != pmdp->pmd_low));
391 
392 	return pmd;
393 }
394 #define pmdp_get_lockless pmdp_get_lockless
395 #define pmdp_get_lockless_sync() tlb_remove_table_sync_one()
396 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
397 #endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
398 
399 /*
400  * We require that the PTE can be read atomically.
401  */
402 #ifndef ptep_get_lockless
403 static inline pte_t ptep_get_lockless(pte_t *ptep)
404 {
405 	return ptep_get(ptep);
406 }
407 #endif
408 
409 #ifndef pmdp_get_lockless
410 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
411 {
412 	return pmdp_get(pmdp);
413 }
414 static inline void pmdp_get_lockless_sync(void)
415 {
416 }
417 #endif
418 
419 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
420 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
421 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
422 					    unsigned long address,
423 					    pmd_t *pmdp)
424 {
425 	pmd_t pmd = *pmdp;
426 
427 	pmd_clear(pmdp);
428 	page_table_check_pmd_clear(mm, pmd);
429 
430 	return pmd;
431 }
432 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
433 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
434 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
435 					    unsigned long address,
436 					    pud_t *pudp)
437 {
438 	pud_t pud = *pudp;
439 
440 	pud_clear(pudp);
441 	page_table_check_pud_clear(mm, pud);
442 
443 	return pud;
444 }
445 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
446 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
447 
448 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
449 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
450 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
451 					    unsigned long address, pmd_t *pmdp,
452 					    int full)
453 {
454 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
455 }
456 #endif
457 
458 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
459 static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
460 					    unsigned long address, pud_t *pudp,
461 					    int full)
462 {
463 	return pudp_huge_get_and_clear(vma->vm_mm, address, pudp);
464 }
465 #endif
466 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
467 
468 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
469 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
470 					    unsigned long address, pte_t *ptep,
471 					    int full)
472 {
473 	return ptep_get_and_clear(mm, address, ptep);
474 }
475 #endif
476 
477 
478 /*
479  * If two threads concurrently fault at the same page, the thread that
480  * won the race updates the PTE and its local TLB/Cache. The other thread
481  * gives up, simply does nothing, and continues; on architectures where
482  * software can update TLB,  local TLB can be updated here to avoid next page
483  * fault. This function updates TLB only, do nothing with cache or others.
484  * It is the difference with function update_mmu_cache.
485  */
486 #ifndef __HAVE_ARCH_UPDATE_MMU_TLB
487 static inline void update_mmu_tlb(struct vm_area_struct *vma,
488 				unsigned long address, pte_t *ptep)
489 {
490 }
491 #define __HAVE_ARCH_UPDATE_MMU_TLB
492 #endif
493 
494 /*
495  * Some architectures may be able to avoid expensive synchronization
496  * primitives when modifications are made to PTE's which are already
497  * not present, or in the process of an address space destruction.
498  */
499 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
500 static inline void pte_clear_not_present_full(struct mm_struct *mm,
501 					      unsigned long address,
502 					      pte_t *ptep,
503 					      int full)
504 {
505 	pte_clear(mm, address, ptep);
506 }
507 #endif
508 
509 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
510 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
511 			      unsigned long address,
512 			      pte_t *ptep);
513 #endif
514 
515 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
516 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
517 			      unsigned long address,
518 			      pmd_t *pmdp);
519 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
520 			      unsigned long address,
521 			      pud_t *pudp);
522 #endif
523 
524 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
525 struct mm_struct;
526 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
527 {
528 	pte_t old_pte = ptep_get(ptep);
529 	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
530 }
531 #endif
532 
533 /*
534  * On some architectures hardware does not set page access bit when accessing
535  * memory page, it is responsibility of software setting this bit. It brings
536  * out extra page fault penalty to track page access bit. For optimization page
537  * access bit can be set during all page fault flow on these arches.
538  * To be differentiate with macro pte_mkyoung, this macro is used on platforms
539  * where software maintains page access bit.
540  */
541 #ifndef pte_sw_mkyoung
542 static inline pte_t pte_sw_mkyoung(pte_t pte)
543 {
544 	return pte;
545 }
546 #define pte_sw_mkyoung	pte_sw_mkyoung
547 #endif
548 
549 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
550 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
551 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
552 				      unsigned long address, pmd_t *pmdp)
553 {
554 	pmd_t old_pmd = *pmdp;
555 	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
556 }
557 #else
558 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
559 				      unsigned long address, pmd_t *pmdp)
560 {
561 	BUILD_BUG();
562 }
563 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
564 #endif
565 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
566 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
567 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
568 static inline void pudp_set_wrprotect(struct mm_struct *mm,
569 				      unsigned long address, pud_t *pudp)
570 {
571 	pud_t old_pud = *pudp;
572 
573 	set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
574 }
575 #else
576 static inline void pudp_set_wrprotect(struct mm_struct *mm,
577 				      unsigned long address, pud_t *pudp)
578 {
579 	BUILD_BUG();
580 }
581 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
582 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
583 #endif
584 
585 #ifndef pmdp_collapse_flush
586 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
587 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
588 				 unsigned long address, pmd_t *pmdp);
589 #else
590 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
591 					unsigned long address,
592 					pmd_t *pmdp)
593 {
594 	BUILD_BUG();
595 	return *pmdp;
596 }
597 #define pmdp_collapse_flush pmdp_collapse_flush
598 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
599 #endif
600 
601 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
602 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
603 				       pgtable_t pgtable);
604 #endif
605 
606 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
607 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
608 #endif
609 
610 #ifndef arch_needs_pgtable_deposit
611 #define arch_needs_pgtable_deposit() (false)
612 #endif
613 
614 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
615 /*
616  * This is an implementation of pmdp_establish() that is only suitable for an
617  * architecture that doesn't have hardware dirty/accessed bits. In this case we
618  * can't race with CPU which sets these bits and non-atomic approach is fine.
619  */
620 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
621 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
622 {
623 	pmd_t old_pmd = *pmdp;
624 	set_pmd_at(vma->vm_mm, address, pmdp, pmd);
625 	return old_pmd;
626 }
627 #endif
628 
629 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
630 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
631 			    pmd_t *pmdp);
632 #endif
633 
634 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
635 
636 /*
637  * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
638  * hugepage mapping in the page tables. This function is similar to
639  * pmdp_invalidate(), but should only be used if the access and dirty bits would
640  * not be cleared by the software in the new PMD value. The function ensures
641  * that hardware changes of the access and dirty bits updates would not be lost.
642  *
643  * Doing so can allow in certain architectures to avoid a TLB flush in most
644  * cases. Yet, another TLB flush might be necessary later if the PMD update
645  * itself requires such flush (e.g., if protection was set to be stricter). Yet,
646  * even when a TLB flush is needed because of the update, the caller may be able
647  * to batch these TLB flushing operations, so fewer TLB flush operations are
648  * needed.
649  */
650 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
651 				unsigned long address, pmd_t *pmdp);
652 #endif
653 
654 #ifndef __HAVE_ARCH_PTE_SAME
655 static inline int pte_same(pte_t pte_a, pte_t pte_b)
656 {
657 	return pte_val(pte_a) == pte_val(pte_b);
658 }
659 #endif
660 
661 #ifndef __HAVE_ARCH_PTE_UNUSED
662 /*
663  * Some architectures provide facilities to virtualization guests
664  * so that they can flag allocated pages as unused. This allows the
665  * host to transparently reclaim unused pages. This function returns
666  * whether the pte's page is unused.
667  */
668 static inline int pte_unused(pte_t pte)
669 {
670 	return 0;
671 }
672 #endif
673 
674 #ifndef pte_access_permitted
675 #define pte_access_permitted(pte, write) \
676 	(pte_present(pte) && (!(write) || pte_write(pte)))
677 #endif
678 
679 #ifndef pmd_access_permitted
680 #define pmd_access_permitted(pmd, write) \
681 	(pmd_present(pmd) && (!(write) || pmd_write(pmd)))
682 #endif
683 
684 #ifndef pud_access_permitted
685 #define pud_access_permitted(pud, write) \
686 	(pud_present(pud) && (!(write) || pud_write(pud)))
687 #endif
688 
689 #ifndef p4d_access_permitted
690 #define p4d_access_permitted(p4d, write) \
691 	(p4d_present(p4d) && (!(write) || p4d_write(p4d)))
692 #endif
693 
694 #ifndef pgd_access_permitted
695 #define pgd_access_permitted(pgd, write) \
696 	(pgd_present(pgd) && (!(write) || pgd_write(pgd)))
697 #endif
698 
699 #ifndef __HAVE_ARCH_PMD_SAME
700 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
701 {
702 	return pmd_val(pmd_a) == pmd_val(pmd_b);
703 }
704 #endif
705 
706 #ifndef pud_same
707 static inline int pud_same(pud_t pud_a, pud_t pud_b)
708 {
709 	return pud_val(pud_a) == pud_val(pud_b);
710 }
711 #define pud_same pud_same
712 #endif
713 
714 #ifndef __HAVE_ARCH_P4D_SAME
715 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
716 {
717 	return p4d_val(p4d_a) == p4d_val(p4d_b);
718 }
719 #endif
720 
721 #ifndef __HAVE_ARCH_PGD_SAME
722 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
723 {
724 	return pgd_val(pgd_a) == pgd_val(pgd_b);
725 }
726 #endif
727 
728 /*
729  * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
730  * TLB flush will be required as a result of the "set". For example, use
731  * in scenarios where it is known ahead of time that the routine is
732  * setting non-present entries, or re-setting an existing entry to the
733  * same value. Otherwise, use the typical "set" helpers and flush the
734  * TLB.
735  */
736 #define set_pte_safe(ptep, pte) \
737 ({ \
738 	WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
739 	set_pte(ptep, pte); \
740 })
741 
742 #define set_pmd_safe(pmdp, pmd) \
743 ({ \
744 	WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
745 	set_pmd(pmdp, pmd); \
746 })
747 
748 #define set_pud_safe(pudp, pud) \
749 ({ \
750 	WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
751 	set_pud(pudp, pud); \
752 })
753 
754 #define set_p4d_safe(p4dp, p4d) \
755 ({ \
756 	WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
757 	set_p4d(p4dp, p4d); \
758 })
759 
760 #define set_pgd_safe(pgdp, pgd) \
761 ({ \
762 	WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
763 	set_pgd(pgdp, pgd); \
764 })
765 
766 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
767 /*
768  * Some architectures support metadata associated with a page. When a
769  * page is being swapped out, this metadata must be saved so it can be
770  * restored when the page is swapped back in. SPARC M7 and newer
771  * processors support an ADI (Application Data Integrity) tag for the
772  * page as metadata for the page. arch_do_swap_page() can restore this
773  * metadata when a page is swapped back in.
774  */
775 static inline void arch_do_swap_page(struct mm_struct *mm,
776 				     struct vm_area_struct *vma,
777 				     unsigned long addr,
778 				     pte_t pte, pte_t oldpte)
779 {
780 
781 }
782 #endif
783 
784 #ifndef __HAVE_ARCH_UNMAP_ONE
785 /*
786  * Some architectures support metadata associated with a page. When a
787  * page is being swapped out, this metadata must be saved so it can be
788  * restored when the page is swapped back in. SPARC M7 and newer
789  * processors support an ADI (Application Data Integrity) tag for the
790  * page as metadata for the page. arch_unmap_one() can save this
791  * metadata on a swap-out of a page.
792  */
793 static inline int arch_unmap_one(struct mm_struct *mm,
794 				  struct vm_area_struct *vma,
795 				  unsigned long addr,
796 				  pte_t orig_pte)
797 {
798 	return 0;
799 }
800 #endif
801 
802 /*
803  * Allow architectures to preserve additional metadata associated with
804  * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
805  * prototypes must be defined in the arch-specific asm/pgtable.h file.
806  */
807 #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
808 static inline int arch_prepare_to_swap(struct page *page)
809 {
810 	return 0;
811 }
812 #endif
813 
814 #ifndef __HAVE_ARCH_SWAP_INVALIDATE
815 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
816 {
817 }
818 
819 static inline void arch_swap_invalidate_area(int type)
820 {
821 }
822 #endif
823 
824 #ifndef __HAVE_ARCH_SWAP_RESTORE
825 static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
826 {
827 }
828 #endif
829 
830 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
831 #define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
832 #endif
833 
834 #ifndef __HAVE_ARCH_MOVE_PTE
835 #define move_pte(pte, prot, old_addr, new_addr)	(pte)
836 #endif
837 
838 #ifndef pte_accessible
839 # define pte_accessible(mm, pte)	((void)(pte), 1)
840 #endif
841 
842 #ifndef flush_tlb_fix_spurious_fault
843 #define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
844 #endif
845 
846 /*
847  * When walking page tables, get the address of the next boundary,
848  * or the end address of the range if that comes earlier.  Although no
849  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
850  */
851 
852 #define pgd_addr_end(addr, end)						\
853 ({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
854 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
855 })
856 
857 #ifndef p4d_addr_end
858 #define p4d_addr_end(addr, end)						\
859 ({	unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;	\
860 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
861 })
862 #endif
863 
864 #ifndef pud_addr_end
865 #define pud_addr_end(addr, end)						\
866 ({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
867 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
868 })
869 #endif
870 
871 #ifndef pmd_addr_end
872 #define pmd_addr_end(addr, end)						\
873 ({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
874 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
875 })
876 #endif
877 
878 /*
879  * When walking page tables, we usually want to skip any p?d_none entries;
880  * and any p?d_bad entries - reporting the error before resetting to none.
881  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
882  */
883 void pgd_clear_bad(pgd_t *);
884 
885 #ifndef __PAGETABLE_P4D_FOLDED
886 void p4d_clear_bad(p4d_t *);
887 #else
888 #define p4d_clear_bad(p4d)        do { } while (0)
889 #endif
890 
891 #ifndef __PAGETABLE_PUD_FOLDED
892 void pud_clear_bad(pud_t *);
893 #else
894 #define pud_clear_bad(p4d)        do { } while (0)
895 #endif
896 
897 void pmd_clear_bad(pmd_t *);
898 
899 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
900 {
901 	if (pgd_none(*pgd))
902 		return 1;
903 	if (unlikely(pgd_bad(*pgd))) {
904 		pgd_clear_bad(pgd);
905 		return 1;
906 	}
907 	return 0;
908 }
909 
910 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
911 {
912 	if (p4d_none(*p4d))
913 		return 1;
914 	if (unlikely(p4d_bad(*p4d))) {
915 		p4d_clear_bad(p4d);
916 		return 1;
917 	}
918 	return 0;
919 }
920 
921 static inline int pud_none_or_clear_bad(pud_t *pud)
922 {
923 	if (pud_none(*pud))
924 		return 1;
925 	if (unlikely(pud_bad(*pud))) {
926 		pud_clear_bad(pud);
927 		return 1;
928 	}
929 	return 0;
930 }
931 
932 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
933 {
934 	if (pmd_none(*pmd))
935 		return 1;
936 	if (unlikely(pmd_bad(*pmd))) {
937 		pmd_clear_bad(pmd);
938 		return 1;
939 	}
940 	return 0;
941 }
942 
943 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
944 					     unsigned long addr,
945 					     pte_t *ptep)
946 {
947 	/*
948 	 * Get the current pte state, but zero it out to make it
949 	 * non-present, preventing the hardware from asynchronously
950 	 * updating it.
951 	 */
952 	return ptep_get_and_clear(vma->vm_mm, addr, ptep);
953 }
954 
955 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
956 					     unsigned long addr,
957 					     pte_t *ptep, pte_t pte)
958 {
959 	/*
960 	 * The pte is non-present, so there's no hardware state to
961 	 * preserve.
962 	 */
963 	set_pte_at(vma->vm_mm, addr, ptep, pte);
964 }
965 
966 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
967 /*
968  * Start a pte protection read-modify-write transaction, which
969  * protects against asynchronous hardware modifications to the pte.
970  * The intention is not to prevent the hardware from making pte
971  * updates, but to prevent any updates it may make from being lost.
972  *
973  * This does not protect against other software modifications of the
974  * pte; the appropriate pte lock must be held over the transaction.
975  *
976  * Note that this interface is intended to be batchable, meaning that
977  * ptep_modify_prot_commit may not actually update the pte, but merely
978  * queue the update to be done at some later time.  The update must be
979  * actually committed before the pte lock is released, however.
980  */
981 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
982 					   unsigned long addr,
983 					   pte_t *ptep)
984 {
985 	return __ptep_modify_prot_start(vma, addr, ptep);
986 }
987 
988 /*
989  * Commit an update to a pte, leaving any hardware-controlled bits in
990  * the PTE unmodified.
991  */
992 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
993 					   unsigned long addr,
994 					   pte_t *ptep, pte_t old_pte, pte_t pte)
995 {
996 	__ptep_modify_prot_commit(vma, addr, ptep, pte);
997 }
998 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
999 #endif /* CONFIG_MMU */
1000 
1001 /*
1002  * No-op macros that just return the current protection value. Defined here
1003  * because these macros can be used even if CONFIG_MMU is not defined.
1004  */
1005 
1006 #ifndef pgprot_nx
1007 #define pgprot_nx(prot)	(prot)
1008 #endif
1009 
1010 #ifndef pgprot_noncached
1011 #define pgprot_noncached(prot)	(prot)
1012 #endif
1013 
1014 #ifndef pgprot_writecombine
1015 #define pgprot_writecombine pgprot_noncached
1016 #endif
1017 
1018 #ifndef pgprot_writethrough
1019 #define pgprot_writethrough pgprot_noncached
1020 #endif
1021 
1022 #ifndef pgprot_device
1023 #define pgprot_device pgprot_noncached
1024 #endif
1025 
1026 #ifndef pgprot_mhp
1027 #define pgprot_mhp(prot)	(prot)
1028 #endif
1029 
1030 #ifdef CONFIG_MMU
1031 #ifndef pgprot_modify
1032 #define pgprot_modify pgprot_modify
1033 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1034 {
1035 	if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1036 		newprot = pgprot_noncached(newprot);
1037 	if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1038 		newprot = pgprot_writecombine(newprot);
1039 	if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1040 		newprot = pgprot_device(newprot);
1041 	return newprot;
1042 }
1043 #endif
1044 #endif /* CONFIG_MMU */
1045 
1046 #ifndef pgprot_encrypted
1047 #define pgprot_encrypted(prot)	(prot)
1048 #endif
1049 
1050 #ifndef pgprot_decrypted
1051 #define pgprot_decrypted(prot)	(prot)
1052 #endif
1053 
1054 /*
1055  * A facility to provide lazy MMU batching.  This allows PTE updates and
1056  * page invalidations to be delayed until a call to leave lazy MMU mode
1057  * is issued.  Some architectures may benefit from doing this, and it is
1058  * beneficial for both shadow and direct mode hypervisors, which may batch
1059  * the PTE updates which happen during this window.  Note that using this
1060  * interface requires that read hazards be removed from the code.  A read
1061  * hazard could result in the direct mode hypervisor case, since the actual
1062  * write to the page tables may not yet have taken place, so reads though
1063  * a raw PTE pointer after it has been modified are not guaranteed to be
1064  * up to date.  This mode can only be entered and left under the protection of
1065  * the page table locks for all page tables which may be modified.  In the UP
1066  * case, this is required so that preemption is disabled, and in the SMP case,
1067  * it must synchronize the delayed page table writes properly on other CPUs.
1068  */
1069 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
1070 #define arch_enter_lazy_mmu_mode()	do {} while (0)
1071 #define arch_leave_lazy_mmu_mode()	do {} while (0)
1072 #define arch_flush_lazy_mmu_mode()	do {} while (0)
1073 #endif
1074 
1075 /*
1076  * A facility to provide batching of the reload of page tables and
1077  * other process state with the actual context switch code for
1078  * paravirtualized guests.  By convention, only one of the batched
1079  * update (lazy) modes (CPU, MMU) should be active at any given time,
1080  * entry should never be nested, and entry and exits should always be
1081  * paired.  This is for sanity of maintaining and reasoning about the
1082  * kernel code.  In this case, the exit (end of the context switch) is
1083  * in architecture-specific code, and so doesn't need a generic
1084  * definition.
1085  */
1086 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1087 #define arch_start_context_switch(prev)	do {} while (0)
1088 #endif
1089 
1090 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1091 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1092 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1093 {
1094 	return pmd;
1095 }
1096 
1097 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1098 {
1099 	return 0;
1100 }
1101 
1102 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1103 {
1104 	return pmd;
1105 }
1106 #endif
1107 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1108 static inline int pte_soft_dirty(pte_t pte)
1109 {
1110 	return 0;
1111 }
1112 
1113 static inline int pmd_soft_dirty(pmd_t pmd)
1114 {
1115 	return 0;
1116 }
1117 
1118 static inline pte_t pte_mksoft_dirty(pte_t pte)
1119 {
1120 	return pte;
1121 }
1122 
1123 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1124 {
1125 	return pmd;
1126 }
1127 
1128 static inline pte_t pte_clear_soft_dirty(pte_t pte)
1129 {
1130 	return pte;
1131 }
1132 
1133 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1134 {
1135 	return pmd;
1136 }
1137 
1138 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1139 {
1140 	return pte;
1141 }
1142 
1143 static inline int pte_swp_soft_dirty(pte_t pte)
1144 {
1145 	return 0;
1146 }
1147 
1148 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1149 {
1150 	return pte;
1151 }
1152 
1153 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1154 {
1155 	return pmd;
1156 }
1157 
1158 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1159 {
1160 	return 0;
1161 }
1162 
1163 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1164 {
1165 	return pmd;
1166 }
1167 #endif
1168 
1169 #ifndef __HAVE_PFNMAP_TRACKING
1170 /*
1171  * Interfaces that can be used by architecture code to keep track of
1172  * memory type of pfn mappings specified by the remap_pfn_range,
1173  * vmf_insert_pfn.
1174  */
1175 
1176 /*
1177  * track_pfn_remap is called when a _new_ pfn mapping is being established
1178  * by remap_pfn_range() for physical range indicated by pfn and size.
1179  */
1180 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1181 				  unsigned long pfn, unsigned long addr,
1182 				  unsigned long size)
1183 {
1184 	return 0;
1185 }
1186 
1187 /*
1188  * track_pfn_insert is called when a _new_ single pfn is established
1189  * by vmf_insert_pfn().
1190  */
1191 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1192 				    pfn_t pfn)
1193 {
1194 }
1195 
1196 /*
1197  * track_pfn_copy is called when vma that is covering the pfnmap gets
1198  * copied through copy_page_range().
1199  */
1200 static inline int track_pfn_copy(struct vm_area_struct *vma)
1201 {
1202 	return 0;
1203 }
1204 
1205 /*
1206  * untrack_pfn is called while unmapping a pfnmap for a region.
1207  * untrack can be called for a specific region indicated by pfn and size or
1208  * can be for the entire vma (in which case pfn, size are zero).
1209  */
1210 static inline void untrack_pfn(struct vm_area_struct *vma,
1211 			       unsigned long pfn, unsigned long size,
1212 			       bool mm_wr_locked)
1213 {
1214 }
1215 
1216 /*
1217  * untrack_pfn_clear is called while mremapping a pfnmap for a new region
1218  * or fails to copy pgtable during duplicate vm area.
1219  */
1220 static inline void untrack_pfn_clear(struct vm_area_struct *vma)
1221 {
1222 }
1223 #else
1224 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1225 			   unsigned long pfn, unsigned long addr,
1226 			   unsigned long size);
1227 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1228 			     pfn_t pfn);
1229 extern int track_pfn_copy(struct vm_area_struct *vma);
1230 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1231 			unsigned long size, bool mm_wr_locked);
1232 extern void untrack_pfn_clear(struct vm_area_struct *vma);
1233 #endif
1234 
1235 #ifdef CONFIG_MMU
1236 #ifdef __HAVE_COLOR_ZERO_PAGE
1237 static inline int is_zero_pfn(unsigned long pfn)
1238 {
1239 	extern unsigned long zero_pfn;
1240 	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1241 	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1242 }
1243 
1244 #define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
1245 
1246 #else
1247 static inline int is_zero_pfn(unsigned long pfn)
1248 {
1249 	extern unsigned long zero_pfn;
1250 	return pfn == zero_pfn;
1251 }
1252 
1253 static inline unsigned long my_zero_pfn(unsigned long addr)
1254 {
1255 	extern unsigned long zero_pfn;
1256 	return zero_pfn;
1257 }
1258 #endif
1259 #else
1260 static inline int is_zero_pfn(unsigned long pfn)
1261 {
1262 	return 0;
1263 }
1264 
1265 static inline unsigned long my_zero_pfn(unsigned long addr)
1266 {
1267 	return 0;
1268 }
1269 #endif /* CONFIG_MMU */
1270 
1271 #ifdef CONFIG_MMU
1272 
1273 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
1274 static inline int pmd_trans_huge(pmd_t pmd)
1275 {
1276 	return 0;
1277 }
1278 #ifndef pmd_write
1279 static inline int pmd_write(pmd_t pmd)
1280 {
1281 	BUG();
1282 	return 0;
1283 }
1284 #endif /* pmd_write */
1285 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1286 
1287 #ifndef pud_write
1288 static inline int pud_write(pud_t pud)
1289 {
1290 	BUG();
1291 	return 0;
1292 }
1293 #endif /* pud_write */
1294 
1295 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1296 static inline int pmd_devmap(pmd_t pmd)
1297 {
1298 	return 0;
1299 }
1300 static inline int pud_devmap(pud_t pud)
1301 {
1302 	return 0;
1303 }
1304 static inline int pgd_devmap(pgd_t pgd)
1305 {
1306 	return 0;
1307 }
1308 #endif
1309 
1310 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1311 	!defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1312 static inline int pud_trans_huge(pud_t pud)
1313 {
1314 	return 0;
1315 }
1316 #endif
1317 
1318 static inline int pud_trans_unstable(pud_t *pud)
1319 {
1320 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1321 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1322 	pud_t pudval = READ_ONCE(*pud);
1323 
1324 	if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1325 		return 1;
1326 	if (unlikely(pud_bad(pudval))) {
1327 		pud_clear_bad(pud);
1328 		return 1;
1329 	}
1330 #endif
1331 	return 0;
1332 }
1333 
1334 #ifndef CONFIG_NUMA_BALANCING
1335 /*
1336  * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is
1337  * perfectly valid to indicate "no" in that case, which is why our default
1338  * implementation defaults to "always no".
1339  *
1340  * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE
1341  * page protection due to NUMA hinting. NUMA hinting faults only apply in
1342  * accessible VMAs.
1343  *
1344  * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault,
1345  * looking at the VMA accessibility is sufficient.
1346  */
1347 static inline int pte_protnone(pte_t pte)
1348 {
1349 	return 0;
1350 }
1351 
1352 static inline int pmd_protnone(pmd_t pmd)
1353 {
1354 	return 0;
1355 }
1356 #endif /* CONFIG_NUMA_BALANCING */
1357 
1358 #endif /* CONFIG_MMU */
1359 
1360 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1361 
1362 #ifndef __PAGETABLE_P4D_FOLDED
1363 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1364 void p4d_clear_huge(p4d_t *p4d);
1365 #else
1366 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1367 {
1368 	return 0;
1369 }
1370 static inline void p4d_clear_huge(p4d_t *p4d) { }
1371 #endif /* !__PAGETABLE_P4D_FOLDED */
1372 
1373 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1374 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1375 int pud_clear_huge(pud_t *pud);
1376 int pmd_clear_huge(pmd_t *pmd);
1377 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1378 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1379 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1380 #else	/* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1381 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1382 {
1383 	return 0;
1384 }
1385 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1386 {
1387 	return 0;
1388 }
1389 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1390 {
1391 	return 0;
1392 }
1393 static inline void p4d_clear_huge(p4d_t *p4d) { }
1394 static inline int pud_clear_huge(pud_t *pud)
1395 {
1396 	return 0;
1397 }
1398 static inline int pmd_clear_huge(pmd_t *pmd)
1399 {
1400 	return 0;
1401 }
1402 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1403 {
1404 	return 0;
1405 }
1406 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1407 {
1408 	return 0;
1409 }
1410 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1411 {
1412 	return 0;
1413 }
1414 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
1415 
1416 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1417 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1418 /*
1419  * ARCHes with special requirements for evicting THP backing TLB entries can
1420  * implement this. Otherwise also, it can help optimize normal TLB flush in
1421  * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1422  * entire TLB if flush span is greater than a threshold, which will
1423  * likely be true for a single huge page. Thus a single THP flush will
1424  * invalidate the entire TLB which is not desirable.
1425  * e.g. see arch/arc: flush_pmd_tlb_range
1426  */
1427 #define flush_pmd_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1428 #define flush_pud_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1429 #else
1430 #define flush_pmd_tlb_range(vma, addr, end)	BUILD_BUG()
1431 #define flush_pud_tlb_range(vma, addr, end)	BUILD_BUG()
1432 #endif
1433 #endif
1434 
1435 struct file;
1436 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1437 			unsigned long size, pgprot_t *vma_prot);
1438 
1439 #ifndef CONFIG_X86_ESPFIX64
1440 static inline void init_espfix_bsp(void) { }
1441 #endif
1442 
1443 extern void __init pgtable_cache_init(void);
1444 
1445 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1446 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1447 {
1448 	return true;
1449 }
1450 
1451 static inline bool arch_has_pfn_modify_check(void)
1452 {
1453 	return false;
1454 }
1455 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1456 
1457 /*
1458  * Architecture PAGE_KERNEL_* fallbacks
1459  *
1460  * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1461  * because they really don't support them, or the port needs to be updated to
1462  * reflect the required functionality. Below are a set of relatively safe
1463  * fallbacks, as best effort, which we can count on in lieu of the architectures
1464  * not defining them on their own yet.
1465  */
1466 
1467 #ifndef PAGE_KERNEL_RO
1468 # define PAGE_KERNEL_RO PAGE_KERNEL
1469 #endif
1470 
1471 #ifndef PAGE_KERNEL_EXEC
1472 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1473 #endif
1474 
1475 /*
1476  * Page Table Modification bits for pgtbl_mod_mask.
1477  *
1478  * These are used by the p?d_alloc_track*() set of functions an in the generic
1479  * vmalloc/ioremap code to track at which page-table levels entries have been
1480  * modified. Based on that the code can better decide when vmalloc and ioremap
1481  * mapping changes need to be synchronized to other page-tables in the system.
1482  */
1483 #define		__PGTBL_PGD_MODIFIED	0
1484 #define		__PGTBL_P4D_MODIFIED	1
1485 #define		__PGTBL_PUD_MODIFIED	2
1486 #define		__PGTBL_PMD_MODIFIED	3
1487 #define		__PGTBL_PTE_MODIFIED	4
1488 
1489 #define		PGTBL_PGD_MODIFIED	BIT(__PGTBL_PGD_MODIFIED)
1490 #define		PGTBL_P4D_MODIFIED	BIT(__PGTBL_P4D_MODIFIED)
1491 #define		PGTBL_PUD_MODIFIED	BIT(__PGTBL_PUD_MODIFIED)
1492 #define		PGTBL_PMD_MODIFIED	BIT(__PGTBL_PMD_MODIFIED)
1493 #define		PGTBL_PTE_MODIFIED	BIT(__PGTBL_PTE_MODIFIED)
1494 
1495 /* Page-Table Modification Mask */
1496 typedef unsigned int pgtbl_mod_mask;
1497 
1498 #endif /* !__ASSEMBLY__ */
1499 
1500 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1501 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1502 /*
1503  * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1504  * with physical address space extension, but falls back to
1505  * BITS_PER_LONG otherwise.
1506  */
1507 #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1508 #else
1509 #define MAX_POSSIBLE_PHYSMEM_BITS 32
1510 #endif
1511 #endif
1512 
1513 #ifndef has_transparent_hugepage
1514 #define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1515 #endif
1516 
1517 #ifndef has_transparent_pud_hugepage
1518 #define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1519 #endif
1520 /*
1521  * On some architectures it depends on the mm if the p4d/pud or pmd
1522  * layer of the page table hierarchy is folded or not.
1523  */
1524 #ifndef mm_p4d_folded
1525 #define mm_p4d_folded(mm)	__is_defined(__PAGETABLE_P4D_FOLDED)
1526 #endif
1527 
1528 #ifndef mm_pud_folded
1529 #define mm_pud_folded(mm)	__is_defined(__PAGETABLE_PUD_FOLDED)
1530 #endif
1531 
1532 #ifndef mm_pmd_folded
1533 #define mm_pmd_folded(mm)	__is_defined(__PAGETABLE_PMD_FOLDED)
1534 #endif
1535 
1536 #ifndef p4d_offset_lockless
1537 #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1538 #endif
1539 #ifndef pud_offset_lockless
1540 #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1541 #endif
1542 #ifndef pmd_offset_lockless
1543 #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1544 #endif
1545 
1546 /*
1547  * p?d_leaf() - true if this entry is a final mapping to a physical address.
1548  * This differs from p?d_huge() by the fact that they are always available (if
1549  * the architecture supports large pages at the appropriate level) even
1550  * if CONFIG_HUGETLB_PAGE is not defined.
1551  * Only meaningful when called on a valid entry.
1552  */
1553 #ifndef pgd_leaf
1554 #define pgd_leaf(x)	0
1555 #endif
1556 #ifndef p4d_leaf
1557 #define p4d_leaf(x)	0
1558 #endif
1559 #ifndef pud_leaf
1560 #define pud_leaf(x)	0
1561 #endif
1562 #ifndef pmd_leaf
1563 #define pmd_leaf(x)	0
1564 #endif
1565 
1566 #ifndef pgd_leaf_size
1567 #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1568 #endif
1569 #ifndef p4d_leaf_size
1570 #define p4d_leaf_size(x) P4D_SIZE
1571 #endif
1572 #ifndef pud_leaf_size
1573 #define pud_leaf_size(x) PUD_SIZE
1574 #endif
1575 #ifndef pmd_leaf_size
1576 #define pmd_leaf_size(x) PMD_SIZE
1577 #endif
1578 #ifndef pte_leaf_size
1579 #define pte_leaf_size(x) PAGE_SIZE
1580 #endif
1581 
1582 /*
1583  * Some architectures have MMUs that are configurable or selectable at boot
1584  * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1585  * helps to have a static maximum value.
1586  */
1587 
1588 #ifndef MAX_PTRS_PER_PTE
1589 #define MAX_PTRS_PER_PTE PTRS_PER_PTE
1590 #endif
1591 
1592 #ifndef MAX_PTRS_PER_PMD
1593 #define MAX_PTRS_PER_PMD PTRS_PER_PMD
1594 #endif
1595 
1596 #ifndef MAX_PTRS_PER_PUD
1597 #define MAX_PTRS_PER_PUD PTRS_PER_PUD
1598 #endif
1599 
1600 #ifndef MAX_PTRS_PER_P4D
1601 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
1602 #endif
1603 
1604 /* description of effects of mapping type and prot in current implementation.
1605  * this is due to the limited x86 page protection hardware.  The expected
1606  * behavior is in parens:
1607  *
1608  * map_type	prot
1609  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
1610  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
1611  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
1612  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
1613  *
1614  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
1615  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
1616  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
1617  *
1618  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1619  * MAP_PRIVATE (with Enhanced PAN supported):
1620  *								r: (no) no
1621  *								w: (no) no
1622  *								x: (yes) yes
1623  */
1624 #define DECLARE_VM_GET_PAGE_PROT					\
1625 pgprot_t vm_get_page_prot(unsigned long vm_flags)			\
1626 {									\
1627 		return protection_map[vm_flags &			\
1628 			(VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)];	\
1629 }									\
1630 EXPORT_SYMBOL(vm_get_page_prot);
1631 
1632 #endif /* _LINUX_PGTABLE_H */
1633